
Quantifier Support

● Quantifiers appear often in program verification

– loop invariants, object invariants

– specify properties of recursive data structures

– partial specification of uninterpreted functions

and predicates

Quantifiers and Nelson-Oppen

● Deal with ∃ by introducing fresh skolem constants

● For ∀ use heuristic instantiation – introduce ground

 instances that suffice for deciding given problem

● A common heuristic uses pattern matching (upto

equivalence), e.g., given

 f(a)=b ∧ g(b) ≠ f(a) ∧ (∀x . f(x) = g(f(x)))

matching introduces the instance

 x := a

Challenges with Quantifiers

● Automatically inferring patterns

● Improving matching performance

– cf. various optimizations in Simplify

● Reducing unnecessary instantiations

– use SAT solver / theories to prune instantiations

(Verifun / Zap)

Interface with SAT solvers

● Verifun uses the SAT solver as a black box

● Key advantage: can use current world champion

● Limitation: traditional SAT interface is too narrow

– given a set of clauses, return an assignment

● Certain optimizations need more functionality

– e.g., incremental solving, generation of unsat

cores (zChaff now provides some support)

Areas for collaboration

● Convince SAT community to provide wider

interfaces

● Build benchmark suites (SMT-LIB initiative)

● Agree on common interface to decision procedures

– enable creation of theory libraries

