An Algebraic Approach to Confluence and Completion

Cyrille Chenavier, Université Paris Diderot, INRIA, équipe πr^2

September 9, 2016

▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.

- ▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.
- ▶ We want to:
 - ▷ formulate the confluence property using linear algebra,

- ▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.
- We want to:
 - ▷ formulate the confluence property using linear algebra,
 - ▷ deduce from this formulation the one of completion,

- ▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.
- We want to:
 - ▷ formulate the confluence property using linear algebra,
 - ▷ deduce from this formulation the one of completion,
 - ▷ interpret some algebraic constructions as completion algorithms.

- ▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.
- We want to:
 - ▷ formulate the confluence property using linear algebra,
 - ▷ deduce from this formulation the one of completion,
 - ▷ interpret some algebraic constructions as completion algorithms.
- ▶ For that, we consider functional methods.

- ▶ We consider abstract rewriting systems (V, \rightarrow) where V and $V/ \stackrel{*}{\longleftrightarrow}$ are vector spaces.
- We want to:
 - ▷ formulate the confluence property using linear algebra,
 - ▷ deduce from this formulation the one of completion,
 - ▷ interpret some algebraic constructions as completion algorithms.
- For that, we consider functional methods. These methods use reduction operators.

Definition. An endomorphism T of $\mathbb{K}G$ is a reduction operator relative to (G, <) if

- \triangleright T is a projector,
- $\triangleright \forall g \in G$, we have T(g) = g or $T(g) = \sum \lambda_i g_i$ with $g_i < g$.

Definition. An endomorphism T of $\mathbb{K}G$ is a reduction operator relative to (G, <) if

- \triangleright T is a projector,
- $\triangleright \ \forall g \in G$, we have T(g) = g or $T(g) = \sum \lambda_i g_i$ with $g_i < g$.
- A reduction operator T must be considered as a set of oriented relations g → T(g), where T(g) ≠ g.

Definition. An endomorphism T of $\mathbb{K}G$ is a reduction operator relative to (G, <) if

- ▷ T is a projector,
- $\triangleright \ \forall g \in G$, we have T(g) = g or $T(g) = \sum \lambda_i g_i$ with $g_i < g$.
- A reduction operator T must be considered as a set of oriented relations g → T(g), where T(g) ≠ g.

Notations.

▷ $\mathbf{RO}(G, <) := \{$ reduction operators relative to $(G, <)\}$,

Definition. An endomorphism T of $\mathbb{K}G$ is a reduction operator relative to (G, <) if

- ▷ T is a projector,
- $\triangleright \ \forall g \in G$, we have T(g) = g or $T(g) = \sum \lambda_i g_i$ with $g_i < g$.
- A reduction operator T must be considered as a set of oriented relations g → T(g), where T(g) ≠ g.

Notations.

- $\triangleright \ \mathbf{RO}(G, <) := \{ \text{reduction operators relative to } (G, <) \},$
- $\triangleright \ \forall T \in \mathbf{RO}(G, <),$
 - $\triangleright \operatorname{Red}(T) := \{g \in G, T(g) = g\},\$
 - $\triangleright \ \operatorname{\mathsf{Nred}}(T) := G \setminus \operatorname{\mathsf{Red}}(T).$

Theorem [C 2016]. The map $\ker \colon \mathbf{RO}(G, <) \longrightarrow \{ \text{subspaces of } \mathbb{K}G \} ,$ $T \longmapsto \ker(T)$

is a bijection.

Theorem [C 2016]. The map

$$\begin{array}{l} \mathsf{ker} \colon \mathbf{RO}\left(\mathcal{G}, <\right) \longrightarrow \left\{ \mathsf{subspaces of } \mathbb{K}\mathcal{G} \right\}, \\ \mathcal{T} \longmapsto \mathsf{ker}(\mathcal{T}) \end{array}$$

is a bijection.

Notation. θ : {subspaces of $\mathbb{K}G$ } \longrightarrow **RO**(*G*, <) the inverse of ker.

Theorem [C 2016]. The map

$$\begin{array}{l} \mathsf{ker} \colon \mathbf{RO}\left(\mathcal{G}, <\right) \longrightarrow \left\{ \mathsf{subspaces of } \mathbb{K}\mathcal{G} \right\}, \\ \mathcal{T} \longmapsto \mathsf{ker}(\mathcal{T}) \end{array}$$

is a bijection.

Notation. θ : {subspaces of $\mathbb{K}G$ } \longrightarrow **RO** (*G*, <) the inverse of ker.

- $(\mathbf{RO}(G, <), \preceq, \land, \lor)$ is a lattice where
 - $\triangleright \ T_1 \preceq T_2 \text{ if } \ker(T_2) \ \subset \ \ker(T_1),$

$$\triangleright \ T_1 \wedge T_2 := \theta \left(\operatorname{ker}(T_1) + \operatorname{ker}(T_2) \right),$$

 $\triangleright \ T_1 \lor T_2 := \theta \left(\ker(T_1) \cap \ker(T_2) \right).$

 $T_1 \preceq T_2 \Longrightarrow \operatorname{Red}(T_1) \subset \operatorname{Red}(T_2).$

 $T_1 \preceq T_2 \Longrightarrow \operatorname{Red}(T_1) \subset \operatorname{Red}(T_2).$

• Let $F \subset \mathbf{RO}(G, <)$.

$$T_1 \preceq T_2 \Longrightarrow \operatorname{\mathsf{Red}}(T_1) \subset \operatorname{\mathsf{Red}}(T_2).$$

• Let $F \subset \mathbf{RO}(G, <)$.

$$\mathsf{Red}(F) := \bigcap_{T \in F} \mathsf{Red}(T) \text{ and } \wedge F := \theta\left(\sum_{T \in F} \ker(T)\right).$$

$$T_1 \preceq T_2 \Longrightarrow \operatorname{\mathsf{Red}}(T_1) \subset \operatorname{\mathsf{Red}}(T_2).$$

• Let $F \subset \mathbf{RO}(G, <)$.

$$\operatorname{\mathsf{Red}}(F) := \bigcap_{T \in F} \operatorname{\mathsf{Red}}(T) \text{ and } \wedge F := \theta\left(\sum_{T \in F} \operatorname{\mathsf{ker}}(T)\right).$$

• We have $\operatorname{Red}(\wedge F) \subset \operatorname{Red}(F)$,

$$T_1 \preceq T_2 \Longrightarrow \operatorname{\mathsf{Red}}(T_1) \subset \operatorname{\mathsf{Red}}(T_2).$$

• Let $F \subset \mathbf{RO}(G, <)$.

$$\operatorname{Red}(F) := \bigcap_{T \in F} \operatorname{Red}(T) \text{ and } \wedge F := \theta\left(\sum_{T \in F} \operatorname{ker}(T)\right).$$

▶ We have $\operatorname{Red}(\wedge F) \subset \operatorname{Red}(F)$, $\operatorname{Obs}^F := \operatorname{Red}(F) \setminus \operatorname{Red}(\wedge F)$.

$$T_1 \preceq T_2 \Longrightarrow \operatorname{\mathsf{Red}}(T_1) \subset \operatorname{\mathsf{Red}}(T_2).$$

• Let $F \subset \mathbf{RO}(G, <)$.

$$\operatorname{\mathsf{Red}}(F) := \bigcap_{T \in F} \operatorname{\mathsf{Red}}(T) \text{ and } \wedge F := \theta\left(\sum_{T \in F} \operatorname{\mathsf{ker}}(T)\right).$$

▶ We have $\operatorname{Red}(\wedge F) \subset \operatorname{Red}(F)$, $\operatorname{Obs}^F := \operatorname{Red}(F) \setminus \operatorname{Red}(\wedge F)$.

Definition. F is said to be confluent if Obs^{F} is the empty set.

▶ Let
$$\left(\mathbb{K}G, \xrightarrow{F}\right)$$
 defined by $v \xrightarrow{F} T(v)$ for $T \in F$ such that $v \notin \mathbb{K}$ Red (T) .

▶ Let
$$\left(\mathbb{K}G, \xrightarrow{F}\right)$$
 defined by $v \xrightarrow{F} T(v)$ for $T \in F$ such that $v \notin \mathbb{K}$ Red (T) .

For every $v \in \mathbb{K}G$, let [v] be the equivalence class of v for $\stackrel{*}{\leftarrow}_{F}$.

▶ Let
$$\left(\mathbb{K}G, \xrightarrow{F}\right)$$
 defined by $v \xrightarrow{F} T(v)$ for $T \in F$ such that $v \notin \mathbb{K}$ Red (T) .

For every $v \in \mathbb{K}G$, let [v] be the equivalence class of v for $\stackrel{*}{\leftarrow r}$.

• Fact: $\wedge F(v)$ is the smallest element of [v].

▶ Let
$$\left(\mathbb{K}G, \xrightarrow{F}\right)$$
 defined by $v \xrightarrow{F} T(v)$ for $T \in F$ such that $v \notin \mathbb{K}$ Red (T) .

For every $v \in \mathbb{K}G$, let [v] be the equivalence class of v for $\stackrel{*}{\leftarrow r}$.

• Fact: $\wedge F(v)$ is the smallest element of [v].

▷ $\mathbb{K}Obs^{F} = \mathbb{K}(\text{Red}(F) \setminus \text{Red}(\wedge F))$ is the set of normal forms which are not minimal in their equivalence classes.

▶ Let
$$\left(\mathbb{K}G, \xrightarrow{F}\right)$$
 defined by $v \xrightarrow{F} T(v)$ for $T \in F$ such that $v \notin \mathbb{K}$ Red (T) .

For every $v \in \mathbb{K}G$, let [v] be the equivalence class of v for $\stackrel{*}{\leftarrow r}$.

Fact: ∧F(v) is the smallest element of [v].
KObs^F = K(Red (F) \ Red (∧F)) is the set of normal forms which are not minimal in their equivalence classes.

Proposition. *F* is confluent if and only if it is so for \xrightarrow{F} .

▶ $F \subset \mathbf{RO}(G, <).$

$$\blacktriangleright F \subset \mathbf{RO}(G, <).$$

Definitions.

▷ A completion of F is a set $F' \subset \mathbf{RO}(G, <)$ such that

▷
$$F \subset F'$$
 and F' is confluent,
▷ $\land F' = \land F$.

 $\blacktriangleright F \subset \mathbf{RO}(G, <).$

Definitions.

- ▷ A completion of F is a set $F' \subset \mathbf{RO}(G, <)$ such that
 - \triangleright $F \subset$ F' and F' is confluent,
 - $\triangleright \land F' = \land F.$
- ▷ A complement of *F* is $C \in \mathbf{RO}(G, <)$ such that

 $\blacktriangleright F \subset \mathbf{RO}(G, <).$

Definitions.

- ▷ A completion of F is a set $F' \subset \mathbf{RO}(G, <)$ such that
 - \triangleright $F \subset$ F' and F' is confluent,
 - $\triangleright \land F' = \land F.$
- ▷ A complement of *F* is $C \in \mathbf{RO}(G, <)$ such that

▷
$$Obs^F \subset Nred(C),$$

▷ $(\land F) \land C = \land F.$

 \triangleright A complement C is said to be minimal if Obs^F is equal to Nred (C).

 $\blacktriangleright F \subset \mathbf{RO}(G, <).$

Definitions.

- ▷ A completion of F is a set $F' \subset \mathbf{RO}(G, <)$ such that
 - \triangleright $F \subset$ F' and F' is confluent,

$$\triangleright \land F' = \land F.$$

- ▷ A complement of *F* is $C \in \mathbf{RO}(G, <)$ such that
 - ▷ $Obs^F \subset Nred(C)$, ▷ $(\land F) \land C = \land F$.
- \triangleright A complement C is said to be minimal if Obs^F is equal to Nred (C).

Proposition. Let $C \in \mathbf{RO}(G, <)$ such that $(\wedge F) \wedge C = \wedge F$. Then,

C is a complement of $F \iff F \cup \{C\}$ is a completion of *F*.

► We denote by

 $\forall \overline{F} := \theta \left(\mathbb{K} \mathrm{Red} \left(F \right) \right).$

► We denote by

$$\vee \overline{F} := \theta \left(\mathbb{K} \operatorname{Red} (F) \right).$$

Definition. The operator

$$C^{F} := (\wedge F) \vee (\vee \overline{F}),$$

is the *F*-complement.

► We denote by

$$\vee \overline{F} := \theta \left(\mathbb{K} \operatorname{Red} (F) \right).$$

Definition. The operator

$$C^{F} := (\wedge F) \vee (\vee \overline{F}),$$

is the *F*-complement.

Theorem [C 2016]. The F-complement is a minimal complement of F.

▶ Let X be an alphabet, G = X* be the set of words and < be a monomial order.</p>

- ▶ Let X be an alphabet, G = X* be the set of words and < be a monomial order.</p>
- Reduction operators relative to (X*, <) enable us to characterise Gröbner bases.

- ▶ Let X be an alphabet, G = X* be the set of words and < be a monomial order.</p>
- Reduction operators relative to (X*, <) enable us to characterise Gröbner bases.
 - Applications in homological algebra: proof of Koszulness [Berger 1998, 2001] and construction of a contracting homotopy for the Koszul complex [Berger 1998, C 2015].

- ▶ Let X be an alphabet, G = X* be the set of words and < be a monomial order.</p>
- Reduction operators relative to (X*, <) enable us to characterise Gröbner bases.
 - Applications in homological algebra: proof of Koszulness [Berger 1998, 2001] and construction of a contracting homotopy for the Koszul complex [Berger 1998, C 2015].
 - The F-complement provides an algorithm to construct Gröbner bases.

- ▶ Let X be an alphabet, G = X* be the set of words and < be a monomial order.</p>
- Reduction operators relative to (X*, <) enable us to characterise Gröbner bases.
 - Applications in homological algebra: proof of Koszulness [Berger 1998, 2001] and construction of a contracting homotopy for the Koszul complex [Berger 1998, C 2015].
 - The F-complement provides an algorithm to construct Gröbner bases.
- Thank you for listening.