Decreasing Diagrams: Two Labels Suffice

Jan Willem Klop^{1,2} Jörg Endrullis¹ Roy Overbeek¹ Presented by Bertram Felgenhauer³

¹Vrije Universiteit Amsterdam, the Netherlands
²Centrum Wiskunde & Informatica, the Netherlands
³University of Innsbruck, Austria

{j.w.klop, j.endrullis, r.overbeek}@vu.nl

September 9, 2016

5th International Workshop on Confluence (IWC 2016)

Overview

Preliminaries

- Abstract reduction systems and confluence (CR)
- Decreasing Church-Rosser (DCR) and decreasing diagrams
- Cofinality property (CP)
- Dependencies between CR, DCR and CP

2 Two labels suffice

- Departing question: DCR hierarchy
- Proof sketch for $CP \Rightarrow DCR_2$
- Dependencies between properties (updated)

Abstract reduction systems and confluence (CR)

- ARS $\mathcal{A} = (A, \rightarrow)$ with $\rightarrow \subseteq A \times A$
- \mathcal{A} is countable if \mathcal{A} is
- (A, \rightarrow) is confluent (CR) if

$$(a \twoheadrightarrow b \land a \twoheadrightarrow c) \Rightarrow \exists d \in A (b \twoheadrightarrow d \land c \twoheadrightarrow d)$$

• indexed ARS
$$\mathcal{A} = (A, \{\rightarrow_{\alpha}\}_{\alpha \in I})$$
 letting $\rightarrow = \bigcup_{\alpha \in I} \rightarrow_{\alpha}$

Decreasing Church-Rosser (DCR) and decreasing diagrams

Definition 1 (Decreasing Church–Rosser [4])

 $\mathcal{A} = (A, \rightarrow)$ is decreasing Church–Rosser (DCR) if it equals $\mathcal{B} = (A, \{\rightarrow_{\alpha}\}_{\alpha \in I})$ indexed by a well-founded partial order (I, <) such that every peak $c \leftarrow_{\beta} a \rightarrow_{\alpha} b$ can be joined decreasingly.

Theorem 2 (Decreasing Diagrams – De Bruijn [1] & Van Oostrom [4])

 $DCR \Rightarrow CR$

Cofinality property (CP)

Definition 3 (Cofinal Reduction)

Let $\mathcal{A} = (A, \rightarrow)$ be an ARS. A finite or infinite reduction sequence $b_0 \rightarrow b_1 \rightarrow b_2 \rightarrow \cdots$ is *cofinal in* \mathcal{A} if $a \in A$ implies $a \twoheadrightarrow b_i$ for some *i*.

Definition 4 (Cofinality Property)

An ARS $\mathcal{A} = (A, \rightarrow)$ has the *cofinality property* (*CP*) if for every $a \in A$, there exists a reduction sequence $a \equiv b_0 \rightarrow b_1 \rightarrow b_2 \rightarrow \cdots$ that is cofinal in $\mathcal{A}|_{\{b \mid a \rightarrow b\}}$.

$$a \rightarrow b_1 \rightarrow \cdots \rightarrow b_i \rightarrow \cdots \rightarrow a_i \rightarrow \cdots \rightarrow$$

Dependencies between CR, DCR and CP

For countable ARSs, the relevant properties coincide:

For uncountable systems, the situation is as follows:

Example 5 (Counter-example to $DCR \Rightarrow CP$)

Let A be the set of finite subsets X of the line \mathbb{R} . Consider the reduction rule $X \to X \cup \{x\}$ for $x \notin X$. The uncountable ARS (A, \rightarrow) is *DCR*, but not *CP*.

Whether $CR \Rightarrow DCR$ for uncountable systems is a long-standing open problem in abstract rewriting.

Definition 6 (DCR_{α})

For ordinals α , let DCR_{α} denote the class of ARSs that can be shown to satisfy DCR using the label set $\{\beta \mid \beta < \alpha\}$. (With < the usual order on ordinals.)

- Do we have strict inclusions $DCR_{\alpha} \subset DCR_{\beta}$ for all $\alpha < \beta$?
- If not, what does the hierarchy look like?

Our main result:

Theorem 7 (Two Labels Suffice – Klop, Endrullis & Overbeek [2]) $CP \Rightarrow DCR_2$

- Thus one easily obtains $DCR = DCR_2$ for the countable case.
- Our proof is an adaptation of Van Oostrom's proof for $CP \Rightarrow DCR$ [3, Proposition 14.2.30, p. 766].

Lemma 8 ($CP \Rightarrow CP^{\leftrightarrow^*}$ – Mano, 1993)

Let $\mathcal{A} = (A, \rightarrow)$ be a confluent ARS and $a \in A$. If a rewrite sequence is cofinal in $\mathcal{A}|_{\{b \mid a \leftrightarrow *b\}}$, then it is also cofinal in $\mathcal{A}|_{\{b \mid a \leftrightarrow *b\}}$.

Thus *CP* implies that there exists a main road in every weakly connected component (w.r.t. \leftrightarrow^*).

We focus on a single component ARS $\mathcal{A} = (A, \rightarrow)$ satisfying *CP*, and let *M* denote a fixed acyclic main road in \mathcal{A} .

$CP \Rightarrow DCR_2$: proof sketch (2/4)

Our labelling function presupposes the following notions.

- d(a) is the distance of a to the main road M
- > is a linear order on A

Definition 9 (Minimizing Step)

A step $a \rightarrow b$ is minimizing if (i) d(a) = d(b) + 1 and (ii) b' > b for every step $a \rightarrow b'$ with d(b') = d(b).

 $\mathit{Remark:} > \mathsf{exists}$ by the Well-Ordering Theorem, or by construction for countable systems

$CP \Rightarrow DCR_2$: proof sketch (3/4)

We now label steps $a \rightarrow b$ with 0 or 1 as follows:

 $a \rightarrow_0 b \iff a \rightarrow b$ is on M or minimizing $a \rightarrow_1 b \iff a \rightarrow b$ is not on M and not minimizing

$CP \Rightarrow DCR_2$: proof sketch (4/4)

We show DCR. There are three cases for the peaks:

- $\bullet \ \to_0 \text{ is deterministic}$
- there exist 0-labelled paths from any point to M
- any two points on M can be joined by 0-reductions

Dependencies between CR, DCR, CP and DCR₂

For countable ARSs, we now have:

And for uncountable systems:

The implications $DCR \Rightarrow DCR_2$ and $CR \Rightarrow DCR_2$ are new open problems for the uncountable case.

Further results: commutation (1/2)

Relation \rightarrow *commutes with* \rightsquigarrow in an ARS (A, \rightarrow , \rightsquigarrow) if:

DCR can be used to prove commutation (although it is *incomplete*):

Question: do we have $DCR = DCR_2$ for commutation?

Further results: commutation (2/2)

Theorem 10 (Lower *DCR* hierarchy for commutation)

For commutation, $DCR_{\alpha} \subset DCR_{\beta}$ for all ordinals $\alpha < \beta \leq \omega$

- plan: extend system to require additional label
- assume $c_2 \rightsquigarrow^* d_1 \leftarrow^* c_1$ with two steps $\geq n$ on one of the reductions
- peaks from a_1 , a_4 and a_7 each contain a step $\geq n+1$
- hence $a_1 \rightsquigarrow^* c_1$ and $a_1 \rightarrow^* c_2$ with three steps $\ge n+1$

Further results: commutation (2/2)

Theorem 10 (Lower *DCR* hierarchy for commutation)

For commutation, $DCR_{\alpha} \subset DCR_{\beta}$ for all ordinals $\alpha < \beta \leq \omega$

- plan: extend system to require additional label
- assume $c_2 \rightsquigarrow^* d_1 \leftarrow^* c_1$ with two steps $\geq n$ on one of the reductions
- peaks from a_1 , a_4 and a_7 each contain a step $\geq n+1$
- hence $a_1 \rightsquigarrow^* c_1$ and $a_1 \rightarrow^* c_2$ with three steps $\ge n+1$
- or: symmetric for $c_1 \rightsquigarrow^* d_2 \leftarrow^* c_2$, b_1 to b_7

References

[1] N.G. de Bruijn.

A Note on Weak Diamond Properties.

Memorandum 78-08, Eindhoven University of Technology, 1978.

- J. Endrullis, J.W. Klop, and R. Overbeek. Decreasing Diagrams: Two Labels Suffice. In Proc. 5th International Workshop on Confluence (IWC 2016), 2016.
- [3] Terese.

Term Rewriting Systems, volume 55 of *Cambridge Tracts in Theoretical Computer Science*. Cambridge University Press, 2003.

[4] V. van Oostrom.

Confluence by Decreasing Diagrams.

Theoretical Computer Science, 126(2):259-280, 1994.