
Advanced Computing Systems Rockwell Collins 1

Secure, High-Assurance Development
Environment (SHADE) Program

David Hardin
Tom Johnson

Advanced Technology Center
Rockwell Collins, Inc.

Bill Young
University of Texas at Austin

John Matthews
Mark Shields

Galois Connections, Inc.

Advanced Computing Systems Rockwell Collins 2

Rockwell Collins

l Provider of Advanced Communication and Aviation
Equipment to Air Transport, Business and Regional, and
Military Markets

– $2.8 Billion in Sales
– Headquartered in Cedar Rapids, IA
– 14,500 Employees Worldwide

l The Automated Analysis section of the RCI Advanced
Technology Center applies advanced mathematical tools
to the problem of producing high assurance systems

– Perform applied research in model-checking and theorem
proving for safety-critical and secure systems

– 6 full-time formal methods researchers
– Particular expertise in processor modeling, separation

kernels, avionics system requirements
– We’re hiring!

Advanced Computing Systems Rockwell Collins 3

Secure High-Assurance Development
Environment (SHADE)

• A “nuts-and-bolts” partitioned development
environment that automates important aspects of
secure system development

• A highly-assured, evaluatable method for
implementing cryptographic algorithms written
in the Cryptol language, including a verifying
Cryptol-to-AAMP7 compiler

• Support for automatic machine-code proofs of
AAMP7 code

• Tool support for the creation and analysis of
secure multipartition cryptographic applications
that exploit the AAMP7’s intrinsic partitioning
capability

• Funded by NSA R2/I2 and Rockwell Collins

Advanced Computing Systems Rockwell Collins 4

Why a verifying compiler for Cryptol?

l Cryptographic systems need to be correct
– NSA is a demanding customer
– NSA suppliers realize that typical “commercial grade” engineering just

won’t cut it
l Cryptographic systems are difficult, expensive to certify

– A verifying compiler could markedly reduce code-to-spec review costs
and reduce time-to-market for cryptographic devices

l Reference Cryptol specifications for common crypto algorithms are
available

l A domain-specific language, such as Cryptol, seems to present
lower risk than attempting a verifying compiler for a general-
purpose programming language

l The AAMP7 is an “easy” code generation target (think JVM)
l Theorem prover technology has matured sufficiently to make this

program feasible

Advanced Computing Systems Rockwell Collins 5

Rockwell Collins AAMP7 CPU

Features
• Used in RCI GPS and Infosec products
• High Code Density
• Low Power Consumption (250 mW)
• 100 MHz operation
• Screened for full military temp range
• Implements intrinsic partitioning

Intrinsic partitioning
• Computing Platform Enforces Data Isolation
• “Separation Kernel in Hardware”

X Y Z

Advanced Computing Systems Rockwell Collins 6

AAMP7r1 Intrinsic Partitioning
Formal Verification

• Formal description of separation for
uniprocessor, multipartition system

• “GWV” separation theorem

• Detailed formal models of Trusted
AAMP7r1 microcode operation, subjected to
intensive NSA code-to-spec review against
microcode listings.

• Machine-checked proof that separation
holds of AAMP7r1 model -- “EAL7+”

• Artifacts accepted by NSA evaluators in
March 2004. Official NSA MILS certification
expected soon.

Advanced Computing Systems Rockwell Collins 7

Cryptol

l Cryptol is a domain-
specific language for
cryptography,
developed by Galois
Connections, Inc.

l Cryptol specifications
are compact and
expressive – DES core
is at right

l Cryptol specifications
can be compiled to C,
or to machine code

des : {a b} (a >= 7) => ([2**(a-1)],[b][48]) -> [64];
des (pt, keys) = permute (FP, swap (split last))

where { pt’ = permute (IP, pt);
iv = [| round (k, split lr)

|| k <- keys
|| lr <- [pt’] # iv
|];

last = iv @ (width keys - 1);
};

round (k, [l r]) = r # (l ^ f (r, k));

f (r, k) = permute (PP, SBox (k ^ permute (EP, r)));

swap [a b] = b # a;

permute : {a b} (b >= 1) =>
([a][b], [2**(b - 1)]) -> [a];

permute (p, m) = [| m @ (i - 1) || i <- p |];

Advanced Computing Systems Rockwell Collins 8

Verifying Compiler Dataflow
Cryptol

program

Cryptol semantics
function

Cryptol
subexpressions

ACL2
expressions

AAMP7
program

AAMP7 semantics
function

Cutpoint
assertions

Proofs of equivalence
assertions

compile to

used in

annotate withextract

apply to

simplify to

apply to

ACL2 certifies

Advanced Computing Systems Rockwell Collins 9

AAMP7 Semantics Function

l Provides instruction-level simulator for the
AAMP7

l Written in ACL2 (~50 KSLOC with all RCI
support books)

l Can be used as a processor simulator, as well
as a vehicle for proof

l GACC (Generalized Accessor) library now used
to model memory, same as used in AAMP7
separation proofs
– Underlying bags (multiset) library optimized to

support large models

Advanced Computing Systems Rockwell Collins 10

Data Structure Representation

NODE

INFO

NODE NODE

INFO

0xabcdef

Programmer’s view --
“boxes and arrows”

Reality –
mapped into a single linear

address space

We must “face reality” in order to
verify a compilation

Advanced Computing Systems Rockwell Collins 11

AAMP7 Model State

l Processor state is modelled using an ACL2
Single-Threaded Object (stobj)
– Stobj mechanism in ACL2 allows functional program

objects to be updated in place, rather than updating
copies

l AAMP7 state is composed of nearly 60
elements, including Program Counter, Top-of-
Stack pointer, Partition Management Unit, RAM,
etc., many of which are updated every
instruction
– Stobj’s are a huge win for the AAMP7 model!

Advanced Computing Systems Rockwell Collins 12

Status and Summary

l We are a work in progress -- SHADE program is
scheduled to run through FY06

l SHADE is a significant engineering effort,
encompassing contributions from 10 different
developers in three locations

l The SHADE compiler can now generate AAMP7 binary
code for canonical examples that execute on the AAMP7
ACL2 model, as well as on the real machine

l Currently investigating whether some of the “middle-
end” passes of the compiler can actually be
implemented as rewrite rules within the theorem prover

