
tempo2hsal: Converting Tempo Models into
HybridSal

Tool Description

Ashish Tiwari Bruno Dutertre

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA

Report submitted under Honeywell subcontract No. C099110021
(P20795)

1 Introduction

This report describes the current implementation of a translator from Tempo (.tioa) to
HybridSal (.hsal).

Tempo is a formal language for modeling distributed system as collections of timed
input/output automata (TIOA). Timed I/O automata (TIOA) is a mathematical formalism
for describing systems that involve both discrete and continuous dynamics. The Tempo
toolset, developed by Veromod Inc.1, supports system development based on TIOA specifi-
cations [ALL+08].

HybridSal is a language for modeling hybrid dynamical systems. Models in the Hybrid-
Sal language can be analyzed using abstraction and model checking tools that are available
as part of the HybridSal and SAL tool suites [Tiw12, Hyb03, dMOR+04].

Since both Tempo and HybridSal can describe compositions of hybrid state machines, it
is natural to consider the possibility of translating models written in one formalism into the
other formalism. This report describes a tool tempo2hsal that translates Tempo models
into HybridSal models.

2 Tempo2HSal: Installation and Testing

The tempo2hsal tool is available as a tar gzipped file. The tool is installed by extracting
the files from this archive and running

make install

The installation can be tested by running

make test

The installation requires python, swig and dparser be available on the system prior to
the installation process. If these are unavailable, the make install script will provides
links to resources from where these components can be downloaded and installed.

3 Tempo2HSal: Tempo to HybridSal Model Translator

The mapping between Tempo concepts and HybridSal concepts is shown in Table 1. The
current version of the tempo2hsal translator works by mapping elements in the Tempo
model (shown in Column 1) to elements of the HybridSal model (shown in Column 2).

1http://www.veromodo.com/

1

Tempo HybridSal
Top Tempo Spec Context
invariant p of m : e THEOREM p m |- G(e)
vocabulary declarations in outermost HybridSal context
automaton Module
basicAutomaton basemodule
composedAutomaton asynchronous composition of modules
transitions Guarded Commands
pre guard
eff RHS assignments of guaraded command
trajectories guarded commands denoting differential equations
trajInvariant guard
stop when guard
evolve RHS assignments of guaraded command
Enumeration [a,b] { a, b }

Table 1: Mapping from Tempo concepts to HybridSal concepts used to perform the trans-
lation

The translator can translate several Tempo models (present in the Tempo distribution)
into HybridSal models. The Makefile lists some of the examples that the translator can
successfull convert into HybridSal.

The tempo2hsal tool is implemented in python.

4 A Running Example

We show an example of a Tempo specification and the translated HybridSal model in this
section. Due to space constraints, both the Tempo file and the generated HybridSal file are
divided into two parts. The first part contains the model of the system. The second part
contains the properties of the system.

Figure 1 presents the Tempo file describing an automaton TTR. This model is taken
from the Tempo distribution. The invariants associated with TTR are shown in Figure 2.

The HybridSal file generated from the Tempo model and the invariants is shown in
Figure 3 and Figure 4. It is easy to see the correspondence between Figure 1 and Figure 3,
and again between Figure 2 and Figure 4.

Given the input file twoTaskRace0.tioa, the translater tempo2hsal creates the
HybridSal file twoTaskRace0.hsal.

The generated HybridSal model can be automatically analyzed using HybridSal tools.
In particular, the differential equations can be replaced by their conservative discrete ab-
straction using the HybridSal relational abstracter as follows:

2

automaton TTR(a1, a2, b1, b2: Real) where
a1 > 0 /\ a2 > 0 /\ b1 >= 0 /\ b2 >= 0 /\ a2 >= a1 /\ b2 >= b1

signature
internal increment
internal decrement
output report
internal set

states
count: Int := 0;
flag: Bool := false;
reported: Bool := false;
now: Real := 0;
first_main: DiscreteReal := a1;
last_main: AugmentedReal := a2;
first_set: DiscreteReal := b1;
last_set: AugmentedReal := b2;

transitions

internal increment
pre ˜flag /\ now >= first_main;
eff count := count + 1;

first_main := now + a1;
last_main := now + a2;

internal set
pre ˜flag /\ now >= first_set;
eff flag := true;

first_set := 0;
last_set := \infty;

internal decrement
pre flag /\ count > 0 /\ now >= first_main;
eff count := count - 1;

first_main := now + a1;
last_main := now + a2;

output report
pre flag /\ count = 0 /\ ˜reported /\ now >= first_main;
eff reported := true;

first_main := 0;
last_main := \infty;

trajectories
trajdef traj
stop when now = last_main \/ now = last_set;
evolve d(now) = 1;

Figure 1: An example of Tempo specification taken from the Tempo distribution

3

%%%
% Invariants

invariant of TTR:
now >= 0;

invariant of TTR:
now + b2 >= 0;

invariant of TTR:
count >= 0;

invariant of TTR:
reported => flag;

invariant of TTR:
reported => count = 0;

invariant of TTR:
first_main <= (a1 + now);

invariant of TTR:
last_main >= now;

invariant of TTR:
last_main ˜= \infty =>

(last_main <= (a2 + now));

invariant of TTR:
˜reported <=> last_main ˜= \infty;

invariant of TTR:
first_main <= last_main;

invariant of TTR:
first_set <= (b1 + now);

invariant of TTR:
last_set >= now;

invariant of TTR:
last_set ˜= \infty =>

(last_set <= (b2 + now));

invariant of TTR:
˜flag <=> last_set ˜= \infty;

invariant of TTR:
˜flag => (Real)last_set + a2 >= ((Real)last_main);

invariant of TTR:
˜flag => ((2 * a1) + (Real)last_set - (Real)first_main) >= 0;

Figure 2: An example of invariants for the Tempo specification in Figure 1 taken from the
Tempo distribution.

4

twoTaskRace0: CONTEXT =
BEGIN

TTR: MODULE =
BEGIN
LOCAL a1:REAL,a2:REAL,b1:REAL,b2:REAL
OUTPUT count:INTEGER
OUTPUT flag:BOOLEAN
OUTPUT reported:BOOLEAN
OUTPUT now:REAL
OUTPUT first_main:REAL
OUTPUT last_main:REAL
OUTPUT first_set:REAL
OUTPUT last_set:REAL
INITIALIZATION
count = 0 ;
flag = FALSE ;
reported = FALSE ;
now = 0 ;
first_main = a1 ;
last_main = a2 ;
first_set = b1 ;
last_set = b2 ;
a1 IN { a1 : REAL | a1 > 0 AND a2 > 0 AND b1 >= 0 AND b2 >= 0 AND a2 >= a1 AND b2 >= b1 } ;
a2 IN { a2 : REAL | a1 > 0 AND a2 > 0 AND b1 >= 0 AND b2 >= 0 AND a2 >= a1 AND b2 >= b1 } ;
b1 IN { b1 : REAL | a1 > 0 AND a2 > 0 AND b1 >= 0 AND b2 >= 0 AND a2 >= a1 AND b2 >= b1 } ;
b2 IN { b2 : REAL | a1 > 0 AND a2 > 0 AND b1 >= 0 AND b2 >= 0 AND a2 >= a1 AND b2 >= b1 }

TRANSITION
[
NOT(flag) AND now >= first_main -->

count’ = count + 1 ;
first_main’ = now + a1 ;
last_main’ = now + a2

[]
NOT(flag) AND now >= first_set -->

flag’ = TRUE ;
first_set’ = 0 ;
last_set’ = 10000

[]
flag AND count > 0 AND now >= first_main -->

count’ = count - 1 ;
first_main’ = now + a1 ;
last_main’ = now + a2

[]
flag AND count = 0 AND NOT(reported) AND now >= first_main -->

reported’ = TRUE ;
first_main’ = 0 ;
last_main’ = 10000

[]
TRUE AND NOT(now = last_main OR now = last_set) -->

nowdot’ = 1
]
END ;

Figure 3: The HybridSal model generated by tempo2hsal when it is run on the Tempo
example shown in Figure 1.

5

p1 : THEOREM
TTR |- G(now >= 0);

p2 : THEOREM
TTR |- G(now + b2 >= 0);

p3 : THEOREM
TTR |- G(count >= 0);

p4 : THEOREM
TTR |- G(reported => flag);

p5 : THEOREM
TTR |- G(reported => count = 0);

p6 : THEOREM
TTR |- G(first_main <= a1 + now);

p7 : THEOREM
TTR |- G(last_main >= now);

p8 : THEOREM
TTR |- G(last_main /= 10000 => last_main <= a2 + now);

p9 : THEOREM
TTR |- G(NOT(reported) <=> last_main /= 10000);

p10 : THEOREM
TTR |- G(first_main <= last_main);

p11 : THEOREM
TTR |- G(first_set <= b1 + now);

p12 : THEOREM
TTR |- G(last_set >= now);

p13 : THEOREM
TTR |- G(last_set /= 10000 => last_set <= b2 + now);

p14 : THEOREM
TTR |- G(NOT(flag) <=> last_set /= 10000);

p15 : THEOREM
TTR |- G(NOT(flag) => last_set + a2 >= last_main);

p16 : THEOREM
TTR |- G(NOT(flag) => 2 * a1 + last_set - first_main >= 0);

END

Figure 4: The properties in HybridSal model generated by tempo2hsal when it is run on
the properties in Tempo shown in Figure 2.

6

bin/hsal2hasal examples/twoTaskRace0.hsal

Note that we are assuming here that the HybridSal relational abstracter tool [Tiw12] has
been correctly installed.

The hybridsal relational abstracter generates a SAL file called twoTaskRace0.sal.
We can use the SAL infinite bounded model checker and k-induction prover to verify the
invariants in the SAL file. In particular, we note that several of the invariants are automat-
ically proved by the k-induction prover. Some of the invariants need auxiliary lemmas for
completing the proof. Some invariants, while true in the Tempo model, turn out to be false
in the SAL file – this may be because of two reasons.

• The abstraction step (hsal2hasal) introduces spurious counter-examples

• The translater (tempo2hsal does not fully preserve the semantics of the Tempo
model, but only generates a conservative HybridSal translation.

We discuss the latter issue in the next section.

5 Caveats

The Tempo to HybridSal translater attempts to preserve the semantics of the model during
translation. However, in some cases, it does not capture the precise semantics of the Tempo
model. In this section, we discuss some of the main Tempo constructs whose semantics
may not be preserved during the translation.

Among the basic types supported by Tempo, some are not supported by HybridSal. The
most prominent such type is AugmentedReal, which is the set of reals augmented with
∞. The current tempo2hsal translater maps AugmentedReal to Real in Hybrid-
Sal, and maps∞ to a fixed large real number. This translation is not semantic preserving.
Similarly, tempo2hsal maps discreteReal to Real. HybridSal also does not na-
tively support datatypes such as queues. It does support tuples and arrays, but the current
version of the tempo2hsal translater does not translate any of these complex types.

Automaton parameters are also not handled in the most precise way currently. Tempo
allows declaration of automaton with parameters, but also allows invariant properties to be
stated on uninstantiated automata. The Sal and HybridSal language do not allow the use of
a parametric module without creating an instance of it by giving proper actual arguments.
In the current tempo2hsal tool, automaton parameters are, in some cases, mapped to lo-
cal variables in the HybridSal module. The where constraint on the parameters in Tempo
are used to provide initial values to these local variables in HybridSal. In this case, the Hy-
bridSal model includes behaviors of of the Tempo automaton for all possible instantiations
of the parameters consistent with the where constraint.

Tempo has a vocabulary feature for defining namespaces. Automata can later im-
port different vocabularies. There is no such feature in HybridSal. The current version of

7

the tempo2hsal translater simply includes all identifiers defined inside vocabularies in-
side the top HybridSal context. The translater then ignore all import statements later,
since all defined identifiers are available anyway. Note that this can cause name conflicts,
which can change the semantics of the model.

Other notable features missing in the translater include

• The tempo2hsal translater currently ignores all transition labels and events.

• Not all expressions in Tempo are translated into HybridSal correctly. For example,
where expressions are not handled. Similarly, expressions that manipulate queues or
tuples are also ignore presently.

• initially expressions are not translated

• The translation of composed automaton in Tempo to composed modules in HybridSal
may not be semantic preserving, because the semantics of the composition operators
are different.

We note here that the HybridSal model generated by tempo2hsal may not be the
best possible HybridSal model for the given Tempo model. In particular, for improving the
precision of analysis, HybridSal prefers to have all differential equations at “one place”,
rather than distributed across different modules.

Finally, we also note that when analyzing the HybridSal model using relational abstrac-
tion, the abstraction process also introduces spurious behaviors, some of which the user can
eliminate by modifying the HybridSal model by hand.

Whenever the tempo2hsal tool is not sure if it has preserved the semantics of the
Tempo model, it emits a warning message. The user should check if the generated Hybrid-
Sal model is semantically equivalent to the input Tempo model.

The tempo2hsal tool is still incomplete in many ways, as noted above. However, it
is a useful starting point for further development of a more comprehensive converter from
Tempo to HybridSal. In particular, the tool is being made available in open source form for
other users to modify and extend.

5.1 Implementation Details

The tempo2hsal tool is implemented in Python. The Tempo input file is parsed using
dparser2, and the HybridSal is generated through actions attached to the Tempo grammar.
Specifically, the actions create an XML tree of the HybridSal output. The XML representa-
tion of HybridSal is then output in the usual HybridSal syntax by using a HybridSal pretty
printer. The tool distribution contains sources for all these parts.

2http://dparser.sourceforge.net/

8

6 Conclusion

We have described the tempo2hsal tool that converts Tempo models into Hybrid-
Sal models. We presented a concrete Tempo model and its translation generated by
tempo2hsal. We also outlined the shortcomings and incompleteness in the tool.

References

[ALL+08] Myla Archer, Hongping Lim, Nancy A. Lynch, Sayan Mitra, and Shinya
Umeno. Specifying and proving properties of timed i/o automata using
tempo. Design Autom. for Emb. Sys., 12(1-2):139–170, 2008.

[dMOR+04] L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A. Ti-
wari. SAL 2. In Rajeev Alur and Doron Peled, editors, Computer-Aided
Verification, CAV 2004, volume 3114 of Lecture Notes in Computer Science,
pages 496–500, Boston, MA, July 2004. Springer-Verlag.

[Hyb03] Hybridsal: Modeling and abstracting hybrid systems, 2003. Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA. http://www.csl.
sri.com/users/tiwari/HybridSalDoc.ps.

[Tiw12] A. Tiwari. Hybridsal relational abstracter. In Proc. CAV, vol-
ume 7358 of LNCS, 2012. http://www.csl.sri.com/˜tiwari/
relational-abstraction/.

9

