Overview of HOL Systems

Konrad Slind

School of Computing, University of Utah

Feb. 21, 2005

Konrad Slind Overview of HOL Systems

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

HOL Implementations

LCF

- Edinburgh LCF (1979)
- Edinburgh/INRIA/Cambridge
- HOL
 - HOL88 (1988-1995)
 - ProofPower (1990-present)
 - Isabelle/HOL (1990-present)
 - HOL Light (1995-present)
 - HOL90/HOL98 (1990-2001)
 - HOL-4 (2001-present)

http://hol.sourceforge.net/

・ 同 ト ・ ヨ ト ・ ヨ ト …

General Research Themes

- Hardware Verification
- Operational Semantics of Programming Languages
- Embedding other formalisms
- Theory formalization

イロト イポト イヨト イヨト 一座

Embedding Terminology

If you have a formalism and you want to formalize it, there are choices:

- Shallow (external meaning function)
- Deep (internal meaning function)

Example (Hoare Logic)

If you can prove the rules of Hoare Logic as theorems, you have a deep embedding. If you use a VCG to generate proof obligations, and the rules it uses are not theorems, you have a shallow embedding.

ヘロト 人間 ト くほ ト くほ トー

Embedding Terminology

If you have a formalism and you want to formalize it, there are choices:

- Shallow (external meaning function)
- Deep (internal meaning function)

Example (Hoare Logic)

If you can prove the rules of Hoare Logic as theorems, you have a deep embedding. If you use a VCG to generate proof obligations, and the rules it uses are not theorems, you have a shallow embedding.

イロト イポト イヨト イヨト

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

- Simplification
- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

・ 同 ト ・ ヨ ト ・ ヨ ト

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

Simplification

- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

・ 同 ト ・ ヨ ト ・ ヨ ト

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

- Simplification
- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

- Simplification
- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

- Simplification
- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Mature Technology

The following tools are **mature**, in the sense of being heavily used and having evolved through several generations:

- Simplification
- First-order proof search
- Datatype definitions
- Recursive function definitions
- Inductive definitions
- Arithmetic decision procedures (full Presburger)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Current Trends

Large case studies in operational semantics

- Thorough semantics of Java (Nipkow group, Isabelle/HOL)
- Thorough semantics of UDP/IP/Sockets (Sewell & co.)
- Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

イロン 不良 とくほう 不良 とうほ

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

イロン 不良 とくほう 不良 とうほ

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: Prosper (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

イロト イポト イヨト イヨト 三連

Current Trends

- Large case studies in operational semantics
 - Thorough semantics of Java (Nipkow group, Isabelle/HOL)
 - Thorough semantics of UDP/IP/Sockets (Sewell & co.)
 - Large journal papers (70-100 pages)
- Moving on from case-studies. Use proof to implement interesting tools:
 - Original effort: **Prosper** (late 90's EU project)
 - Generate circuit checkers from formal semantics of PSL (Mike Gordon)
 - Model-checkers (HOL-BDD library integration) (Hasan Amjad)
 - Check conformance of network traces with formal model (Norrish)
 - Synthesize hardware from subset of HOL (Gordon/Slind)

イロト イポト イヨト イヨト 三連

Interfaces to the Outside World

- Building-in (in a principled way) external provers
 - BDDs
 - SAT
- External proof format (consumer: Isabelle/HOL)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Open Source Development of HOL

HOL-4 is open source software (BSD license)

- We do not worry about being ripped off
- Please rip us off!
- We want to spread the ideas and procedures and theorems in the system as widely as possible
- Almost anybody can become a HOL developer ... just ask
- But still need > 1 and < 3 main developers responsible for correctness-critical code.
- Also need a leader-figure

・ 同 ト ・ ヨ ト ・ ヨ ト

Open Source Development of HOL

HOL-4 is open source software (BSD license)

- We do not worry about being ripped off
- Please rip us off!
- We want to spread the ideas and procedures and theorems in the system as widely as possible
- Almost anybody can become a HOL developer ... just ask
- But still need > 1 and < 3 main developers responsible for correctness-critical code.
- Also need a leader-figure

・ 同 ト ・ ヨ ト ・ ヨ ト

Open Source Development of HOL

HOL-4 is open source software (BSD license)

- We do not worry about being ripped off
- Please rip us off!
- We want to spread the ideas and procedures and theorems in the system as widely as possible
- Almost anybody can become a HOL developer ... just ask
- But still need > 1 and < 3 main developers responsible for correctness-critical code.
- Also need a leader-figure

・ 同 ト ・ ヨ ト ・ ヨ ト …

- We must teach more people theorem proving
- We must continue to attack big problems

・ロト ・回 ト ・ヨト ・ヨト

• We must teach more people theorem proving

We must continue to attack big problems

ヘロト 人間 とくほとくほとう

æ

- We must teach more people theorem proving
- We must continue to attack big problems

・ロト ・回ト ・ ヨト ・ ヨト …

三 のへで

THE END

Konrad Slind Overview of HOL Systems