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VERIMAG

Joint lab between CNRS and Grenoble University
9 CNRS permanent researchers + 4 research engineers
23 professors

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 3 / 97



. . . . . .

.
. .1 Introduction

Position within other techniques
A short chronology
Basic ideas

.
. .2 Transition systems

.
. .3 Boolean abstraction

Definition
Some more examples
Abstraction refinement

.
. .4 Intervals

.
. .5 Extrapolation

.
. .6 Executive summary

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 4 / 97



. . . . . .

Outline
.

. .1 Introduction
Position within other techniques
A short chronology
Basic ideas

.
. .2 Transition systems

.
. .3 Boolean abstraction

Definition
Some more examples
Abstraction refinement

.
. .4 Intervals

.
. .5 Extrapolation

.
. .6 Executive summary

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 5 / 97



. . . . . .

Static analysis

Establish automatically that a program meets a specification.

Specification can be:
...1 Explicit, e.g. “the program sorts the integer array given as
input”.

Can be expressed by e.g. temporal logics, assertions. . .

...2 Implicit, e.g. “the program never crashes due to division by zero,
array overflow, bad pointer dereference”.

Easier for the programmer (no need to write anything in addition
to the code).
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Impossibilities

Turing’s Halting Problem / Rice’s Theorem

Program analysis is impossible unless one condition is met:
...1 Not fully automatic, requires user interaction.
...2 Constrained enough class of programs.
...3 Finite memory.
...4 Finite number of program steps.
...5 Analysis can answer false positives.
...6 Analysis can answer false negatives.
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User interaction

Example: interactive theorem proving.

Program analysis problems generally map to logics (e.g. Peano
arithmetic) with no decision procedure.

(Actually a way to prove undecidability of such logics. . . )
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Finite memory

Can enumerate reachable states explicitly.

Computable but costly: n bits of memory in analyzed system
⇒2n states in analyzer
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Finite number of program steps

Finite number of program steps
+ program statements with semantics in logics e.g. linear arithmetic
⇒
Bounded model checking.
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Analysis can produce false negatives

False negative = some bugs may be ignored

Examples of techniques:

testing

Coverity
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. . . . . .

(Semantically sound) static analysis

Deducing properties of software

From a mathematical model of its behaviour (semantics).

Examples: “no division by zero”, “no assertion failure”

valid for all executions

using safe over-approximation of behaviors
I no false negatives
I maybe false positives (false alarms)
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A central problem

Higher precision (fewer false alarms)
vs scaling-up (low higher time/space
costs)

Want to have them both?
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Ariane V, maiden flight, 1996
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Ariane V self-destructing
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Arithmetic overflow

x = computat ion for Ariane4 ( ) ;
y = ( short i n t ) x ;

(ok it was Ada, not C)

⇒PolySpace Verifier (1996–)
(Deutsch et al.; commercial tool)

Bug found by direct automated anal-
ysis of the source code.
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A modern airplane: Airbus A380

⇒Astrée (2002–) (Cousot et al.)

Prove absence of bugs.

I was a key member of Astrée (now sold commercially).
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Safety-critical embedded systems
Airplanes (DO-178C), trains, space launchers

Nuclear plants, electrical grid controls

Medical devices

US Food and Drug Administration, action on infusion pumps
(2010).
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At Microsoft. . .

Microsoft Device Driver Verifier (from project SLAM)

CodeContracts

etc.
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Large state spaces

We cannot represent the concrete state space X .
Four 32-bit variables: 2128 states.
Too large for explicit-state model-checking (need to memorize all
states in memory). . .
and also for implicit-state model-checking (using clever structures
e.g. BDDs)
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Solution

Instead of a set of states s ⊆ X use another s] simpler to represent.

e.g. with X = Z2, s ⊆ X a set of pairs of integers, s] a product of 2
intervals

We do not forget behaviors: since s ⊆ s], cannot forget any
reachable state.
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Initial states + transitions

Program or machine state = values of variables, registers,
memories. . . within state space Σ.

Examples:

if system state = 17-bit value, then Σ = {0, 1}17 ;
= 3 unbounded integers, Σ = Z3 ;

if finite automaton, Σ is the set of states ;

if stack automaton, complete state = couple (finite state, stack
contents), thus Σ = ΣS × Σ∗

P .

Transition relation → x → y = “if at x then can go to y at next
time”
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Safety properties

Show that a program does not reach an undesirable state (crash,
error, out of specification). Set W of undesirable states.

Show that there is no n ≥ 0 and σ0 → σ1 → . . . σn s.t. σ0 initial
state (= reset) and σn ∈ W

Otherwise said σ0 →∗ σn ∈ W . →∗ transitive closure of →.
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. . . . . .

Reachable states

Σ0 ⊆ Σ set of initial states. Reachable states A set of states σ s.t.

∃σ0 ∈ Σ0 σ0 →∗ σ (1)

Goal: show that A ∩W = ∅.
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Computation

Xn set of states reachable in at most n turns of →: X0 = Σ0,
X1 = Σ0 ∪ R(Σ0), X2 = Σ0 ∪ R(Σ0) ∪ R(R(Σ0)), etc.

with R(X ) = {y ∈ Σ | ∃x ∈ X x → y}.

The sequence Xk is ascending for ⊆. Its limit (= the union of all
iterates) is the set of reachable states.
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Iterative computation

Remark Xn+1 = φ(Xn) with φ(X ) = Σ0 ∪ R(X ).

Intuition: to reach in at most n + 1 turns

either in 0 turns, thus on an initial state: Σ0

either in 0 < k ≤ n + 1 coups, otherwise said at most n turns
(Xn), then another turn.

How to compute efficiently the Xn? And the limit?
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Explicit-state model-checking

Explicit representations of Xn (list all states).

If Σ finite, Xn converges in at most |Σ| iterations.

Reason:

Either Xn = Xn+1, thus remains constant.

Either Xn ( Xn+1, then Xn+1 \ Xn contains at least 1 state.
Cannot happen more than ‖Σ‖ times.
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. . . . . .

Inductive invariants

(Inductive) invariant: set X of states s.t. φ(X ) ⊆ X . Recall

φ(X ) = X0 ∪ {y ∈ Σ | ∃x ∈ X x → y} (2)

If X et Y two invariants, then so is X ∩ Y .

φ monotonic for ⊆ (if X ⊆ Y , then φ(X ) ⊆ φ(Y )).

φ(X ∩ Y ) ⊆ φ(X ) ⊆ X , same for Y , thus φ(X ∩ Y ) ⊆ X ∩ Y .

Same for intersections of infinitely many invariants.
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The strongest invariant

Intersect all invariants, obtain least invariant / strongest
invariant.

This invariant satisfies φ(X ) = X , it is the least fixed point of φ.
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A system with infinite state

State = a single integer variable x

Initial state : x = 0
Transition: x ′ = x + 1

Reachable states: N.

Prove that x ≥ 0 is an invariant.

Cannot compute reachable states by iterations: infinite state space!
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A finite state system

State = a single integer variable x

Initial state: x = 0
Transition: x ′ = x + 1 ∧ x < 1010

Reachable states: 0 ≤ x ≤ 1010

No hope by explicit model-checking techniques (computing the 1010

reachable states).
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Abstraction

Introduce 5 “abstract states”

A: x < 0

B : x = 0

C : 0 < x < 1010

D: x = 1010

E : x > 1010

Put an arrow between abstract states P and Q iff one can move from
p ∈ P to q ∈ Q.

Example: can move from A to B because {x = −1} ∈ A, can move
to {x ′ = 0} ∈ B .
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Resulting system

..A

.B.start .C .D .E

.

.

.

.

A: x < 0

B : x = 0

C : 0 < x < 1010

D: x = 1010

E : x > 1010

No concrete transition is forgotten and thus E is unreachable.
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Other example

Initial state: x = 0 Transition: x ′ = x + 2 ∧ x 6= 1010

Reachable states: 0 ≤ x < 1010 ∧ x mod 2 = 0.
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Abstract graph

..A

.B.start .C .D .E

.

.

.

.

.

A: x < 0

B : x = 0

C : 0 < x < 1010

D: x = 1010

E : x > 1010

C → E since (1010 − 1) → (1010 + 1).
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Over-approximation

More behaviors:

E is concretely reachable.

E is abstractly reachable

The analysis fails to prove the true property “E unreachable”.
Incomplete method.

Remark: works with a better abstraction (x < 1010 − 1).
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Principles of predicate abstraction

A finite set of predicates (e.g. arithmetic constraints).

Construct a finite system of abstract transitions between
abstract states.

Each abstract state labeled by predicates, e.g. ex. x < 0.

Put an abstract transition from A to B iff one can move from a
state a ∈ A to a state b ∈ B .

Correctness if an abstract state is unreachable, then so are the
corresponding concrete states
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. . . . . .

How to construct the abstract system

Abstract states A : x < 0 and C : 0 < x < 1010, transition relation
x ′ = x + 1 ∧ x < 1010, can we move from A to C?

Otherwise said: is there a solution to
x < 0 ∧ (x ′ = x + 1 ∧ x < 1010) ∧ x ′ > 0?

Use satisfiability modulo theory (SMT-solving).
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. . . . . .

Computing the graph

Abstract states are couples (program point, set of predicates)

Apply SMT-solving to insert or not insert arrows.

Check if bad states are unreachable.

If they are, win!

. . . and if they are reachable?

Maybe the abstraction is badly chosen?

Maybe the property to prove (unreachability of bad states) is
false?
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Exemple

1 x = 0 ;
2 while ( x < 10) {
3 x = x +1;
4 }
5 y = 0 ;
6 while ( y < x ) {
7 y = y +1;
8 }

Try predicates x < 0, x = 0, x > 0, x < 10, x = 10, x > 10, y < 0,
y = 0, y > 0, y < x , y = x , y > x .

Note: 12 predicates, so in the worst case 212 = 4096 combinations,
some of which impossible (cannot have both x < 0 and x > 0 at
same time).
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Abstract automaton

..L1.start .L2 .L′2

.L5.L6.L′6.L9

.

.

.

.

.

.

..

1 x = 0 ;
2 while ( x<10)
3 x = x +1;
4 }
5 y = 0 ;
6 while ( y<x ) {
7 y = y +1;
8 }

L1: line 1, x = 0
L2: line 2, 0 < x < 10
L′2: line 2: x = 10
L5: line 5: x = 10
L6: line 6: x = 10 ∧ y < x
L′6: line 6: x = 10 ∧ y = x
L9: line 9: x = 10 ∧ y = x
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Attention

1 x = 0 ;
2 while ( x != 10) {
3 x = x +2;
4 }

Syntactic choice of predicates (x < 0, x = 0, x > 0, x < 10, x = 10,
x > 10).
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Some solution?

..
L1
x=0

.start .
L2
x=0

.
L2

0<x<10

.
L2

x=10
.

L5
x=10

. .

.

.

.
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Why is this solution wrong?

This solution is sound since it collects all behaviors of the program.

But you realize this only because you already know (in your head) the
set of reachable states! (This is cheating.)

This solution is not inductive: it is possible to move from a state
represented in the graph to one that isn’t!
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Attention

1 x = 0 ;
2 while ( x != 10) {
3 x = x +2;
4 }

At line 2, abstraction says 0 < x < 10, thus x = 9 for instance.

x = 9 is inaccessible in the concrete systems! You know it only
because you computed the set of reachable states {0, 2, 4, 6, 8}.

Need a transition from 0 < x < 10 (x = 9) to a new state x > 10
(x = 11).
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Human intuition vs automated computation

The human sees the simple program and computes the set of
reachable states {0, 2, 4, 6, 8} knowing x should be even.

Then projects onto predicates, and x > 10 unreachable.

Automated computation does not see that x is even because it was
not given the predicate x mod 2 = 0.
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. . . . . .

Not convinced?

Let P be a program where Boolean x is not mentioned. Consider:
x := 0; P ; x := 1

Use predicates x = 0 et x = 1. Give a finite automaton for the
behaviors of the program wrt x . . .

Automaton with two states x = 0, x = 1. Simple, hey?
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A minimal automaton (not inductive)

If P terminates:

..x = 0.start .x = 1

.

.

If P does not terminate:

..x = 0.start

.
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Abstraction refinement

..A

.B.start .C .D .E

.

.

.

.

.

x ′ = x + 2 ∧ x 6= 1010

E is reachable in the abstract and not in the concrete.
Would have been prevented using predicate x < 1010 − 1. Can this
be made automatic?

Yes: compute weakest precondition wp(¬E ) for one step:
x ≤ 1010 ∧ x + 2 ≤ 1010 ≡ x ≤ 1010 − 2.
Add x ≤ 1010 − 2 as predicate and voil.
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CEGAR

Counterexample guided abstraction refinement

Generalize the idea compute weakest precondition and add
predicates .
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Some tools

Bounded model checking on C programs: CBMC

Predicate abstraction on C programs: Microsoft Device Driver
Verifier [SLAM], BLAST

SMT-solvers: Yices (SRI), Z3 (Microsoft)
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Recall the idea

Try to compute an interval for each variable at each program point
using interval arithmetic :

assume ( x >= 0 && x<= 1 ) ;
assume ( y >= 2 && y= 3 ) ;
assume ( z >= 3 && z= 4 ) ;
t = ( x+y ) ∗ z ;

Interval for z?

[6, 16]
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Why is this interesting?

Let t(0..10) an array.
Program writes to t(i).

We must know whether 0 ≤ i ≤ 10, thus know an interval over i .
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Again. . .

assume ( x >= 0 && x <= 1 ) ;
y = x ;
z = x−y ;

The human (intelligent) sees z = 0 thus interval [0, 0], taking
into account y = x .

Interval arithmetic does not see z = 0 because it does not take
y = x into account.
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How to track relations

Using relational domains.

E.g.: keep

for each variable an interval

for each pair of variables (x , y) an information x − y ≤ C .

(One obtains x = y by x − y ≤ 0 and y − x ≤ 0.)

How to compute on that?
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Bounds on differences
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Practical example

Suppose x − y ≤ 4, computation is z = x + 3, then we know
z − y ≤ 7.

Suppose x − z ≤ 20, that x − y ≤ 4 and that y − z ≤ 6, then we
know x − z ≤ 10.

We know how to compute on these relations (transitive closure /
shortest path).
On our example, obtain z = 0.
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Why this is useful

Let t(0..n) an array in the program.
The program writes t(i).

Need to know whether 0 ≤ i ≤ n, otherwise said find bounds on i
and on n − i . . .
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Can we do better?

How about tracking relations such as 2x + 3y ≤ 6?

At a given program point, a set of linear inequalities.

In other words, a convex polyhedron.

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 67 / 97



. . . . . .

Example of polyhedron
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Caveat

(In general) The more precise we are, the higher the costs.
For each line of code:

Intervals: algorithms O(n), n number of variables.

Differences x − y ≤ C : algorithms O(n3)

Polyhedra: algorithms often O(2n).

On short examples with few variables, ok. . . But in general?
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Even linear may not be fast enough

Fly-by-wire control code from Airbus:

Main control loop

Number of tests linear in length n of code

Number of variables linear in length n of code (global state)

Complexity of naive convex hull on products of intervals linear in
number of variables

⇒Cost per iteration in n2
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. . . . . .

Absolute value

y = abs ( x ) ; /∗ v a l e u r a b s o l u e ∗ /
i f ( y >= 1) {

a s s e r t ( x != 0 ) ;
}
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. . . . . .

Interval expansion

Intervals:

/∗ −1000 <= x <= 2000 ∗ /
i f ( x < 0) y = −x ; /∗ 0 <= y <= 1000 ∗ /
else y = x ; /∗ 0 <= y <= 2000 ∗ /

i f ( y >= 1) { /∗ 1 <= y <= 2000 ∗ /
a s s e r t ( x != 0 ) ; /∗ −1000 <= x <= 2000 ! ! ! ∗ /

}
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. . . . . .

Polyhedra

Branch x ≥ 0
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. . . . . .

Autre branche du test

Branch x < 0
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. . . . . .

After first test

y = |x | = union of the two red lines. Not a convex.
Convex hull = pink polyhedron
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. . . . . .

At second test

Note: includes (x , y) = (0, 1).
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. . . . . .

Disjunction

Possible if we do a union of two polyhedra:

x ≥ 0 ∧ y = x

x < 0 ∧ y = −x

But with n tests?

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 77 / 97



. . . . . .

Two tests

i f ( x >= 0) y=x ; el se y= −x ;
i f ( y >= 1) z=y +1; else z=y ;

4 polyhedra = costly computations

x

z

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 78 / 97



. . . . . .

Two tests, convex hull

More imprecise:

x

z
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. . . . . .

Sources of imprecision

Need to distinguish each path and compute one polyhedron for
each.

But 2n paths.

Too costly if done naively.

In current tools, not implemented.

⇒explains some imprecisions.

David Monniaux (CNRS / VERIMAG) Abstract interpretation May 23–27, Menlo College 80 / 97



. . . . . .

Current research

In the last few years articles propose methods distinguishing paths.

Use of SMT-solving techniques to cut the exponential cost:

Only look at “useful” paths.
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. . . . . .

Loops?

Push intervals / polyhedra forward. . .

i n t x =0;
while ( x<1000) {

x=x +1;
}

Loop iterations [0, 0], [0, 1], [0, 2], [0, 3],. . .

How? φ(X ) = tat initial t post(X ), thus
φ([a, b]) = {0} t [a + 1,min(b, 999) + 1]

When do we stop? Wait 1000 iterations? No.
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. . . . . .

One solution. . .

Extrapolation!

[0, 0], [0, 1], [0, 2], [0, 3] → [0,+∞)

Push interval:

i n t x =0; /∗ [ 0 , 0 ] ∗ /
while /∗ [ 0 , + i n f t y ) ( x<1000) {

/∗ [ 0 , 999] ∗ /
x=x +1;
/∗ [ 1 , 1000] ∗ /

}

Yes! [0,∞[ is stable!
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. . . . . .

Mediocre results

Expected: [0, 999].
Obtained [0,+∞).

Run one more iteration of the loop:

[ 0 , + i n f t y ) ( x<1000)
/∗ [ 0 , 999] ∗ /
x=x +1;
/∗ [ 1 , 1000] ∗ /

Obtain {0} t [1, 1000] = [0, 1000].
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. . . . . .

Narrowing

i n t x =0; /∗ [ 0 , 0 ] ∗ /
while /∗ [ 0 , 1 0 0 0 ] ( x<1000) {

/∗ [ 0 , 999] ∗ /
x=x +1;
/∗ [ 1 , 1000] ∗ /

}

Yes! [0, 1000] is an inductive invariant!
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. . . . . .

Stabilization

Look for a set (polyhedron, intervals)

Containing initial values for the loop.

Inductive: if valid at one iteration, valid at the next.

Look for X such that φ(X ) ⊆ X with φ(X ) = tats initiaux∪ post(X )
post(X ) = states reachable from X in one loop iteration

Any inductive invariant. (Not necessarily the least one.)
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. . . . . .

Computing the inductive invariant

We don’t know how to compute post(P) with P interval /
polyhedron in general.
(The loop body may be complex, with tests. . . )

Replace computation by simpler over-approximation
post(X ) ⊆ post](X ).

Cannot do ∪ over polyhedra, do t (convex hull)
Thus computation: φ](X ) = initial states t post](X )
Instead of φ(X ) ⊆ X with φ(X ) = initial states ∪ post(X )
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. . . . . .

All the time, over-approximation

φ(X ) ⊆ φ](X ) so lfpφ ⊆ lfpφ]

(work out the math, using lfpψ = inf{X | ψ(X ) ⊆ X})

In the end, over-approximation of the least fixed point of φ.
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. . . . . .

Graphical vision
Dark blue = concrete reachable states after ≤ 1 loop iteration
Light blue = concrete reachable states after ≤ 2 loop iterations
Dark red = over-approximated states after ≤ 1 loop iteration
Light red = over-approximated states after ≤ 2 loop iterations
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. . . . . .

Extrapolation
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. . . . . .

Consequences

Over-approximate during computations (even without loops).

Over-approximation during widening.

Thus obtain super-set of reachable states.

This super-set is an inductive invariant (cannot exit from it).
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. . . . . .

Practical consequences

Cannot prove that a problem truly happens.
Example: interval i ∈ [0, 20] for access t(0..10), is the interval
exact?

Yet sure that all potential problems are detected
(over-approximation of problems).

Let B be the set of bad states. X ] ∩ B 6= ∅: “ORANGE”
If X ] ⊆ B , “RED”.

What do orange vs red mean?
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. . . . . .

Outside of numerics

Pointers, arrays, memory threads. . .

E.g. representing tree / graphs using automata
Widening = limitation in the number of states when computing
bisimulation (Myhill-Nerode minimization of DFA)
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. . . . . .

Important points

The computer is stupid, it does not “see” why a program works.

Normal, everything important is undecidable algorithmically
(or of high complexity).

Look for inductive invariants that can be proved automatically
(e.g. by propagation of intervals or polyhedra).

They over-approximate the reachable states, thus the safety
violations.
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. . . . . .

Success stories

Microsoft SLAM / Device driver verifier — predicate
abstraction, checks the respect of Windows API in device drivers

PolySpace Verifier

Astre, with specific control numerical relations — A340, A380
(Airbus), ATV (EADS Astrium / ESA), etc.

Absint, worst case execution time (WCET) with cache and
pipelines
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