
Challenges for Embedded Deduction
Harald Rueß

ruess@csl.sri.com
http://www.csl.sri.com/users/ruess.

Computer Science Laboratory
SRI International
333 Ravenswood

Menlo Park, CA 94025

Embedded Deduction (p.1 of 5)

Embedded Deduction
• Most uses of deductive engines areembedded.

Simulators, abstractors, typecheckers,
compilers, constraint solvers, model checkers,
test case generators, synthesizers, test-case
generators, fault tree analyzers, . . .

• Emphasis in embedded deduction is onin-the-loop
explorationanddebugging.
• Doesthis follow from that?
• Suppose Iretract thisandassert that, does it still

follow?

• Embedded deduction requires rich interfaces.

Embedded Deduction (p.2 of 5)

Embedded Deduction
• Most uses of deductive engines areembedded.

Simulators, abstractors, typecheckers,
compilers, constraint solvers, model checkers,
test case generators, synthesizers, test-case
generators, fault tree analyzers, . . .

• Emphasis in embedded deduction is onin-the-loop
explorationanddebugging.
• Doesthis follow from that?
• Suppose Iretract thisandassert that, does it still

follow?

• Embedded deduction requires rich interfaces.
“The black box nature of the decision
procedure is frequently destroyed by the need
to integrate it” (Boyer/Moore)

Embedded Deduction (p.2 of 5)

Interfaces for Embedded Deduction

ϕ DP

Sat

Uns

• Online. Incremental processing of assertions and queries.

• Resettable. Saving, backtracking, and switching contexts.

• Queriable. Allow expressions to be simplified wrt a context.

• Evidential. Proof objects, unsatisfiable cores, and models.

• Reliable Automation. Prompt or even any-time response.

• Integrable. Fine-grained integration with other tools.

Embedded Deduction (p.3 of 5)

ics.csl.sri.com

Interfaces for Embedded Deduction

ϕ DP

Sat

Uns

• Online. Incremental processing of assertions and queries.

• Resettable. Saving, backtracking, and switching contexts.

• Queriable. Allow expressions to be simplified wrt a context.

• Evidential. Proof objects, unsatisfiable cores, and models.

• Reliable Automation. Prompt or even any-time response.

• Integrable. Fine-grained integration with other tools.

ICS (ics.csl.sri.com) tries to provide such a rich interface
while keeping overhead small.

Embedded Deduction (p.3 of 5)

ics.csl.sri.com

Composition in ICS
Open Inference Systems. (Ganzinger, Shankar, R.; 2004)

• Configurations I DP(T)

• Shared blackboardI consisting of shared constraints.
• Theory-specific partDP(T) that is like a private notebook.

• Composition operatoryields DP for union of theories.

I DP(T1) ⊗ I DP(T2) I DP(T1), DP(T2)

• Refinementyields Nelson-Oppen and Shostak combinations.

Embedded Deduction (p.4 of 5)

Composition in ICS
Open Inference Systems. (Ganzinger, Shankar, R.; 2004)

• Configurations I DP(T)

• Shared blackboardI consisting of shared constraints.
• Theory-specific partDP(T) that is like a private notebook.

• Composition operatoryields DP for union of theories.

I DP(T1) ⊗ I DP(T2) I DP(T1), DP(T2)

• Refinementyields Nelson-Oppen and Shostak combinations.

Lazy Integration of DP and SAT.

• InterfaceJ. (Abstraction, Lemmas, Assignments)
• Composition.

J DP ⊗ J SAT J DP, SAT

• Optimizations.(unsatisfiable cores, online integration)

Embedded Deduction (p.4 of 5)

Summary
Where are we?

• Around10000 − 30000 theorems a second for DP.
• Problems with10000s of literals using lazy DP/SAT.
• Rapid progress due to healthy competition and improved

benchmarking, but “good” benchmark sets still not available.

What’s next?
• 100 − 1000 fold speed improvement over next 3 year.
• Construction and collection of better benchmark sets.
• Enough raw speed for most routine embedded applications.

Challenges!
• Practical challenges involve designing interfaces that allow

flexible use without loss of efficiency.
• Designing integration architectures that mediate fine-grained

interaction between inference components.

Embedded Deduction (p.5 of 5)

	Embedded Deduction
	Interfaces for Embedded Deduction
	Composition in ICS
	Summary

