Verification Everywhere:
Security, Dependabillity,
Reliability

Lenore D. Zuck
Usable Verification, May 25, 2011

“Trustworthy” Protocols: NTLM

e A suite of Microsoft security protocols

e Proves authentication, integrity, confidentiality

e Had been replaced by Kerberos unless it can't:
- domain controller unavailable/unreachable
- client is not Kerberos capable
- user remotely authenticating over the web

e \ulnerable to a credential forwarding attack

“Trustworthy” Protocols

@ Chrome File Edit View History Bookmarks Window Help

o O | ') The NTLM Authentication P |] cn.cs.unibas.ch/people/tm/ |] 0w mYxwrn mmnon 3 bownloads

€& = C () davenport.sourceforge.net/ntim.html

4 Unknown 0x0000000f

The operating system build can be found by running "winver.exe"; it should give a string similar to:
Version 5.1 (Build 2600.xpsp_sp2 gdr.050301-1519 : Service Pack 2)

This yields an OS Version structure of "0x0501280a0000000£":

0x05 (major version 5)
0x01 (minor version 1; Windows XP)
0x280a (build number 2600 in hexadecimal little-endian)

0x0000000f (unknown/reserved)

Note that the OS Version structure and the supplied domain/workstation are optional fields. There are three versions of the Type 1 message that have been obse

1. Version 1 -- The Supplied Domain and Workstation security buffers and OS Version structure are omitted completely. In this case the message ends after
in the Open Group's ActiveX reference documentation (Section 11.2.2).

2. Version 2 -- The Supplied Domain and Workstation buffers are present, but the OS Version structure is not. The data block begins immediately after the

3. Version 3 -- Both the Supplied Domain/Workstation buffers are present, as well as the OS Version structure. The data block begins after the OS Version s
2000, Windows XP, and Windows 2003.

The "most-minimal" well-formed Type 1 message, therefore, would be:
4e544c4d535350000100000002020000

This is a "Version 1" Type 1 message containing only the NTLMSSP signature, the NTLM message type, and the minimal set of flags (Negotiate NTLM and N

3

Researcher Warns of NTLM Security Vulnerability

Security researcher Marsh Ray says a 15-year-old vulnerability in NT LAN
Manager (NTLM) and NTLMv2 is continuing to put organizations at risk.

August 16, 2010
By eSecurityPlanet
Staff

Submit Feedback »
More by Author »

"Awareness of the protocol vulnerability dates back to 1996 and it has been the
topic of several presentations over the years at various Black Hat security
conferences, Ray says," writes The Register's Dan Goodin.

"But a raft of software packages, including WebKit, Samba, and Mozilla titles, continue to be plagued
by the problems, in large part because fixes tend to limit themselves to specific attack vectors at the
, expense of comprehensiveness," Goodin writes. "And that means that the flaw is likely of benefit to
black-hat hackers."

Why??

Protocols not carefully designed (hard to obtain exact specs from
English description)

Protocols not formally verified (“we may never get a secure system,
and we surely won’t unless we verity it”)

Bugs take a long time to identify (usually long after deployment)
Patching breaks backward compatibility

and we lack ...

We lack

e |ntegration of verification methodologies
- that operate on networks
- that incorporate functional and non-functional properties
- that implementations follow specifications
- that check backward compatibility

e Agreed upon language(s) to formally specity the security properties we
require from systems that can be verified

e Formal assumptions of attacker and attack models

Road Map

http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html

THE PROTOCOLS

OF THE LEARNED ELDERS OF ZION

expressive (pref
decidable) logic for
both functional and +
non-functional
properties of protocol

parame-
terization

T—

http://www.fags.org/photo-dict/phrase/457/building-blocks.html

[
Note:

Attackable!

_

\ i

http://www.alternative-zine.com/interviews/en/88

+

Fully verified
protocols
robust against
security attacks

http://www. | stpositionmarketing.com/blog/? Tag=Twitter%20tools

http://www.alternative-zine.com/interviews/en/88
http://www.alternative-zine.com/interviews/en/88
http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html
http://www.gilad.co.uk/writings/the-protocols-of-the-elders-of-zion-verse-2-by-gilad-atzmon.html
http://www.faqs.org/photo-dict/phrase/374/scroll.html
http://www.faqs.org/photo-dict/phrase/374/scroll.html
http://www.faqs.org/photo-dict/phrase/457/building-blocks.html
http://www.faqs.org/photo-dict/phrase/457/building-blocks.html
http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools
http://www.1stpositionmarketing.com/blog/?Tag=Twitter%20tools

On What There Is

Tools to verify security protocols (Avispa, Athena, Scyther, ProVerif)

- Cannot be easily accommodated to work on arbitrary topologies
and arbitrarily large messages

Handcrafted tools for particular protocols [Pereira, Paulson]
Bugs found even on verified protocols (TLS)

Implementation sometimes break security (side-channel attacks)
[Bleichbaher, Kocher]

Missing: General tools to verify protocols on any
topology, careful specifications of protocol
requirements and attack model, proofs that
implementations do not introduce new flaws

What Formal Methods offer

A variety of methodologies to help verification of:

e Protocols (arbitrary, even dynamic, topology and number of
participants) even in case of attacks on network™

o Stepwise refinement (functional and non-functional properties)*

Theorem provers that allow integration of proofs about mathematics
with proofs about software

On Refinement

Techniques apply to high-level abstractions

But it's actual code we want to verify

Existing techniques can help verify that properties are preserved at
refined code, but

Unlike many properties, security flaws can pop up at the lower level
implementation (e.g., Kocher attack on RSA) and may require new
methodologies (to show that security is preserved)

10

Preview

Similarities between fundamental problems in FM and security

Verification of network security protocols is (probably) attainable using
more research and a combination of (humerous!) existing tools

The lack of formal requirements and formal (executable) specification
IS a major obstacle

The model of the attacker needs be clearly defined (per protocol)

(As in SE) Combining development and verification processes
facilitates correct verified design (Design for Verification)

Tools for security verification need to be integrated with “standard”
verification tools if we are to obtain a full-fledged verification tool

11

An Example (where
everything is needed...)

Secure RideSharing (Iskander, Lee, Mossé)

A protocol for dynamic Wireless Sensor Networks to
carry out secure data aggregation to a sink node.

Protocol should satisfy:
+ Privacy
+ Fault tolerance

+ Exact aggregation during fault-free operation

12

Secure RideShare

e Ad-hoc sensor network

e Sensors are limited

*

*

*

bandwidth
storage
power

computation

13

Goal

Formal verification permeates system:
distributed resource allocation
security sensing
power management
real-time
trusted join/leave
(In)voluntary promotion/demaotion
reliable delivery of data & results

Privacy Additively homomorphic
Preservation siream cipher (1]

Cascaded Ridesharing [2]
[1] Casteluccia, Chan, Mykletun, Tsudik 2009

[2] Gobriel, Khatab, Mossé, Brustoloni, Melhem 2006

Building Blocks:

14

Applications

Central

monitoring unit ((((oo
(

Collaborative sensing over shared
infrastructure

15

Network Model

’ ~7 primary edge

/

______ > backup edge

Track Graph Network Topology

16

T

Q 20/

Attack Model

HONEST-BUT-CURIOUS
correctly aggregate, but eavesdrop

QUIET INFILTRATORS
stealthily infiltrate the network to eavesdrop

|\

17

Protocol (rough outline)

n, N,
L-Vector | | |

r-
e-blt -1

Now | can
recover the
plain aggregate
value given the
P-vector

Protocol (rough outline)

1. Each sensor ni encrypts its value vi as c¢i = vi + gi(ki) mod M, and sets
its corresponding bit in the P-Vector

2. The resulting ci values are aggregated using the Cascaded
RideSharing protocol, which results in the sink receiving the value C =

2ici mod M

3. The sink computes the aggregate key value K==, gi(ki) mod M for each
| In P-vector

4. The sink extracts the final aggregate value V = 2;vi = C - K mod M

19

And It started here...

Algorithm 1: Aggregation and routing algorithm run
by sensors within the network

Algorithm 2: Final aggregation and decryption

algorithm used by the data sink

input : PC, BC, SP, v

A:=0;

P :=0;

L.r = 6

L.e:=0:

if v NOT NULL then // Aggregate own value
A=A+v+grp(krp) mod M;
P[ID] = 1:

end

L := revL(SP):;
foreach Child C in PC U BC do
if rev(A, P;) from Child C then
if C € PC OR (C € BC AND L|C].e = 1 AND
L[C].r = 0) then // Aggregate the
recelived values
A=A+ Ac mod M;
P =P OR P.:
L-[C"].e = 1;
end
else // Propagate the error signal
| L[C].e :=1;

end

end

end

Transmit(A,P.L):

input : PC
output: FlinalA
A:=0;

P :=0;
K :=0;

Fz.n.a.lA = 0

foreach Child C in PC do

if rev(A.,P.) from Child C then
A=A+ Ac mod M:
P := P OR F,;

end

end

foreach bit set to 1’ in P do
| K = K + gi(ki) mod M;

end

FinalA = A — K mod M:

20

With the properties:

Theorem 1 (Confidentiality): During the execution of the
protocol described by Algorithms 1 and 2, no sensor (except

the sink) canthe value of the readings by any

other sensor, nor the value of any intermediate aggregate value.

Theorem 1 follows directly from the of

the cipher used by Algorithms 1 and 2 and the fact that each
sensor node shares a unique key with the sink.

Theorem 2 (Correctness): Under the assumption of “honest
but curious™ or “quiet infiltrators™ attack nodes, the protocol
described by Algorithms 1 and 2 includes each sensor reading

at most one time during the aggregation process. Further,
the sink node 1s able to correctly identify the sensors that
contributed to this aggregate, generate the resulting aggregate
key, and recover the correct result.

21

What does a proof look like?

Formalize (abstract, if needed) program/protocol [transition system]

Formalize property [Temporal Logic]

Invent (divine?) auxiliary constructs A ‘ .
Prove:

1. ...

2. ...
logical formulae over system description

and A @ W ..

K. ...

Conclude: Property

22

Safety

System often associated with “good” and “bad” states
Safety: the system is always in a good state

Invariance: safety properties that can be described by “state
assertions”

every safety property can be reduced to an invariance property

Invariance properties are perhaps the most important properties one
may wish to prove on systems!

They capture properties like “within a given amount of time, something

M«

good must occur”, “there is no security violation”, &c

23

How to prove Invariance

e |nductive invariant: true at initial state, and preserved in
every step

e [NV rule: construct an auxiliary invariant, show that it’s
inductive and implies “good”

e (Why do we need the auxiliary invariant? because
inductiveness may be hard to show on real system)

e (Auxiliary inductive invariants can be viewed as an
abstraction of the reachable states)

24

Example

P[i]:
req(x)
rel(x)
(X: semaphore; initially 1) bad states

possible states (for N=2

Q01

I

Reachability:

states covered by
auxiliary invariant

N

auxiliary invariant; Y (P[i] is in red state) + z < 1
1=1

25

Back to RideShare

Fault tolerance, power/timing, and correct aggregation of the P-vectors
are all safety properties

Sample property: If
. attackers can only eavesdrop

. for sufficiently long time (so that information can propagate from leaves
to sink) there are no changes in topology (but possibly for a single link
failure)

Then within a given time bound the sink node receives the “correct”
information

26

Parameterized Systems”

e A parallel composition of N (finite-state) processes where N is unknown
P11l P2l P3ll <« |l Py
e Proofs requires auxiliary constructs parameterized on N
- For safety, an inductive invariant

e |nvisible Invariants: derive constructs for general N by abstracting from
the mechanical proof of a particular N

- under-approximation can yield over-approximation

- Proofs can be done entirely using finite-state model checking, w/o
explicitly generating the auxiliary constructs

*Joint work with Amir Pnueli and students (main ideas in [ZP04])

27

Generating an Invariant

1. Compute the reachable states Rn for a fixed N (say N=5)

2. Project onto a small subset of processes (say {1,2})

@0 | ™= 1(s1,82) | (51,52,...,5N) € Rn}

28

Generating an Invariant

2. Project onto a small subset of processes (say {1,2})

©e e
@0 " XO, T ={(s1,52) | (51,82,...,5n) € Rn}
@0 0

3. Generalize from two to N, to get Gn
N N

N\
A\ (g)

¢)
O @ cccee @ O @ cocee @
@ Oocccee @ @ O 0000 @

Gy = \V/z‘;éje[l..N] 7"'(3?378]')

4. Test whether Gy is an invariant for all N

29

Checking Inductiveness

e Small Model Theorem:

- If there is a counterexample with N>M there is a counter-model with
N<M

- Suffices to check inductiveness for N<M

Thus, both invariant generation and invariant checking amount to finite-
state model checking

However, doesn’t apply to all cases (and Abstract Interpretation does!)

30

Example: Pulser

of
pulsers
A A+ 1 A+ 1 A+ 1 A+ 1
C+A C+A C+A C+A
—_— —_— __)
0 S | t
1 £ Chere are rno Ada/ 3ay§
of
pulsers
4 A + 1 A + 1 A + 1 A + 1
ANAMN Ny W\~ o Vend e
; C+ /\C:i\A/\N \C-FMA(\A I\«Q—TAN >
0 C

ith (ot oo Mdny> bad ge/s

31

Pulser: Protocol and specs

Protocol:

Pli] =

If countli] > C' v BA[Clock]
then count|i] := C
elsif countli] > 0

then count|i] = min(C, count[i| — 1)

G =
" Clock := Clock + 1 mod A
If Vi. —fault|i| — countli] < 0
then BA[Clock| := T
If Vi. —~faulti] — count|i] > 0
then BA|[Clock] :=F

else BA[Clock] := {T,F}

Property:

A+1

C+A

—pulse /N ulse) — Loulse A At2_ulse A
SO ((w O pulse p p
t=1

(pulse N O —pulse) — /\ O —pulse A OC+A+1pul86)

t=1

But, It didn’t start there...

Algorithm Large-Cycle-Pulser /* executed repeatedly at each beat */

1. for each 7z € {1,.., A} do
execute the 7" round of the BBB; protocol;
2. (a) if Counter > 0 then
Counter := min{Counter — 1, Cycle'};
WantT oPulse := 0:
(b) else
WantT oPulse := 1:
3. it V(BBBA) =1 then
(a) do PULSE;
(b) Counter := Cycle’:
4. for each 7 € {2,..., A} do
BBEB; .= BBB;_1:

initialize a new instance of BBB, BBB, = BBB(W antT oPulse).

ot

Theorem 1. The Large-Cycle-Pulser algorithm is a [A, A + C'ycle’|-PULSER.

33

How to Verify

e \/erification of Protocols (arbitrary, even dynamic, topology and number
of participants) even in case of attacks

Parameterized Verification

Verification of stepwise refinement (of functional and non-functional
properties)

Translation Validation

34

Translation Validation

Originally proposed as part of the Safety Critical Embedded Systems
project (1995-1998), where all validation/verification occurred at high
levels and correct design automatically “translated” into C

Had to verify the translation!

Evolved to:

- TV of optimizing compilers for Intel’'s ORC compiler

- MicroFormal @ Intel: tool to verify backward compatibility of
microcode

35

Translation Validation

e Verification of translatOR is often infeasible

- “translator” (compiler) may be proprietary, compiler may evolve over
time (so its verification may become useless), provides an
iIndependent cross check

- “translator” may be human!
e |nstead of verifying translator, verify each translation!!
- has constant run-time additional cost (justifiable)

- usually doable because source and target are similar (in case of
optimizing compilers, there are a known set of optimizations)

36

T.V. : ldea (1)

[s SOurce\ Semantics)[Sem(S) J

Mapping

|
| Refinement

Y

— Semantics g (T)
> larget em
[. J Mapping)[j

37

T.V. : ldea (2)

Control
Mapping

[Sou rceJ

Data
Mapping

[Target}

-

conditions
(including
time,
power,
security)

\

Verification

)12:5/'

Theorem
Prover

(PVS, CVC,
ACL2..)

38

Example: Client/Server

Request
< Response

Browser

*Web applications need to
*Validate user supplied input
*Reject invalid input

 Examples:

“date/month combination is invalid”
“Credit card number is exactly 16 digits”
“Expiration date of Jan 2009 is not valid”

Validation traditionally done at server: round trip, load
Popular trend: Browser (client) validation through JavaScript

39

Client Side Validation using JavaScript

e 00

Checkout

Kitchenaid 5-Quart Mixer, Red ($399.99) onSubmit=

—
1 All-Clad Copper Core 14-Piece Set ($1,999.95) ValidateCard();

TSN v 1234-5678-9012-3456 | Validati S
7890-1234-5678-901 alidation Fass:

Delivery Instructions

Yes No

Send inputs Reject
to Server inputs

Problem: The user interacting with website can attack the client !

-~

40

Problem: Client is Untrusted Environment

. YeYe
eValidation can be

Checkout bypassed

tchenaid 5-Quart Mixer, Red ($399.99) *Previously rejected values
1 All-Clad Copper Core Ta~RiesaSet ($1,999. sent to server
Invalid quantity: -4

Credit Card : [FPELE{FLECTFPEEEET I * |deally: Re-validate at

server-side and reject
If not, security risks

7890-1234-5678-9012

Delivery Instructions

41

Applying TV on Example

Client Server

cost :=0 Cost := cost
ok :=true Ok :=true
For every i in list If lvalid(cc)

cost := cost + quan(i] x cost[i] then Ok := false

If quan[i] <O

then ok := false
It cc not in list Need to verify: Cost = cost A Ok = ok

then ok := false

Counter Examples:
quan|l] <0 A —ok A Ok

(cc not on list) A —ok A Ok

42

How to Overcome?

e Use Translation Validation to show that every check
performed by the client is also performed by the server

e (Of course) needs to be done automatically

+ The code of client and server is usually in different
languages — we successfully dealt with a similar
iIssue in MicroFormal by translation into an
intermediate representation language (IRL)

e (Can then automatically (or almost fully-automatically)
patch server and repeat TV

43

Conclusion

Security NEEDS formal methods
- The stakes are high: security protocols have bugs

- Many (some recently developed) FM techniques are not
incorporated in security verification:

> Verification of network protocols

> \Verification of refinement

> Integration of proofs techniques
Attacker needs to be formally specified
We have many techniques in FM that can assist

Much research is needed to obtain reliable security

44

What’s Next?

Develop methodologies, supported by tools, to formally verity secure
network protocols

DARPA project:

- formally verify the secure RideSharing protocol

- apply to expanded network topologies (using D4V)
Automatic patching of servers (or cloud)

Data sanitization (for testing purposes, €.g.)

Verification of smartgrid controllers

45

