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“Trustworthy” Protocols: NTLM

• A suite of Microsoft security protocols

• Proves authentication, integrity, confidentiality

• Had been replaced by Kerberos unless it canʼt:

- domain controller unavailable/unreachable

- client is not Kerberos capable

- user remotely authenticating over the web

- ...

• Vulnerable to a credential forwarding attack
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“Trustworthy” Protocols 
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And then...
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Why??

• Protocols not carefully designed (hard to obtain exact specs from 
English description)

• Protocols not formally verified (“we may never get a secure system, 
and we surely wonʼt unless we verify it”)

• Bugs take a long time to identify (usually long after deployment)

• Patching breaks backward compatibility 

• and we lack ...

5



We lack
• Integration of verification methodologies

- that operate on networks

- that incorporate functional and non-functional properties

- that implementations follow specifications 

- that check backward compatibility

• Agreed upon language(s) to formally specify the security properties we 
require from systems that can be verified

• Formal assumptions of attacker and attack models
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Road Map

Fully verified 
protocols 

robust against 
security attacks

+ =

Note: 
Attackable!expressive (pref 

decidable) logic for 
both functional and 

non-functional 
properties of protocol

+ ++

http://www.faqs.org/photo-dict/phrase/374/scroll.html

http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html

http://www.alternative-zine.com/interviews/en/88

Translation Validation

invariant 

generation

theorem 
proving

parame-
terization

http://www.faqs.org/photo-dict/phrase/457/building-blocks.html http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools
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On What There Is
• Tools to verify security protocols (Avispa, Athena, Scyther, ProVerif)

- Cannot be easily accommodated to work on arbitrary topologies 
and arbitrarily large messages

• Handcrafted tools for particular protocols [Pereira, Paulson]

• Bugs found even on verified protocols (TLS)

• Implementation sometimes break security (side-channel attacks) 
[Bleichbaher, Kocher]

Missing: General tools to verify protocols on any 
topology, careful specifications of protocol 
requirements and attack model, proofs that 
implementations do not introduce new flaws
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What Formal Methods offer
A variety of methodologies to help verification of:

• Protocols (arbitrary, even dynamic, topology and number of 
participants) even in case of attacks on network* 

• Stepwise refinement (functional and non-functional properties)*

Theorem provers  that allow integration of proofs about mathematics 
with proofs about software 
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On Refinement
• Techniques apply to high-level abstractions

• But itʼs actual code we want to verify  

• Existing techniques can help verify that properties are preserved at 
refined code, but

• Unlike many properties, security flaws can pop up at the lower level 
implementation (e.g., Kocher attack on RSA) and may require new 
methodologies (to show that security is preserved)
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Preview
• Similarities between fundamental problems in FM and security 

• Verification of network security protocols is (probably) attainable using 
more research and a combination of (numerous!) existing tools

• The lack of formal requirements and formal (executable) specification 
is a major obstacle

• The model of the attacker needs be clearly defined (per protocol)

• (As in SE) Combining development and verification processes 
facilitates correct verified design (Design for Verification) 

• Tools for security verification need to be integrated with “standard” 
verification tools if we are to obtain a full-fledged verification tool
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An Example (where 
everything is needed...)

Secure RideSharing (Iskander, Lee, Mossé)

A protocol for dynamic Wireless Sensor Networks to 
carry out secure data aggregation to a sink node.

Protocol should satisfy:
✦ Privacy
✦ Fault tolerance
✦ Exact aggregation during fault-free operation
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Secure RideShare
• Ad-hoc sensor network

• Sensors are limited
✦ bandwidth
✦ storage
✦ power
✦ computation
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Goal
Formal verification permeates system:

distributed resource allocation
security sensing

power management
real-time

trusted join/leave 
(In)voluntary promotion/demotion
reliable delivery of data & results

Building Blocks:

Privacy 
Preservation 

Robustness

Additively homomorphic 
stream cipher [1]

Cascaded Ridesharing [2]

[1] Casteluccia, Chan, Mykletun, Tsudik 2009
[2] Gobriel, Khatab, Mossé, Brustoloni, Melhem 2006

14



Applications
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Network Model
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Attack Model
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Protocol (rough outline)

18



Protocol (rough outline)
1. Each sensor ni encrypts its value vi as ci = vi + gi(ki) mod M, and sets 

its corresponding bit in the P-Vector

2. The resulting ci values are aggregated using the Cascaded 
RideSharing protocol, which results in the sink receiving the value C = 
Σi ci mod M

3. The sink computes the aggregate key value K=Σi gi(ki) mod M for each 
i in P-vector

4. The sink extracts the final aggregate value V = Σi vi = C - K mod M
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And it started here...
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With the properties:
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What does a proof look like?
Formalize (abstract, if needed) program/protocol [transition system]

Formalize property [Temporal Logic]

... Invent (divine?) auxiliary constructs 

Conclude: Property

Prove:

...

1. ...
2. ...

k. ...

logical formulae over system description 
and ...
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Safety
• System often associated with “good” and “bad” states

• Safety: the system is always in a good state

• Invariance: safety properties that can be described by “state 
assertions”

• every safety property can be reduced to an invariance property

•  Invariance properties are perhaps the most important properties one 
may wish to prove on systems!

• They capture properties like “within a given amount of time, something 
good must occur”, “there is no security violation”, &c
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How to prove Invariance
• Inductive invariant: true at initial state, and preserved in 

every step 

• INV rule: construct an auxiliary invariant, show that itʼs 
inductive and implies “good”

• (Why do we need the auxiliary invariant? because 
inductiveness may be hard to show on real system)

• (Auxiliary inductive invariants can be viewed as an 
abstraction of the reachable states)
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Example
P[i]:

req(x)
rel(x)
 (x: semaphore; initially 1)

Reachability:

states covered by 
auxiliary invariant

possible states (for N=2)

1

1

00

0

1

1

0

bad states

auxiliary invariant: 
N�

i=1

(P [i] is in red state) + x ≤ 1
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Back to RideShare
Fault tolerance, power/timing, and correct aggregation of the P-vectors 

are all safety properties 

Sample property: If 

1. attackers can only eavesdrop

2. for sufficiently long time (so that information can propagate from leaves 
to sink) there are no changes in topology (but possibly for a single link 
failure)

Then within a given time bound the sink node receives the “correct” 
information 
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 Parameterized Systems*
• A parallel composition of N (finite-state) processes where N is unknown

P1 || P2 || P3 ||  • • •  || PN

• Proofs requires auxiliary constructs parameterized on N 

- For safety, an inductive invariant

• Invisible Invariants: derive constructs for general N by abstracting from 
the mechanical proof of a particular N 

- under-approximation can yield over-approximation

- Proofs can be done entirely using finite-state model checking, w/o 
explicitly generating the auxiliary constructs

*Joint work with Amir Pnueli and students (main ideas in [ZP04])
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Generating an Invariant
1. Compute the reachable states RN for a fixed N (say N=5)

2. Project onto a small subset of processes (say {1,2})

π = {(s1, s2) | (s1, s2, . . . , sN ) ∈ RN}
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Generating an Invariant

4. Test whether GN is an invariant for all N

2. Project onto a small subset of processes (say {1,2})

π = {(s1, s2) | (s1, s2, . . . , sN ) ∈ RN}

3. Generalize from two to N, to get GN

N N

GN = ∀i �=j∈[1..N ] π(si, sj)
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Checking Inductiveness

• Small Model Theorem:

- If there is a counterexample with N>M there is a counter-model with 
N≤M

- Suffices to check inductiveness for N≤M

Thus, both invariant generation and invariant checking amount to finite-
state model checking

However, doesnʼt apply to all cases (and Abstract Interpretation does!) 
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Example: Pulser

if there are no “bad guys”
0 s

Δ + 1 

t

# of 
pulsers

C + Δ C + ΔC + ΔC + Δ

Δ+ 1 Δ + 1 Δ + 1 

Δ + 1 

t

# of 
pulsers

C + Δ C + ΔC + ΔC + Δ

Δ + 1 Δ + 1 Δ + 1 

0 s

With (not too many) bad guys
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Pulser: Protocol and specs
Protocol:

Property:
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But, it didnʼt start there...
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How to Verify

• Verification of Protocols (arbitrary, even dynamic, topology and number 
of participants) even in case of attacks

Parameterized Verification 

• Verification of stepwise refinement (of functional and non-functional 
properties)  

Translation Validation  
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Translation Validation 
• Originally proposed as part of the Safety Critical Embedded Systems 

project (1995-1998), where all validation/verification occurred at high 
levels and correct design automatically “translated” into C

• Had to verify the translation!

• Evolved to:

- TV of optimizing compilers for Intelʼs ORC compiler 

- MicroFormal @ Intel: tool to verify backward compatibility of 
microcode  
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Translation Validation
• Verification of translatOR is often infeasible

- “translator” (compiler) may be proprietary, compiler may evolve over 
time (so its verification may become useless), provides an 
independent cross check

- “translator” may be human!

• Instead of verifying translator, verify each translation!!

- has constant run-time additional cost (justifiable) 

- usually doable because source and target are similar (in case of 
optimizing compilers, there are a known set of optimizations)
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T.V. : Idea (1)
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T.V. : Idea (2)
Source

Target

Data
MappingControl 

Mapping

Verification 
conditions 
(including 

time, 
power, 

security)

Theorem 
Prover 

(PVS, CVC, 
ACL2...)

Yes! CEX
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Example: Client/Server

•Web applications need to 
•Validate user supplied input
•Reject invalid input

• Examples:
- “date/month combination is invalid”
- “Credit card number is exactly 16 digits”
- “Expiration date of Jan 2009 is not valid”

• Validation traditionally done at server: round trip, load
• Popular trend: Browser (client) validation through JavaScript
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Client Side Validation using JavaScript
 Problem: The user interacting with website can attack the site!

onSubmit=
   validateCard();

Text

No

Reject 
inputs

Yes

Send inputs 
to Server

Validation Pass?

Problem: The user interacting with website can attack the client !
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Problem: Client is Untrusted Environment
•Validation can be 
bypassed

•Previously rejected values, 
sent to server
   Invalid quantity:  -4

• Ideally: Re-validate at 
server-side and reject
   If not, security risks
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Applying TV on Example
Client

cost :=0
ok := true
For every i in list
      cost := cost + quan[i] x cost[i]
      if quan[i] < 0
      then ok := false
If cc not in list
then ok := false

Server
Cost := cost
Ok := true
If !valid(cc)
then Ok := false

Need to verify: Cost = cost ∧ Ok = ok

Counter Examples:
quan[1] < 0 ∧ ¬ok ∧ Ok

(cc not on list) ∧ ¬ok ∧ Ok

¬valid(cc) ∧ ok ∧ ¬Ok
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How to Overcome?

• Use Translation Validation to show that every check 
performed by the client is also performed by the server

• (Of course) needs to be done automatically 
✦ The code of client and server is usually in different 

languages – we successfully dealt with a similar 
issue in MicroFormal by translation into an 
intermediate representation language (IRL) 

• Can then automatically (or almost fully-automatically) 
patch server and repeat TV
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Conclusion
• Security NEEDS formal methods

- The stakes are high: security protocols have bugs 

- Many (some recently developed) FM techniques are not 
incorporated in security verification:

‣ Verification of network protocols

‣ Verification of refinement 

‣ Integration of proofs techniques

• Attacker needs to be formally specified

• We have many techniques in FM that can assist

• Much research is needed to obtain reliable security 
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Whatʼs Next?
• Develop methodologies, supported by tools, to formally verify secure 

network protocols

• DARPA project:  

- formally verify the secure RideSharing protocol

- apply to expanded network topologies (using D4V)

• Automatic patching of servers (or cloud)

• Data sanitization (for testing purposes, e.g.)

• Verification of smartgrid controllers 
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