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new language for random algorithms.
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1. Background

In the mid-1970s the author in [10] defined a “graph model” for the untyped λ-calculus making use
of enumeration operators from Recursive Function Theory. It turned out that Gordon Plotkin had earlier
defined in set-theoretical terms a closely related construction. In 1993 Plotkin published his previously
unpublished technical report along with extensive commentary in [8]. A full history of λ-calculus – along
with expository material and many, many references – can be found in [2]. Enumeration operators had been
defined in the mid-1950s independently by Myhill and Shepherdson in [7] and by Friedberg and Rogers in
[4]. The book [9] by Rogers popularized the idea of enumeration degrees, a subject on which there is now a
very large literature. Neither team in [7] or [4] seemed to realize they had sufficient mechanics for defining
a model for λ-calculus, however.

Recently several authors have made proposals for defining non-deterministic extensions of the untyped
λ-calculus – generally explained using operational semantics rather than models for a denotational semantics.
See [3] and [6] for pro posals and many references. (There are unfortunately too many to mention here in
this brief article.) More discussion and references can be found in the very recent papers of Michael Mislove
referenced on his web page [1] which also reference other approaches.
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2. Basic definitions

Let N be the set of natural numbers, on which we can use a very easy to define pairing function: (n,m) =
2n(2m+1). This puts the pairs of natural numbers into a one–one correspondence with the positive integers.
Sequence numbers can now be defined as:

〈 〉 = 0 and 〈n0, n1, . . . , nk−1, nk〉 =
(
〈n0, n1, . . . , nk−1〉, nk

)
.

This notation puts finite sequences of elements of N into a one–one correspondence with the whole of the
set N. Finite sets of natural numbers can be numbered as follows:

set(0) = ∅ and set
(
(n,m)

)
= set(n) ∪ {m}.

It then follows that:

set
(
〈n0, n1, . . . , nk−1, nk〉

)
= {n0, n1, . . . , nk−1, nk}.

There are many other popular ways of numbering (Gödel-numbering) pairs, sequences and sets, but the
choice of a numbering system is not so very important as long as the functions are computable. And to these
notations we add the Kleene star : X∗ = {n | set(n) ⊆ X}, which gives the set X∗ of all (numbers of) finite
sequences of elements of a set X ⊆ N. Note that N

∗ = N and ∅∗ = {0}.

Definition 2.1. The enumeration operators are identified with the sets F of natural numbers which operate
on sets of integers through the binary operation of application:

F (X) =
{
m

∣∣ ∃n ∈ X∗. (n,m) ∈ F
}
.

The idea here is that, as you start enumerating the elements of the set X, you can also then enumerate
the elements of the set X∗. Along with these enumerations, you can also enumerate the pairs in F . Every
time you see a match between a sequence number n ∈ X∗ and the first term of a pair (n,m) ∈ F , you then
output m as an element of F (X). The enumerations of the sets F and X thus generate the enumeration of
the set F (X).

Except for a small detail in the use of Gödel numbers, this is the same as the definition in [9]. And,
following Friedberg and Rogers, we say that a set B is enumeration reducible to a set A just in case there is
a recursively enumerable set F such that B = F (A). The emphasis here is that the computable enumeration
operators are those given by recursively enumerable sets F .

Next, note that the general enumeration operators have an important connection to topology. The pow-
erset

P(N) = {X | X ⊆ N}

can be considered as being a topological space with the sets

Qn =
{
X | n ∈ X∗}

as a basis for the topology. This could be called the positive topology, because it works with only the positive
facts as to which finite sets are in fact contained in a “point” X ∈ P(N).

Definition 2.2. We say that a function Φ : P(N)n → P(N) of n-arguments is continuous in this topology iff
(for all integers m) we have:
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m ∈ Φ(X0, X1, . . . , Xn−1) iff there are ki ∈ X∗
i (for all i < n)

where m ∈ Φ
(
set(k0), set(k1), . . . , set(kn−1)

)
.

In words we can paraphrase this definition as saying that a function Φ is continuous just in case a finite
amount of information about the function value Φ(X0, X1, . . . , Xn−1) is exactly determined by a finite
amount of information about the arguments X0, X1, . . . , Xn−1.

With these definitions in hand we can next introduce the λ-calculus model.

3. Modeling λ-calculus

The Church–Curry calculus is an algebraic system of operators allowing for application of one object to
another (in a type-free manner) together with a variety of definition schemes – either by use of λ-abstraction
(Church) or by invoking special combinators (Curry). We shall discuss both. The modeling of the calculus
will be in terms of enumeration operators on P(N). The first fact that justifies the modeling concerns our
definition of application.

Theorem 3.1. The application operation F (X) is continuous as a function of two variables on P(N).

The proof is very easy and can be left as an exercise. The power of the modeling, however, comes from
the next theorem.

Theorem 3.2. For every continuous function Φ : P(N) → P(N) there is a largest set F such that for all
X ⊆ N we have Φ(X) = F (X).

Proof. (Note that we write Φ(X) for ordinary (mathematical) function application on the left side of the
equation, and we write F (X) for the binary operation in P(N) on the right-hand side. As the defined binary
operation gives us exactly the continuous functions, there is no need for two different notations.) Note that
we can characterize the F we need as follows: F = {0}∪{(n,m) | m ∈ Φ(set(n))}, because by the definition
of continuity this set uniquely determines Φ. And, from the definition of application, for any other set G

where for all X ⊆ N we have G(X) = Φ(X), we find G ⊆ F . �
Definition 3.3. For any expression [. . . X . . .] defining a continuous function, we use the abstraction notation:

λX.[. . . X . . .] = {0} ∪
{
(n,m)

∣∣ m ∈
[
. . . set(n) . . .

]}
.

Theorem 3.4. If Φ(X0, X1, . . . , Xn−1) is continuous in all the variables, then λX0.Φ(X0, X1, . . . , Xn−1) is
continuous in all of the remaining variables.

Corollary 3.5. If Φ(X0, X1, . . . , Xn−1) is continuous in all the variables, then there is a largest set F such
that F (X0)(X1) . . . (Xn−1) = Φ(X0, X1, . . . , Xn−1) for all the X0, X1, . . . , Xn−1 ∈ P(N).

Note, therefore, that generally F ⊆ λX.F (X). And here are some other easy-to-prove properties.

Theorem 3.6. For all sets of integers F and G we have:

λX.F (X) ⊆ λX.G(X) ⇐⇒ ∀X.F (X) ⊆ G(X),

λX.
(
F (X) ∩G(X)

)
= λX.F (X) ∩ λX.G(X) and λX.

(
F (X) ∪G(X)

)
= λX.F (X) ∪ λX.G(X).
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The powerset P(N) is a complete lattice, as is the space Cont[P(N),P(N)] of all continuous functions.
The above theorem shows that the mapping F �→ (X �→ F (X)) has some nice lattice-structure-preserving
properties.

Definition 3.7. A continuous operator Φ(X0, X1, . . . , Xn−1) is computable iff in P(N) the following set is
recursively enumerable:

F = λX0λX1 . . . λXn−1.Φ(X0, X1, . . . , Xn−1).

From this it follows that all pure λ-terms (which correspond to Curry’s combinators, see [2]) define
computable operators in the model. And this is in line with the use of enumeration operators in [9]. But a
special feature of the model is the way of obtaining new computable operators from given ones.

Theorem 3.8. If Φ(X) is continuous and we let ∇ = λX.Φ(X(X)), then P = ∇(∇) is the least fixed point
of Φ. Moreover, the least fixed point of a computable operator is always computable.

Proof. Suppose Φ : P(N) → P(N) is continuous. Let ∇ = λX.Φ(X(X)) and P = ∇(∇) = Φ(P ), so P is
indeed a fixed point of Φ. Let Q = Φ(Q) be another fixed point. We have to prove P ⊆ Q to show that P

is in fact the least fixed point of Φ.
Assume m ∈ P . We want to show m ∈ Q. By continuity of application, we can write:

P = ∇(∇) =
⋃{

set(k)
(
set(k)

) ∣∣ set(k) ⊆ ∇
}
.

So, for some k with set(k) ⊆ ∇, we have that m ∈ set(k)(set(k)). If, using The Principle of Strong
Induction, we could prove that for all k, if set(k) ⊆ ∇, then set(k)(set(k)) ⊆ Q, we would be done. Hence,
assume this implication is true for all n < k, and now prove it for k.

Well, suppose set(k) ⊆ ∇, and that q ∈ set(k)(set(k)). By the definition of application we must have
(n, q) ∈ set(k) and n ∈ set(k)∗ for some n. Thus, n < k and set(n) ⊆ set(k). Whence, set(n) ⊆ ∇, and
hence, set(n)(set(n)) ⊆ Q, by the inductive assumption.

But, note that (n, q) ∈ ∇ = λX.Φ(X(X)), and therefore we have q ∈ Φ(set(n)(set(n))). However, because
we proved set(n)(set(n)) ⊆ Q, we also have q ∈ Φ(set(n)(set(n))) ⊆ Φ(Q)Q. So, we have established that
set(k)(set(k)) ⊆ Q, and the whole proof is finally complete. �
Definition 3.9. The basic arithmetic combinators are the following three recursively enumerable sets:

Succ(X) = {n + 1 | n ∈ X},
Pred(X) = {n | n + 1 ∈ X}, and

Test(Z)(X)(Y ) = {n ∈ X | 0 ∈ Z} ∪ {m ∈ Y | ∃k.k + 1 ∈ Z}.

Using standard methods of λ-calculus and knowledge of primitive recursive functions, we can show that
the arithmetic combinators suffice for defining all recursively enumerable sets. Indeed, every such set can
be put into the form RE({n}), where we have a computable RE = λX.RE(X) so that

(i) RE({0}) = λY.λX.Y ,
(ii) RE({1}) = λZ.λY.λX.Z(X)(Y (X)),
(iii) RE({2}) = Test,
(iv) RE({3}) = Succ,
(v) RE({4}) = Pred, and
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(vi) RE({4 + (n,m)}) = RE({n})(RE({m})), for all n and m.

The above equations (i)–(vi) could be put into one, rather large, fixed-point equation in order to show
that RE is indeed recursively enumerable, and we can think of the n in RE({n}) as the Gödel number of the
nth recursively enumerable set. The effort of making this explicit is nothing more than an exercise to show
that our notation here can be used as a programming language for computable enumeration operators. The
special example of RE is in effect a definition of the analogue of the Universal Turing Machine – without
having to use Turing machines at all. And the approach can then lead to easy definitions of non-recursive
sets and to finding recursively inseparable sets. The author feels there could be some pedagogical value in
developing basic recursive function theory in this way.

Aside from the space P(N), a theory of computability on other spaces might also be desired. As long as
attention is to be given to topological spaces with a countable basis for a topology, it is not necessary to
look much beyond P(N).

Theorem 3.10. Every countably based T0-space is homeomorphic to a subspace of P(N).

Proof. A T0-space is one where points are uniquely determined by the open sets to which they belong.
Assume T is a such a space, and let the Un be the elements of a countable basis for the topology of the space
T. Define a mapping ε : T → P(N) by the equation: ε(X) = {n | X ∈ Un} on elements X ∈ T. By the very
definition of being a T0-space, it follows that the mapping ε is one–one.

The basis for the topology of P(N) consists of the sets Qn = {X | n ∈ X∗}. Thus, the sets of the special
form Q〈m〉 = {X | m ∈ X} provide a subbasis for the topology. To prove that ε is continuous, we need only
check that the inverse-image sets {X ∈ T | ε(X) ∈ Q〈m〉} = Um are open. But that is obvious.

Finally, to show that ε is bicontinuous, we need to show that the image of an open set is open onto the
range of the function. But ε(Um) = {ε(X) | X ∈ Um} = ε(T) ∩Q〈m〉, which is indeed open. �

So the space P(N) has a very wide variety of subspaces. But, how do continuous functions fare?

Definition 3.11. A space S is called injective iff whenever T is a subspace of another space U and when
Φ : T → S is continuous, then Φ can be extended to a continuous function Ψ : U → S.

Theorem 3.12. The space P(N) is injective.

Proof. Assume T is a subspace of U and Φ : T → P(N) is continuous. The sets

Tn =
{
X ∈ T

∣∣ n ∈ Φ(X)
}

must be open subsets of T. By the definition of subspace topology, we can write Tn = T ∩Un, where the Un

are open in U. And indeed, we can make a canonical choice by taking the Un as large as possible.
Now define Ψ : U → P(N) by the equation: Ψ(Y ) = {n | Y ∈ Un}. By definition, Ψ is continuous, and,

for X ∈ T, we find: Ψ(X) = {n | X ∈ Tn} = {n | n ∈ Φ(X)} = Φ(X). In other words, Ψ extends Φ, as
desired. �

An immediate consequence of this result is that when T and U are subspaces of P(N), then every contin-
uous function Φ : T → U is just the restriction of a continuous function Ψ : P(N) → P(N). In other words,
not only do we have that wide range of subspaces of P(N), but the continuous functions between subspaces
are already “known” from the continuous functions on P(N). Thus, we can say that topology is inherited
directly from P(N), and the techniques of the λ-calculus can be applied directly.
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We would also like to say that computability notions can also be inherited from P(N). This is true, but
we have to take some care, because a particular space T might have several homeomorphic embeddings
into P(N) by different choices of bases giving us different notions of computability. Usually, in the author’s
experience, there is a preferred embedding, however, and then the notions of computability are well behaved
and have desirable properties as expected.

4. Adding randomness

Turing suggested adding oracles to Turing machines to define computability relative to given, external,
possibly non-recursive processes. In our formulation here we can use as oracles any arbitrary sets A ∈ P(N).
That is, instead of a computable enumeration operator producing values F (X), we can use a combination
F (A)(X), with F recursively enumerable and with A arbitrary, but fixed. But we do not have to stop
here, the oracle can be endowed with properties of randomness by using the following completely standard
definition from Probability Theory.

Definition 4.1. By a random variable in our model we understand a function on the unit interval

X : [0, 1] → P(N),

where, for each n ∈ N, the set {t ∈ [0, 1] | n ∈ X(t)} is always Lebesgue measurable.

We use the unit interval here as a standard probability space. Any other convenient probability space
(along with its given measure) could have been used for this discussion.

Theorem 4.2. Given two random variables X, Y : [0, 1] → P(N), the application operation defined by

X(Y)(t) = X(t)
(
Y(t)

)

produces for us again a random variable.

The easy proof of this theorem is completely analogous to the theorem that the sum of two numerical
random variables is again a random variable – because numerical addition on the real numbers is a continuous
and, therefore, a Borel-measurable operation. The same goes for application on P(N) owing to continuity.
Thus λ-calculus can be applied to random variables as well as to constants in P(N). This also means that
a combination F (A)(X) can be considered as a randomized algorithm when A is a random “oracle”.

Note, too, that for random variables X,Y : [0, 1] → P(N), equations between them can be assigned a well
defined probability, because an “event” such as

[X = Y] =
{
t ∈ [0, 1]

∣∣ ∀n ∈ X(t). n ∈ Y(t) ∧ ∀n ∈ Y(t). n ∈ X(t)
}

is always Lebesgue measurable. And this agrees with our experience with numerical random variables.
As an example of randomization, we give some definitions appropriate to Automata Theory.

Definition 4.3. Let § = λF.§(F ) be a suitable recursively enumerable set where

§(F )
(
{0}

)
= λX.X and §(F )

({
(n,m)

})
= F

(
{m}

)
◦ §(F )

(
{n}

)
.

We can refer to the combinator § as the sequentializer, for it takes any operator F and any sequence of
integers 〈n0, n1, . . . , nk−1, nk〉 and produces a corresponding sequence of compositions:
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§(F )
(
〈n0, n1, . . . , nk−1, nk〉

)
= F

(
{nk}

)
◦ F

(
{nk−1}

)
◦ · · · ◦ F

(
{n1}

)
◦ F

(
{n0}

)
.

Note the order on the right. We write as usual F ◦G = λX.F (G(X)) for the composition of operators.

Theorem 4.4. Let Σ ∈ P(N) be finite, then the regular languages contained in Σ∗ are exactly the sets of the
form

{
σ ∈ Σ∗ ∣∣ 0 ∈ §(A)

(
{σ}

)
(Q)

}
,

where A,Q ∈ P(N) are given finite sets.

Here Σ is to be thought of as a fixed alphabet, the operator A as defining an automaton, and Q is the
initial state for running the automaton. Note that we could also have let Q = {q}, but the larger sets give
the same languages over the class of all such representations of automata. The sequentializer § then runs
the automaton, and, by convention, hitting a state containing the number 0 indicates success or acceptance.
Note that as A is finite, then all values A({n})(X) are also finite sets, so we never encounter more than a
finite number of finite states of a computation.

In the form shown in the theorem, the definition of regular language looks a little different from what
we are used to from the standard literature, but actually this is almost a direct translation of the usual
definition of regular languages – we are just taking a little advantage of our model to employ enumeration
operators. In order next to pass to probabilistic languages, a very small change is needed.

Theorem 4.5. Let Σ,Q ∈ P(N) be finite, let A be a random variable taking values in a finite subset of finite
elements of P(N), and let δ ∈ [0, 1]. Then the probabilistic languages contained in Σ∗ are among the sets

{
σ ∈ Σ∗ ∣∣ μ

(�
0 ∈ §(A)

(
{σ}

)
(Q)

�)
> δ

}
,

where μ is Lebesgue measure.

Of course, all we have illustrated here is a notation, and we have not argued that proofs using P(N) are
any better than standard presentations. The author did establish this in a classroom situation for elementary
recursion theory, however, but not as yet for presenting probabilistic results.

5. Conclusion

It is an elementary exercise in measure theory to construct a random variable

T : [0, 1] → P(N),

where for all n we have T({n}) ∈ {{0}, {1}} in such a way that the events [T({0}) = {0}], . . . , [T({n}) = {0}]
are each of probability 1/2 and are jointly probabilistically independent. In other words, the infinite sequence
T({0}),T({1}),T({2}), . . . ,T({n}), . . . represents in the model the tossing of a fair coin. Hence, when F is
computable, a combination F (T)(X) can represent a Monte Carlo algorithm with the probability of the
outcome depending on the values taken by the coins during the steps of the computation. In this way,
with the aid of the model P(N) and with random variables, λ-calculus can be made stochastic. But this is
only one topological model, and, as catalogued in [5], there are many, many others which can easily admit
random variables. The author urges the further study of these models.
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