Interactive Theorem Proving with PVS

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 16, 2011
Course Outline

- An Introduction to interactive theorem proving (ITP) using PVS
 1. An Introduction to PVS
 2. Advanced interactive proof techniques
 3. Examples and Applications
- PVS combines an expressive language (like Coq) with interaction (like the LCF provers HOL, Coq, Isabelle) and automation (like ACL2).
- Sam Owre contributed significantly to the preparation of these slides.
The next series of slides covers

1. Logic Background
2. Basic information about PVS

These slides are not part of the main lectures
What is Logic?

- Logic is the art and science of effective reasoning.
- How can we draw general and reliable conclusions from a collection of facts?
- Formal logic: Precise, syntactic characterizations of well-formed expressions and valid deductions.
- Formal logic makes it possible to calculate consequences so that each step is verifiable by means of proof.
- Computers can be used to automate such symbolic calculations.
Logic Basics

- Logic studies the *trinity* between *language*, *interpretation*, and *proof*.
- *Language* circumscribes the syntax that is used to construct sensible assertions.
- *Interpretation* ascribes an intended sense to these assertions by *fixing* the meaning of certain symbols, e.g., the logical connectives, equality, and *delimiting the variation* in the meanings of other symbols, e.g., variables, functions, and predicates.
- An assertion is *valid* if it holds in all interpretations.
- Checking validity through interpretations is not always possible, so *proofs* in the form axioms and inference rules are used to demonstrate the validity of assertions.
Signature $\Sigma[X]$ contains functions and predicate symbols with associated arities, and X is a set of variables.

The signature can be used to construct

- **Terms** $\tau ::= x \mid f(\tau_1, \ldots, \tau_n)$
- **Atoms** $\alpha ::= p(\tau_1, \ldots, \tau_n)$
- **Literals** $\lambda ::= \alpha \mid \neg \alpha$
- **Constraints** $\lambda_1 \land \ldots \land \lambda_n$
- **Clauses** $\lambda_1 \lor \ldots \lor \lambda_n$
- **Formulas** $\psi ::= p(\tau_1, \ldots, \tau_n) \mid \tau_0 = \tau_1 \mid \neg \psi_0 \mid \psi_0 \lor \psi_1 \mid \psi_0 \land \psi_1 \mid (\exists x : \psi_0) \mid (\forall x : \psi_0)$
Structure

A Σ-structure M consists of

- A *domain* $|M|$

- A map $M(f)$ from $|M|^n \rightarrow M$ for each n-ary function $f \in \Sigma$

- A map $M(p)$ from $|M|^n \rightarrow \{\top, \bot\}$ for each n-ary predicate p.

$\Sigma[X]$-structure M also maps variables in X to domain elements in $|M|$.

E.g., If $\Sigma = \{0, +, <\}$, then M such that $|M| = \{a, b, c\}$ and $M(0) = a$,

$M(+) = \{\langle a, a, a\rangle, \langle a, b, b\rangle, \langle a, c, c\rangle, \langle b, a, b\rangle, \langle c, a, c\rangle, \langle b, b, c\rangle, \langle b, c, a\rangle, \langle c, b, a\rangle, \langle c, c, c\rangle\}$, and $M(<) = \{\langle a, b\rangle, \langle b, c\rangle\}$ is a Σ-structure
Interpreting Terms

\[
M[x] = M(x) \\
M[f(s_1, \ldots, s_n)] = M(f)(M[s_1], \ldots, M[s_n])
\]

Example: From previous example, if \(M(x) = a\), \(M(y) = b\), and \(M(z) = c\), then \(M[+((x, y), z)] = M(+)(M(+)(M(x), M(y)), M(z)) = M(+)(b, c) = a\).
Interpreting Formulas

The interpretation of a formula A in M, $M[A]$, is defined as

\[
M \models s = t \iff M[s] = M[t]
\]

\[
M \models p(s_1, \ldots, s_n) \iff M(p)(\langle M[s_1], \ldots, M[s_n] \rangle) = \top
\]

\[
M \models \neg \psi \iff M \not\models \psi
\]

\[
M \models \psi_0 \lor \psi_1 \iff M \models \psi_0 \text{ or } M \models \psi_1
\]

\[
M \models \psi_0 \land \psi_1 \iff M \models \psi_0 \text{ and } M \models \psi_1
\]

\[
M \models (\forall x : \psi) \iff M\{x \mapsto a\} \models \psi, \text{ for all } a \in |M|
\]

\[
M \models (\exists x : \psi) \iff M\{x \mapsto a\} \models \psi, \text{ for some } a \in |M|
\]
Interpretation Example

- \(M \models (\forall y : (\exists z : + (y, z) = x)) \).
- \(M \not\models (\forall x : (\exists y : x < y)) \).
- \(M \models (\forall x : (\exists y : +(x, y) = x)) \).
A \Sigma[X]-formula \(A \) is **satisfiable** if there is a \(\Sigma[X] \)-interpretation \(M \) such that \(M \models A \).

Otherwise, the formula \(A \) is **unsatisfiable**.

If a formula \(A \) is satisfiable, so is its existential closure \(\exists \overline{x} : A \), where \(\overline{x} \) is \(\text{vars}(A) \), the set of free variables in \(A \).

If a formula \(A \) is unsatisfiable, then the negation of its existential closure \(\neg \exists \overline{x} : A \) is **valid**, e.g., \(\neg(\forall x : (\exists y : x < y)) \).

If \(A \land \neg B \) is unsatisfiable, \(A \implies B \) is valid.
Propositional Logic

- Formulas: \(\phi := P \mid \neg\phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2. \)
- \(P \) is a class of propositional variables (0-ary predicates): \(p_0, p_1, \ldots \).
- A model \(M \) assigns truth values \(\{\top, \bot\} \) to propositional variables: \(M(p) = \top \iff M \models p. \)
- \(M[\phi] \) is the meaning of \(\phi \) in \(M \) and is computed using truth tables:

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(A)</th>
<th>(B)</th>
<th>(\neg A)</th>
<th>(A \lor B)</th>
<th>(A \land B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1(\phi))</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\top)</td>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(M_2(\phi))</td>
<td>(\bot)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(M_3(\phi))</td>
<td>(\top)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\top)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(M_4(\phi))</td>
<td>(\top)</td>
<td>(\top)</td>
<td>(\bot)</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
</tbody>
</table>
A *sequent* has the form $\Gamma \vdash \Delta$.

- Γ is the *set* of *antecedent* formulas.
- Δ is the *set* of *consequent* formulas.

A sequent $\Gamma \vdash \Delta$ captures the judgement: $\land \Gamma \implies \lor \Delta$ is provable.
A Propositional Proof System (PL)

<table>
<thead>
<tr>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ax</td>
<td>[\Gamma, A \vdash A, \Delta]</td>
</tr>
<tr>
<td>¬</td>
<td>[\Gamma, A \vdash A, \Delta] [\Gamma \vdash \neg A, \Delta]</td>
</tr>
<tr>
<td>∨</td>
<td>[\Gamma, A \vdash \Delta] [\Gamma, B \vdash \Delta] [\Gamma, A \lor B \vdash \Delta]</td>
</tr>
<tr>
<td>∧</td>
<td>[\Gamma, A, B \vdash \Delta] [\Gamma, A \land B \vdash \Delta]</td>
</tr>
<tr>
<td>⇒</td>
<td>[\Gamma, B \vdash \Delta] [\Gamma \vdash A, \Delta] [\Gamma, A \Rightarrow B \vdash \Delta]</td>
</tr>
<tr>
<td>Cut</td>
<td>[\Gamma \vdash A, \Delta] [\Gamma, A \vdash \Delta]</td>
</tr>
</tbody>
</table>
Example Proofs

\[
\begin{align*}
\frac{A \vdash B, A}{\vdash A \Rightarrow (B \lor A)} & \quad \frac{A, B \vdash B}{A \vdash A \Rightarrow B} & \quad \frac{A \vdash A, B}{A \Rightarrow \vdash B} \\
\frac{A \vdash B \lor A}{\vdash A \Rightarrow (B \lor A)} & \quad \frac{A \Rightarrow (A \Rightarrow B) \vdash B}{(A \land (A \Rightarrow B)) \Rightarrow B} & \quad \frac{A \Rightarrow \vdash B}{B}
\end{align*}
\]
Using Cut

\[
\begin{align*}
\frac{A \vdash A}{A, A \Rightarrow B} & \Rightarrow \vdash A, A \Rightarrow B & \Rightarrow \vdash \frac{A, B \vdash B}{A, B \vdash B \land A} & \Rightarrow \vdash \frac{A \vdash A}{A = B \Rightarrow B \land A} \\
& \Rightarrow \vdash (A \Rightarrow B) \Rightarrow A & \Rightarrow \vdash \frac{B \Rightarrow B \land A}{B \Rightarrow B \land A} \\
& \Rightarrow \vdash (A \Rightarrow B \land A) \Rightarrow (B \Rightarrow B \land A)
\end{align*}
\]
Equational Logic

Equational logic deals with terms τ such that

$$
\tau \ := \ f(\tau_1, \ldots, \tau_n), \ \text{for} \ n \geq 0
$$

$$
\phi \ := \ P \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \supset \phi_2 \mid \tau_1 = \tau_2
$$

Recall that the meaning $M[a]$ is an element of a domain $|M|$, and $M(f)$ is a map from $|M|^n$ to $|M|$, where n is the arity of f.

$$
M[a = b] \ = \ M[a] = M[b]
$$

$$
M[f(a_1, \ldots, a_n)] \ = \ (M[f])(M[a_1], \ldots, M[a_n])
$$
Proof Rules for Equational Logic (LK_0)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Rule Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexivity</td>
<td>$\Gamma \vdash a = a, \Delta$</td>
</tr>
</tbody>
</table>
| Symmetry | $\Gamma \vdash a = b, \Delta$ $
\Gamma \vdash b = a, \Delta$
| Transitivity | $\Gamma \vdash a = b, \Delta$ $\Gamma \vdash b = c, \Delta$
| | $\Gamma \vdash a = c, \Delta$ |
| Congruence | $\Gamma \vdash a_1 = b_1, \Delta \ldots \Gamma \vdash a_n = b_n, \Delta$
| | $\Gamma \vdash f(a_1, \ldots, a_n) = f(b_1, \ldots, b_n), \Delta$ |

Note: Instantiation is omitted from the above since there are no quantifiers.
Let $f^n(a)$ represent $f(\ldots f(a)\ldots)$.

\[
\begin{align*}
&f^3(a) = f(a) \\&f^3(a) = f(a) \\&f^3(a) = f(a)
\end{align*}
\]

\[
\begin{align*}
&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a)
\end{align*}
\]

\[
\begin{align*}
&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a)
\end{align*}
\]

\[
\begin{align*}
&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a)
\end{align*}
\]

\[
\begin{align*}
&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a) \vdash f^3(a) = f(a) \\&f^3(a) = f(a)
\end{align*}
\]
Conditional Expressions

\[\tau := f(\tau_1, \ldots, \tau_n), \text{ for } n \geq 0 \]
\[\quad | \quad \text{IF}(\phi, \tau_1, \tau_2) \]

\[M[\text{IF}(A, b, c)] = \begin{cases}
M[b] & \text{if } M[A] = \top \\
M[c] & \text{if } M[A] = \bot
\end{cases} \]
Proof Rules for Conditionals

| \(\vdash\) IF | \(\Gamma, A \vdash M = L, \Delta\) \(\Gamma \vdash A, N = L, \Delta\) \(\Gamma \vdash \text{IF}(A, M, N) = L, \Delta\) |
|---|---|---|
| IF \(\vdash\) | \(\Gamma, A, M = L \vdash \Delta\) \(\Gamma, N = L \vdash A, \Delta\) \(\Gamma, \text{IF}(A, M, N) = L \vdash \Delta\) |
Terms contain variables, and formulas contain atomic and quantified formulas.
Proof Rules for Quantifiers

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>\forall</td>
<td>$\Gamma, A[t/x] \vdash \Delta$</td>
<td>$\Gamma \vdash A[c/x], \Delta$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma, \forall x : A \vdash \Delta$</td>
<td>$\Gamma \vdash \forall x : A, \Delta$</td>
</tr>
<tr>
<td>\exists</td>
<td>$\Gamma, A[c/x] \vdash \Delta$</td>
<td>$\Gamma \vdash A[t/x], \Delta$</td>
</tr>
<tr>
<td></td>
<td>$\Gamma, \exists x : A \vdash \Delta$</td>
<td>$\Gamma \vdash \exists x : A, \Delta$</td>
</tr>
</tbody>
</table>

Constant c must be chosen to be new so that it does not appear in the conclusion sequent.
A Small Puzzle

- Given four cards laid out on a table as: D, 3, F, 7, where each card has a letter on one side and a number on the other.
- Which cards should you flip over to determine if every card with a D on one side has a 7 on the other side?
Exercises

1. Formalize the statement that a total binary relation over 3 elements must contain cycles.

2. Formalize the 4-pigeonhole principle asserting that if there are 5 pigeons that each have one of 4 holes, then some hole has two pigeons.

3. Formalize the statement that a transitive graph over 3 elements contains an isolated point.

4. Formalize and prove the statement that given a symmetric and transitive graph over 3 elements, either the graph is complete or contains an isolated point.

5. Formalize *Sudoku* in propositional logic.
More Exercises

1. Show that every n-ary function from $\{\top, \bot\}^n$ to $\{\top, \bot\}$ is expressible using \neg and \lor.

2. State and prove as many laws as you can find about negation, disjunction, conjunction, and implication.

3. State and verify algorithms to
 1. Convert a boolean formula into the equivalent conjunctive normal form.
 2. Test a boolean formula for satisfiability and return a satisfying truth assignment when possible.
Exercises

1. Formalize the statement that a total binary relation over 3 elements must contain cycles.

2. Formalize the 4-pigeonhole principle asserting that if there are 5 pigeons that are each assigned to one of 4 holes, then some hole has two pigeons.

3. Formalize the statement that a transitive graph over 3 elements contains an isolated point.

4. Formalize and prove the statement that given a symmetric and transitive graph over 3 elements, either the graph is complete or contains an isolated point.

5. Formalize *Sudoku* in propositional logic.
More Exercises

1. Show that every \(n \)-ary function from \(\{\top, \bot\}^n \) to \(\{\top, \bot\} \) is expressible using \(\neg \) and \(\vee \).

2. State and prove as many laws as you can find about negation, disjunction, conjunction, and implication.

3. Show that any \(n \)-ary Boolean function can be represented by formulas using \(\neg \) and \(\vee \).

4. State and verify an algorithm to test a boolean formula for satisfiability and return a satisfying truth assignment when possible.
Exercises

1. Prove $(\forall x : p(x)) \supset (\exists x : p(x))$.
2. Define equivalence. Prove the associativity of equivalence.
3. Prove $\neg(\forall x : p(x)) \iff (\exists x : \neg p(x))$.
4. Prove
 $$(\exists x : \forall y : p(x) \iff p(y)) \iff (\exists x : p(x)) \iff (\forall y : p(y))$$.
5. Give at least two satisfying interpretations for the statement
 $(\exists x : p(x)) \supset (\forall x : p(x))$.
6. Write a formula asserting the unique existence of an x such that $p(x)$.
7. Show that any quantified formula is equivalent to one in *prenex normal form*, i.e., where the only quantifiers appear at the head of the formula.
Two formulas A and B are equivalent, $A \iff B$, if their truth values agree in each interpretation.

Prove that the following are equivalent (TFAE):

1. $\neg\neg A \iff A$
2. $A \implies B \iff \neg A \lor B$
3. $\neg(A \land B) \iff \neg A \lor \neg B$
4. $\neg(A \lor B) \iff \neg A \land \neg B$
5. $\neg A \implies B \iff \neg B \implies A$
A formula where negation is applied only to propositional atoms is said to be in negation normal form (NNF).

A literal is either a propositional atom or its negation.

A formula that is a multiary conjunction of multiary disjunctions of literals is in conjunctive normal form (CNF).

A formula that is a multiary disjunction of multiary conjunctions of literals is in disjunctive normal form (DNF).

Show that every propositional formula is equivalent to one in NNF, CNF, and DNF.
A proof system is *sound* if all provable formulas are valid, i.e., \(\vdash A \) implies \(\models A \).

Demonstrate the soundness of \(LK_0 \).

A proof system is *complete* if all valid formulas are provable, i.e., \(\models A \) implies \(\vdash A \). In other words, any unprovable formula must be satisfiable.

Demonstrate the completeness of \(LK_0 \).

A set of formulas \(\Gamma \) is *consistent* iff there is no formula \(A \) in \(\Gamma \) such that \(\Gamma \vdash \neg A \).

A logic is *compact* if any set of sentences \(\Gamma \) is satisfiable if all finite subsets of it are.

Demonstrate the compactness of \(PL \).
A Brief Overview of PVS

- The next series of slides cover some basic background on PVS.
- More information and documentation can be obtained from http://pvs.csl.sri.com.
- There are several other popular interactive theorem provers, including
 - ACL2: http://www.cs.utexas.edu/~moore/acl2
 - HOL: http://hol.sourceforge.net/
 - Isabelle: http://www.cl.cam.ac.uk/research/hvg/Isabelle/
- Related to PVS are ideas on Dependently Typed Programming with languages like Agda, ATS, Cayenne, and Epigram.
Introduction

- PVS - Prototype Verification System
- PVS is a verification system combining language expressiveness with automated tools.
- It features an interactive theorem prover with powerful commands and user-definable strategies
- PVS has been available since 1993
- It has a large user base
- It is open source
Decidability & Interaction

- PVS uses **dependent predicate subtypes**
- Specifications can be expressed in **type predicates**
- Type correctness is **undecidable**
- Typechecker verifies simple type correctness and generates **proof obligations** (e.g., subtyping, termination)
- The PVS proof checker uses a number of **decision procedures**
- **Interaction** drives goals to decidable subgoals
PVS System Size

- Number of lines of code:
 - **Lisp**: 364 KLOC *(about 100+ KLOC automatically generated)*
 - **C**: about 47 KLOC lines
 - **Emacs**: 26 KLOC lines

- Image size: **Allegro** 46M; **CMU Lisp** 118M; **SBCL** 102M

- NASA Libraries: 87 KLOC
The PVS language is based on higher-order logic (type theory).
Many other systems use higher-order logic including Coq, HOL, Isabelle/HOL, Nuprl.
PVS uses classical (non-constructive) logic.
It has a set-theoretic semantics.
PVS Types

PVS has a rich type system

- **Basic types**: number, boolean, etc. New basic types may be introduced
- **Enumeration types**: \{red, green, blue\}
- **Function, record, tuple, and cotuple types**:
 - [number -> number]
 - [# flag: boolean, value: number #]
 - [boolean, number]
 - [boolean + number]
Datatypes and Codatatypes:

- \texttt{list[T: TYPE]}: DATATYPE BEGIN
 \begin{description}
 \item[null]: null?
 \item[cons(car: T, cdr: list)]: cons?
 \end{description}
END DATATYPE

- \texttt{colist[T: TYPE]}: CODATATYPE BEGIN
 \begin{description}
 \item[cnull]: cnull?
 \item[ccons(car: T, cdr: list)]: ccons?
 \end{description}
END CODATATYPE
PVS has two notions of subtype:

- **Predicate subtypes:**
 - \(\{x: \text{real} \mid x \neq 0\} \)
 - \(\{f: \text{[real -> real]} \mid \text{injective?}(f)\} \)

 The type \(\{x: T \mid P(x)\} \) may be abbreviated as \((P)\).

- **Structural subtypes:**

 \[# x, y: \text{real}, c: \text{color} #\] \(<:\ [# x, y: \text{real} #]\)

 - Class hierarchy may be captured with this
 - Update is structural subtype polymorphic: \(r \text{ WITH } ['x := 0] \)
Function, tuple, record, and (co)datatypes may be dependent:

- \([n: \text{nat} \rightarrow \{m: \text{nat} \mid m \leq n\}]\)
- \([n: \text{nat}, \{m: \text{nat} \mid m \leq n\}]\)
- \([\# n: \text{nat}, m: \{k: \text{nat} \mid k \leq n\}]\)
- \(\text{dt: DATATYPE BEGIN}
 \quad b: b?\)
 \quad c(n: \text{nat}, m: \{k: \text{nat} \mid k \leq n\}): c?
\text{END DATATYPE}\)
PVS Expressions

- Logic: TRUE, FALSE, AND, OR, NOT, IMPLIES, FORALL, EXISTS, =
- Arithmetic: +, −, *, /, <, <=, >, >=, 0, 1, 2, ...
- Function application, abstraction, and update
- Binder macro - the! (x: nat) p(x)
- Coercions
- Record construction, selection, and update
- Tuple construction, projection, and update
- IF-THEN-ELSE, COND
- CASES: Pattern matching on (co)datatypes
- Tables
Declarations

- Types - \(P: \text{TYPE} = \text{(prime?)} \)
- Constants, definitions, macros
- Recursive definitions
- Inductive and coinductive definitions
- Formulas and axioms
- Assumptions on formal parameters
- Judgements, including recursive judgements
- Conversions
- Auto-rewrites
Declarations are packaged into theories
Theories may be parameterized with types, constants, and other theories
Theories and theory instances may be imported
Theory interpretations may be given, using mappings to interpret uninterpreted types, constants, and theories
Theories may have assumptions on the parameters
Theories may state what is visible, through exportings
Names may be heavily overloaded

All names have an identifier; in addition, they may have:
- a theory identifier
- actual parameters
- a library identifier
- a mapping giving a theory interpretation

For example, a reference to “a” may internally be equivalent to the form

```
lib@th[int, 0]{{T := real, c := 1}}.a
```
The PVS prover is interactive, but with powerful automation.
It supports exploration, design, implementation, and maintenance of proofs.
The prover was designed to preserve correspondence with an informal argument.
Support for user defined strategies and rules.
Based on sequent calculus.
The Ground Evaluator

- Much of PVS is executable
- The ground evaluator generates efficient Lisp and Clean code
- Performs analysis to generate safe destructive updates
- The random test facility makes use of this to generate random values for expressions
PVSio and ProofLite

- PVSio and Prooflite are provided by César Muñoz of the National Institute of Aerospace.
- PVSio extends the ground prover and ground evaluator:
 - An alternative, simplified Emacs interface
 - A facility for easily creating new semantic attachments
 - A standalone interface that does not need Emacs
 - New proof rules to safely use the ground evaluator in a proof
- ProofLite is a PVS Package providing:
 - A command line utility
 - A proof scripting notation
 - Emacs commands for managing proof scripts
Other Features

- New proof rules and strategies may be defined
- There is an API for adding new decision procedures
- Tcl/Tk displays for proofs and theory hierarchies
- \LaTeX, HTML, and XML generation
- Yices interface
- WS1S
The Prelude

The PVS prelude provides a lot of theories - over 1000 lemmas. These are available directly within PVS. It includes theories for:

- booleans
- numbers (real, rational, integer)
- strings
- sets, including definitions and basic properties of finite and infinite sets
- functions and relations
- equivalences
- ordinals
- basic definitions and properties of bitvectors
- mu calculus, LTL
PVS may be extended by means of *Libraries*

- Using an IMPORTING that references the library
- Extending the prelude (*M-x load-prelude-library*)

Libraries that extend the theories of finite sets and bitvectors are included in the PVS distribution

Packages extend the notion of library to include *strategies*, *Lisp*, and *Emacs* code
About NASA Libraries

- NASA has a large and growing set of libraries at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
- Two important packages provided by Ben Divito and César Muñoz are Manip and Field:
 - Manip provides for algebraic manipulation of formulas
 - Field remove divisions from a formula

Most of the NASA libraries depend on these, but they are quite general

- NASA Library Contributors: Rick Butler, Ben Di Vito, Bruno Dutertre, Paul Miner, Alfons Geser, David Griffioen, Jerry James, David Lester, Jeff Maddalon, César Muñoz, Kristin Y. Rozier, Jon Sjogren, Christian van der Stap, Allwyn Goodloe
<table>
<thead>
<tr>
<th>NASA Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
</tr>
<tr>
<td>groups, monoids, rings, etc</td>
</tr>
<tr>
<td>analysis</td>
</tr>
<tr>
<td>real analysis, limits, continuity, derivatives, integrals</td>
</tr>
<tr>
<td>calculus</td>
</tr>
<tr>
<td>axiomatic version of calculus</td>
</tr>
<tr>
<td>complex</td>
</tr>
<tr>
<td>complex numbers</td>
</tr>
<tr>
<td>co_structures</td>
</tr>
<tr>
<td>sequences of countable length defined as coalgebra datatypes</td>
</tr>
<tr>
<td>digraphs</td>
</tr>
<tr>
<td>directed graphs: circuits, maximal subtrees, paths, dags</td>
</tr>
<tr>
<td>float</td>
</tr>
<tr>
<td>floating point numbers and arithmetic</td>
</tr>
<tr>
<td>graphs</td>
</tr>
<tr>
<td>graph theory: connectedness, walks, trees, Menger’s Theorem</td>
</tr>
<tr>
<td>ints</td>
</tr>
<tr>
<td>integer division, gcd, mod, prime factorization, min, max</td>
</tr>
<tr>
<td>interval</td>
</tr>
<tr>
<td>interval bounds and numerical approximations</td>
</tr>
<tr>
<td>lnexp</td>
</tr>
<tr>
<td>logarithm, exponential and hyperbolic functions</td>
</tr>
<tr>
<td>lnexp_fnd</td>
</tr>
<tr>
<td>foundational definitions of logarithm, exponential and hyperbolic functions</td>
</tr>
</tbody>
</table>
NASA Libraries (cont)

<table>
<thead>
<tr>
<th>Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>orders</td>
<td>abstract orders, lattices, fixedpoints</td>
</tr>
<tr>
<td>reals</td>
<td>summations, sup, inf, sqrt over the reals, abs lemmas</td>
</tr>
<tr>
<td>scott</td>
<td>Theories for reasoning about compiler correctness</td>
</tr>
<tr>
<td>series</td>
<td>power series, comparison test, ratio test, Taylor’s theorem</td>
</tr>
<tr>
<td>sets_aux</td>
<td>powersets, orders, cardinality over infinite sets</td>
</tr>
<tr>
<td>sigma_set</td>
<td>summations over countably infinite sets</td>
</tr>
<tr>
<td>structures</td>
<td>bounded arrays, finite sequences and bags</td>
</tr>
<tr>
<td>topology</td>
<td>continuity, homeomorphisms, connected and compact spaces, Borel sets/functions</td>
</tr>
<tr>
<td>trig</td>
<td>trigonometry: definitions, identities, approximations</td>
</tr>
<tr>
<td>trig_fnd</td>
<td>foundational development of trigonometry: proofs of trig axioms</td>
</tr>
<tr>
<td>vectors</td>
<td>basic properties of vectors</td>
</tr>
<tr>
<td>while</td>
<td>Semantics for the Programming Language "while"</td>
</tr>
</tbody>
</table>
Some Applications

- Verification of the AAMP5 microprocessor - *Mandayam K. Srivas, Steven P. Miller*

- TAME (Timed Automata Modeling Environment) uses PVS as back end. It is used for requirements and security, have a Common Criteria EAL7 certified embedded system - *C.L. Heitmeyer, M.M. Archer, E.I. Leonard, J.D. McLean*

- LOOP is used to verify Java code, applied to JavaCard - *J. van den Berg, B. Jacobs, E. Poll*

- Mifare card security broken - *Bart Jacobs*

- Many NASA/NIA applications - clock synchronization, fault-tolerance, floating point, collision avoidance - *C. Muñoz, R. Butler, B. Di Vito, P. Miner*

- InVeSt: A Tool for the Verification of Invariants - *S. Bensalem, Y. Lakhnech, S. Owre*

- Maple interface - *Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, Sam Owre, Clare So*
More Applications

- A Semantic Embedding of the Ag Dynamic Logic - **Carlos Pombo**
- Early validation of requirements - **Steve Miller**
- Programming language meta theory - **David Naumann**
- Cache coherence protocols - **Paul Loewenstein**
- Systematic Verification of Pipelined Microprocessors - **Ravi Hosabettu**
- Vamp processor - **Christoph Berg, Christian Jacobi, Wolfgang Paul, Daniel Kroening, Mark Hillebrand, Sven Beyer, Dirk Leinenbach**
- Flash protocol - **Seungjoon Park**
- Trust management kernel - **Drew Dean, Ajay Chander, John Mitchell**
- Self stabilization - **N. Shankar, Shaz Qadeer, Sandeep Kulkarni, John Rushby**
- Sequential Reactive Systems, Garbage Collection verifications - **Paul Jackson**
Still More Applications

- Software reuse, Java verification, CMULisp port of PVS - Joe Kiniry
- Reactive systems, literate PVS - Pertti Kellomaki
- Garbage collection - Klaus Havelund, N. Shankar
- Nova microhypervisor, Coalgebras, Numerous PVS bug reports - Hendrik Tews
- Why: software verification platform has PVS as a back-end prover - Jean-Christophe Filliâtre
- Adaptive cache coherence protocol - Joe Stoy, et al
- PBS: Support for the B-Method in PVS - César Muñoz
- SPOTS: A System for Proving Optimizing Transformations Sound - Aditya Kanade
- Time Warp-based parallel simulation - Perry Alexander
- Linking QEPCAD with PVS - Ashish Tiwari
- Distributed Embedded Real-Time Systems, Reactive Objects - Jozef Hooman
- TLPVS: A PVS-Based LTL Verification System - Amir Pnueli, Tamarah Arons
Courses using PVS

- An introduction to theorem proving using PVS - *Erik Poll, Radboud University Nijmegen*
- Logic For Software Engineering - *Mark Lawford, McMaster*
- NASA LaRC PVS Class - *NASA, NIA*
- Theorem Proving and Model Checking in PVS - *Ed Clarke & Daniel Kroening, CMU*
- Formal Methods in Concurrent and Distributed Systems - *Dino Mandrioli, Politecnico di Milano*
- Formal Methods in Software Development - *Wolfgang Schreiner, Johannes Kepler University*
- Applied Computer-Aided Verification - *Kathi Fisler, Rice University*
- Dependable Systems Case Study - *Scott Hazelhurst, University of the Witwatersrand, Johannesburg*
- Introduction to Verification - *Steven D. Johnson, Indiana University*
- Automatic Verification - *Marsha Chechik, University of Toronto*
- Modeling Software Systems - *Egon Boerger, University of Pisa*
- Advanced Software Engineering - *Perry Alexander, University of Cincinnati*
The Future of PVS

- Declarative Proofs
- A verified reference kernel
- Generation of C code
- Improved Yices interface
- Incorporation into tool bus
- Reflexive PVS
- Polymorphism beyond theory parameters
- Functors as an extension of (co)datatypes, i.e., mu and nu operators
- XML Proof Objects - a step toward integrating with other systems
Conclusion

- PVS (version 5.0) is available at http://pvs.csl.sri.com
- There is a Wiki page users can contribute
- Mailing lists
- PVS is open source, available as tar files or subversion
The main lecture starts here
The first lecture covers the basics of interacting with PVS
Topics covered are
 - Propositional reasoning
 - Equality reasoning
 - Conditionals
 - Quantifiers

The primary goal of the course is to teach the effective use of logic in specification and proof construction through PVS.
A PVS theory is a list of declarations.

- Declarations introduce names for *types*, *constants*, *variables*, or *formulas*.

- Propositional connectives are declared in theory `booleans`.

- Type `bool` contains constants `TRUE` and `FALSE`.

- Type `[bool -> bool]` is a function type where the domain and range types are `bool`.

- The PVS syntax allows certain prespecified infix operators.
More PVS Background

- PVS is used from within Emacs.
- The PVS Emacs command `M-x pvs-help` lists all the PVS Emacs commands.
Propositional Logic in PVS

booleans: THEORY
BEGIN

boolean: NONEMPTY_TYPE
bool: NONEMPTY_TYPE = boolean
FALSE, TRUE: bool
NOT: [bool -> bool]
AND, &, OR, IMPLIES, =>, WHEN, IFF, <=>
 : [bool, bool -> bool]

END booleans

AND and & are synonymous and infix.
IMPLIES and => are synonymous and infix.
A WHEN B is just B IMPLIES A.
IFF and <=> are synonymous and infix.
A, B, C, D are arbitrary Boolean constants.
ex1, ex2, and ex3 are LEMMA declarations.
Propositional Proofs in PVS.

```
ex1 :

|-------
{1}    A IMPLIES (B OR A)

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
Q.E.D.
```

PVS proof commands are applied at the Rule? prompt, and generate zero or more premises from conclusion sequents. Command (flatten) applies the disjunctive rules: ⊤ ∨, ⊤ ¬, ⊤ ⊃, ∧ ⊤, ¬ ⊤.
Propositional Proofs in PVS

ex2 :

|--------
{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (flatten)
Applying disjunctive simplification to flatten sequent, this simplifies to:
ex2 :

{-1} A
{-2} (A IMPLIES B)

|--------
{1} B

Rule? (split)
Splitting conjunctions, this yields 2 subgoals:
Propositional Proof (continued)

ex2.1 :

\{-1\} \quad B
[-2] \quad A
\quad |------
[1] \quad B

which is trivially true.

This completes the proof of ex2.1.

PVS sequents consist of a list of (negative) antecedents and a list of (positive) consequents.
\{-1\} indicates that this sequent formula is new.
(split) applies the conjunctive rules \(\vdash \land, \lor \vdash \), \(\vdash \lor \land \).
Propositional Proof (continued)

ex2.2 :

[-1] A
 |------
{1} A
[2] B

which is trivially true.

This completes the proof of ex2.2.

Q.E.D.

Propositional axioms are automatically discharged. flatten and split can also be applied to selected sequent formulas by giving suitable arguments.
The PVS Strategy Language

A simple language is used for defining proof strategies:

- try for backtracking
- if for conditional strategies
- let for invoking Lisp
- Recursion

prop$ is the non-atomic (expansive) version of prop.

```
(defstep prop ()
  (try (flatten) (prop$) (try (split)(prop$) (skip)))
  "A black-box rule for propositional simplification."
  "Applying propositional simplification")
```
Propositional Proofs Using Strategies

ex2 :

|-------
{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (prop)

Applying propositional simplification,
Q.E.D.

(prop) is an atomic application of a compound proof step. (prop) can generate subgoals when applied to a sequent that is not propositionally valid.
Using BDDs for Propositional Simplification

- Built-in proof command for propositional simplification with reduced ordered binary decision diagrams (ROBDDs).

\[
\text{ex2 :} \\
\quad |------ \\
\quad \{1\} \quad (A \land (A \implies B)) \implies B \\
\quad \text{Rule? (bddsimp)} \\
\quad \text{Applying bddsimp,} \\
\quad \text{this simplifies to:} \\
\quad \text{Q.E.D.}
\]

- ROBDDs are decision graphs where the decision variables are uniformly ordered along any path, and redundant decision variables have been eliminated.
Cut in PVS

ex3 :

|---------
{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))

Rule? (flatten)

Applying disjunctive simplification to flatten sequent, this simplifies to:

ex3 :

{-1} ((A IMPLIES B) IMPLIES A)
{-2} B
 |---------
{1} (B AND A)
Rule? (case "A")
Case splitting on A,
this yields 2 subgoals:
ex3.1 :

{-1} A
[-2] ((A IMPLIES B) IMPLIES A)
[-3] B
 |------
[1] (B AND A)

Rule? (prop)
Applying propositional simplification,

This completes the proof of ex3.1.
ex3.2 :

[-1] ((A IMPLIES B) IMPLIES A)
[-2] B
 |------
{1} A
[2] (B AND A)

Rule? (prop)
Applying propositional simplification,

This completes the proof of ex3.2.

Q.E.D.

(case "A") corresponds to the Cut rule.
Propositional Simplification

ex4 :

|--------
{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? `prop`

Applying propositional simplification, this yields 2 subgoals:

ex4.1 :

{-1} A

|--------
{1} B

`prop` generates subgoal sequents when applied to a sequent that is not propositionally valid.
Propositional Simplification with BDDs

ex4 :

|------
\{1\} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? \textbf{(bddsimp)}

Applying \texttt{bddsimp},
this simplifies to:

ex4 :

\{-1\} A
|------
\{1\} B

Notice that \texttt{bddsimp} is more efficient.
Predicates are functions with range type boolean. Theories can be parametric with respect to types and constants. Equality is a parametric predicate.
Proving Equality in PVS

```pvs
eq : THEORY
BEGIN
  T : TYPE
  a : T
  f : [T -> T]

  ex1: LEMMA f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

END eq
```

ex1 is the same example in PVS.
ex1 :

|------
{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)
Applying disjunctive simplification to flatten sequent, this simplifies to:

ex1 :

{-1} f(f(f(a))) = f(a)
 |------
{1} f(f(f(f(a))))) = f(a)
Proving Equality in PVS

\begin{tabular}{|l|}
\hline
\textbf{Rule?} \hspace{1em} \textbf{(replace -1)} \\
Replacing using formula -1, \\
this simplifies to: \\
\hspace{1em} \textbf{ex1} : \\
\hspace{2em} [-1] \hspace{1em} f(f(f(a))) = f(a) \\
\hspace{3em} |------- \\
\hspace{3em} \{1\} \hspace{1em} f(f(f(a))) = f(a) \\
\text{which is trivially true.} \\
\textbf{Q.E.D.} \\
\hline
\end{tabular}

\textbf{(replace -1)} replaces the left-hand side of the chosen equality by the right-hand side in the chosen sequent. The range and direction of the replacement can be controlled through arguments to \texttt{replace}.
Proving Equality in PVS

ex1 :

|------
{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
ex1 :

{-1} f(f(a))) = f(a)
 |------
 {1} f(f(f(f(a)))) = f(a)

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
A Strategy for Equality

(defstep ground ()
 (try (flatten)(ground$))(try (split)(ground$)(assert)))
"Does propositional simplification followed by the use of
decision procedures."
"Applying propositional simplification and decision procedures")

ex1 :

|-------
{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (ground)
Applying propositional simplification and decision procedures,
Q.E.D.
Exercises

1. Prove: If Bob is Joe’s father’s father, Andrew is Jim’s father’s father, and Joe is Jim’s father, then prove that Bob is Andrew’s father.

2. Prove \(f(f(f(x)))) = x, \ x = f(f(x)) \vdash f(x) = x. \)

3. Prove \(f(g(f(x))) = x, \ x = f(x) \vdash f(g(f(g(f(g(x))))))) = x. \)

4. Show that the proof system for equational logic is sound, complete, and decidable.

5. What happens when everybody loves my baby, but my baby loves nobody but me?
PVS uses a mixfix syntax for conditional expressions

\[
\text{IF } A \text{ THEN } M \text{ ELSE } N \text{ ENDIF}
\]
PVS Proofs with Conditionals

conditionals : THEORY
BEGIN

 A, B, C, D: bool
 T : TYPE+
 K, L, M, N : T

 IF_true: LEMMA IF TRUE THEN M ELSE N ENDIF = M

 IF_false: LEMMA IF FALSE THEN M ELSE N ENDIF = N

END conditionals
PVS Proofs with Conditionals

IF_true :

\[\begin{array}{c}
|--------
\{1\} \quad \text{IF TRUE THEN M ELSE N ENDIF} = M
\end{array}\]

Rule? (\textit{lift-if})
Lifting IF-conditions to the top level, this simplifies to:

IF_true :

\[\begin{array}{c}
|--------
\{1\} \quad \text{TRUE}
\end{array}\]

which is trivially true.
Q.E.D.
IF_false :

|--------
{1} IF FALSE THEN M ELSE N ENDIF = N

Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_false :

|--------
{1} TRUE

which is trivially true.
Q.E.D.
PVS Proofs with Conditionals

```pvs
conditionals : THEORY
BEGIN
  :
  IF_distrib: LEMMA (IF (IF A THEN B ELSE C ENDIF)
    THEN M
    ELSE N
  ENDIF)
= (IF A
  THEN (IF B THEN M ELSE N ENDIF)
ELSIF C
  THEN M
  ELSE N
ENDIF)
END conditionals
```
PVS Proofs with Conditionals

IF_distrib :

|-------
{1} (IF (IF A THEN B ELSE C ENDIF) THEN M ELSE N ENDIF) =
 (IF A THEN (IF B THEN M ELSE N ENDIF)
 ELSIF C THEN M ELSE N ENDIF)

Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_distrib :

|-------
{1} TRUE

which is trivially true.

Q.E.D.
PVS Proofs with Conditionals

IF_test :

|------
{1} IF A THEN (IF B THEN M ELSE N ENDIF)
 ELSIF C THEN N ELSE M ENDIF =
 IF A THEN M ELSE N ENDIF

Rule? (lift-if)
Lifting IF-conditions to the top level,
this simplifies to:
IF_test :

|------
{1} IF A
 THEN IF B THEN TRUE ELSE N = M ENDIF
 ELSE IF C THEN TRUE ELSE M = N ENDIF
 ENDIF
Exercises

1. Prove
 \[\text{IF}(\text{IF}(A, B, C), M, N) = \text{IF}(A, \text{IF}(B, M, N), \text{IF}(C, M, N)). \]

2. Prove that conditional expressions with the boolean constants TRUE and FALSE are a complete set of boolean connectives.

3. A conditional expression is *normal* if all the first (test) arguments of any conditional subexpression are variables. Write a program to convert a conditional expression into an equivalent one in normal form.
Quantifiers in PVS

quantifiers : THEORY

BEGIN

T: TYPE
P: [T -> bool]
Q: [T, T -> bool]
x, y, z: VAR T

ex1: LEMMA FORALL x: EXISTS y: x = y

ex2: CONJECTURE (FORALL x: P(x)) IMPLIES (EXISTS x: P(x))

ex3: LEMMA
 (EXISTS x: (FORALL y: Q(x, y)))
 IMPLIES (FORALL y: EXISTS x: Q(x, y))

END quantifiers
Quantifier Proofs in PVS

ex1 :

|-------
{1} FORALL x: EXISTS y: x = y

Rule? (skolem * "x")
For the top quantifier in *, we introduce Skolem constants: x, this simplifies to:

ex1 :

|-------
{1} EXISTS y: x = y

Rule? (inst * "x")
Instantiating the top quantifier in * with the terms:
 x,
Q.E.D.
A Strategy for Quantifier Proofs

ex1 :

|-------
{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)
Skolemizing,
this simplifies to:
ex1 :

|-------
{1} EXISTS y: x!1 = y

Rule? (inst?)
Found substitution: y gets x!1,
Using template: y
Instantiating quantified variables,
Q.E.D.
Alternative Quantifier Proofs

ex1 :

|-------
{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)
Skolemizing, this simplifies to:

ex1 :

|-------
{1} EXISTS y: x!1 = y

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures,
Q.E.D.
Alternative Quantifier Proofs

ex3 :

```
|--------
{1}    (EXISTS x: (FORALL y: Q(x, y)))
       IMPLIES (FORALL y: EXISTS x: Q(x, y))
```

Rule? **(reduce)**

Repeatedly simplifying with decision procedures, rewriting, propositional reasoning, quantifier instantiation, skolemization, if-lifting and equality replacement,

Q.E.D.
We have seen a formal language for writing propositional, equational, and conditional expressions, and proof commands:

- Propositional: flatten, split, case, prop, bddsimp.
- Equational: replace, assert.
- Conditional: lift-if.
- Quantifier: skolem, skolem!, inst, inst?.
- Strategies: ground, reduce
Lecture 2: Proof Obligations

- The second lecture covers
 - Theories
 - Definitions, Lemmas, and Rewrite rules
 - Predicate subtypes and Type Correctness Conditions
 - Recursion and Induction
 - Higher-order logic
Formalization Using PVS: Theories

```pvs
group : THEORY
BEGIN
  T: TYPE+
  x, y, z: VAR T
  id : T
  * : [T, T -> T]

  associativity: AXIOM (x * y) * z = x * (y * z)

  identity: AXIOM x * id = x

  inverse: AXIOM EXISTS y: x * y = id

  left_identity: LEMMA EXISTS z: z * x = id

END group
```

Free variables are implicitly universally quantified.
parametric theories

```
pgroup [T: TYPE+, * : [T, T -> T], id: T ] : THEORY
  BEGIN

    ASSUMING
    x, y, z: VAR T

    associativity: ASSUMPTION (x * y) * z = x * (y * z)

    identity: ASSUMPTION x * id = x

    inverse: ASSUMPTION EXISTS y: x * y = id

  ENDASSUMING

  left_identity: LEMMA EXISTS z: z * x = id

  END pgroup
```
Using Theories

We can build a theory of commutative groups by using IMPORTING group.

```plaintext
commutative_group : THEORY

BEGIN

IMPORTING group

x, y, z: VAR T

commutativity: AXIOM x * y = y * x

END commutative_group
```

The declarations in group are visible within commutative_group, and in any theory importing commutative_group.
Using Parametric Theories

To obtain an instance of \texttt{pgroup} for the additive group over the real numbers:

\begin{verbatim}
additive_real : THEORY

 BEGIN

 IMPORTING pgroup[real, +, 0]

 END additive_real
\end{verbatim}
Proof Obligations from IMPORTING

IMPORTING pgroup[real, +, 0] when typechecked, generates proof obligations corresponding to the ASSUMINGs:

IMP_pgroup_TCC1: OBLIGATION
 FORALL (x, y, z: real): (x + y) + z = x + (y + z);

IMP_pgroup_TCC2: OBLIGATION FORALL (x: real): x + 0 = x;

IMP_pgroup_TCC3: OBLIGATION
 FORALL (x: real): EXISTS (y: real): x + y = 0;

The first two are proved automatically, but the last one needs an interactive quantifier instantiation.
Type T, constants id and * are \textit{declared}; square is \textit{defined}. Definitions are conservative, i.e., preserve consistency.
Using Definitions

- Definitions are treated like axioms.
- We examine several ways of using definitions and axioms in proving the lemma:

```
square_id: LEMMA square(id) = id
```
Proofs with Definitions

```
square_id :  
|--------
{1}  square(id) = id

Rule? (lemma "square")
Applying square
this simplifies to:
square_id :

{-1}  square = (LAMBDA (x): x * x)
      |--------
  [1]  square(id) = id
```
Proving with Definitions

square_id :

|-------
{1} square(id) = id

Rule? (lemma "square" ("x" "id"))
Applying square where
 x gets id,
this simplifies to:

square_id :

{-1} square(id) = id * id
|-------
[1] square(id) = id

The lemma step brings in the specified instance of the lemma as an antecedent formula.
Proving with Definitions

Rule? \textbf{(replace -1)}
Replacing using formula -1, this simplifies to:

\texttt{square_id :}

\[-1\] square(id) = id * id
|------
\{1\} id * id = id

Rule? \textbf{(lemma "identity")}
Applying identity this simplifies to:
square_id:

{-1} FORALL (x: T): x * id = x

[-2] square(id) = id * id

|-------

[1] id * id = id

Rule? (inst?)

Found substitution:
x: T gets id,
Using template: x * id = x

Instantiating quantified variables,
Q.E.D.
Proofs With Definitions and Lemmas

The lemma and inst? steps can be collapsed into a single use command.

```plaintext
square_id :

[-1] square(id) = id * id
|-------
{1} id * id = id

Rule? (use "identity")
Using lemma identity,
Q.E.D.
```
Proofs With Definitions

\[
square_id : \\
\begin{array}{c}
|------ \\
\{1\} \quad \text{square}(id) = id \\
\end{array}
\]

Rule? \(\text{(expand "square")}\)
Expanding the definition of \text{square}, this simplifies to:
\[
square_id : \\
\begin{array}{c}
|------ \\
\{1\} \quad \text{id} \times \text{id} = \text{id} \\
\end{array}
\]

\(\text{(expand "square")}\) expands definitions in place.
(rewrite "identity") rewrites using a lemma that is a rewrite rule.

A rewrite rule is of the form \(l = r \) or \(h \supset l = r \) where the free variables in \(r \) and \(h \) are a subset of those in \(l \). It rewrites an instance \(\sigma(l) \) of \(l \) to \(\sigma(r) \) when \(\sigma(h) \) simplifies to TRUE.
square_id :

|--------
{1} square(id) = id

Rule? **(rewrite "square")**
Found matching substitution: x gets id,
Rewriting using square, matching in *,
this simplifies to:
square_id :

|--------
{1} id * id = id

Rule? **(rewrite "identity")**
Found matching substitution: x: T gets id,
Rewriting using identity, matching in *,
Q.E.D.
Automatic Rewrite Rules

\begin{verbatim}
square_id :

|--------
{1} square(id) = id

Rule? (auto-rewrite "square" "identity")

::

Installing automatic rewrites from:
square
identity
this simplifies to:
\end{verbatim}
Using Rewrite Rules Automatically

\[
square_{id} : \n\begin{array}{c}
|------- \\
[1] \quad \text{square}(id) = id \\
\end{array}
\]

Rule? (assert)
\[
\text{identity rewrites } id * id \\
\quad \text{to } id \\
\text{square rewrites } \text{square}(id) \\
\quad \text{to } id \\
\text{Simplifying, rewriting, and recording with decision procedures,} \\
\text{Q.E.D.}
\]
Rewriting with Theories

\[
\text{square}_\text{id}:
\]
\[
\begin{array}{c}
|---\
\{1\} \quad \text{\textsc{square}(id)} = \text{id}
\end{array}
\]

\textbf{Rule?} \quad \text{(auto-rewrite-theory "group")}

Rewriting relative to the theory: group, this simplifies to:
\[
\text{square}_\text{id}:
\]
\[
\begin{array}{c}
|---\
\[1\] \quad \text{\textsc{square}(id)} = \text{id}
\end{array}
\]

\textbf{Rule?} \quad \text{(assert)}

:

Simplifying, rewriting, and recording with decision procedures, Q.E.D.
grind using Rewrite Rules

\[
\text{square}_\text{id} : \\
|--------- \\
\{1\} \quad \text{square(id)} = \text{id}
\]

Rule? \text{(grind :theories "group")}

identity rewrites \text{id} * \text{id} \\
\quad \text{to} \ \text{id}

\text{square} \text{ rewrites} \ \text{square(id)} \\
\quad \text{to} \ \text{id}

Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

grind is a complex strategy that sets up rewrite rules from
theories and definitions used in the goal sequent, and then applies
reduce to apply quantifier and simplification commands.
Numbers in PVS

- All the examples so far used the type `bool` or an uninterpreted type `T`.
- Numbers are characterized by the types:
 - `real`: The type of real numbers with operations `+`, `−`, `∗`, `/.
 - `rat`: Rational numbers closed under `+`, `−`, `∗`, `/.
 - `int`: Integers closed under `+`, `−`, `∗.`
 - `nat`: Natural numbers closed under `+`, `∗.`
A type judgement is of the form $a : T$ for term a and type T.

PVS has a subtype relation on types.

Type S is a subtype of T if all the elements of S are also elements of T.

The subtype of a type T consisting of those elements satisfying a given predicate p is given by $\{x : T \mid p(x)\}$.

For example nat is defined as $\{i : \text{int} \mid i \geq 0\}$, so nat is a subtype of int.

int is also a subtype of rat which is a subtype of real.
Type Correctness Conditions

- All functions are taken to be total, i.e., $f(a_1, \ldots, a_n)$ always represents a valid element of the range type.
- The division operation represents a challenge since it is undefined for zero denominators.
- With predicate subtyping, division can be typed to rule out zero denominators.

\[
\text{nzreal: NONEMPTY_TYPE} = \{r: \text{real} \mid r \neq 0\} \text{ CONTAINING 1} \\
\text{/: [real, nzreal} \rightarrow \text{real]}
\]

- nzreal is defined as the nonempty type of real consisting of the non-zero elements. The witness 1 is given as evidence for nonemptiness.
Type Correctness Conditions

number_props : THEORY
 BEGIN
 x, y, z: VAR real

 div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0

 END number_props

Typechecking number_props generates the proof obligation

% Subtype TCC generated (at line 6, column 44) for (x - y)
% proved - complete
div1_TCC1: OBLIGATION
 FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;

Proof obligations arising from typechecking are called Type Correctness Conditions (TCCs).
Arithmetic Rewrite Rules

- Using the refined type declarations

```plaintext
real Props: THEORY
BEGIN
 w, x, y, z: VAR real
 n0w, n0x, n0y, n0z: VAR nonzero_real
 nnw, nnx, nny, nnz: VAR nonneg_real
 pw, px, py, pz: VAR posreal
 npw, npx, npy, npz: VAR nonpos_real
 nw, nx, ny, nz: VAR negreal
...
END real Props
```

- It is possible to capture very useful arithmetic simplifications as rewrite rules.
Nonlinear simplifications can be quite difficult in the absence of such rewrite rules.
Arithmetic Typing Judgements

- The + and * operations have the type \([\text{real}, \text{real} \rightarrow \text{real}]\).
- Judgements can be used to give them more refined types — especially useful for computing sign information for nonlinear expressions.

\[
\begin{align*}
px, py & : \text{VAR posreal} \\
nnx, nny & : \text{VAR nonneg_real} \\
nnreal_plus_nnreal_is_nnreal & : \text{JUDGEMENT} \\
+&(nnx, nny) \text{ HAS_TYPE } \text{nnreal} \\
nnreal_times_nnreal_is_nnreal & : \text{JUDGEMENT} \\
\ast&(nnx, nny) \text{ HAS_TYPE } \text{nnreal} \\
posreal_times_posreal_is_posreal & : \text{JUDGEMENT} \\
\ast&(px, py) \text{ HAS_TYPE } \text{posreal}
\end{align*}
\]
The following parametric type definitions capture various subranges of integers and natural numbers.

- \texttt{upfrom}(i): NONEMPTY_TYPE = \{s: \text{int} \mid s \geq i\} CONTAINING i
- \texttt{above}(i): NONEMPTY_TYPE = \{s: \text{int} \mid s > i\} CONTAINING i + 1
- \texttt{subrange}(i, j): TYPE = \{k: \text{int} \mid i \leq k \AND k \leq j\}
- \texttt{upto}(i): NONEMPTY_TYPE = \{s: \text{nat} \mid s \leq i\} CONTAINING i
- \texttt{below}(i): TYPE = \{s: \text{nat} \mid s < i\} \% may be empty

Subrange types may be empty.
Recursion and Induction: Overview

- We have covered the basic logic formulated as a sequent calculus, and its realization in terms of PVS proof commands.
- We have examined types and specifications involving numbers.
- We now examine richer datatypes such as sets, arrays, and recursive datatypes.
- The interplay between the rich type information and deduction is especially crucial.
- PVS is merely used as an aid for teaching effective formalization. Similar ideas can be used in informal developments or with other mechanizations.
Many operations on integers and natural numbers are defined by recursion.

summation: THEORY
BEGIN
 i, m, n: VAR nat

 sumn(n): RECURSIVE nat =
 (IF n = 0 THEN 0 ELSE n + sumn(n - 1) ENDIF)
 MEASURE n

 sumn_prop: LEMMA
 sumn(n) = (n*(n+1))/2
END summation
Termination TCCs

- A recursive definition must be well-founded or the function might not be total, e.g., $bad(x) = bad(x) + 1$.
- MEASURE m generates proof obligations ensuring that the measure m of the recursive arguments decreases according to a default well-founded relation given by the type of m.
- MEASURE m BY r can be used to specify a well-founded relation.

```plaintext
% Subtype TCC generated (at line 8, column 34) for n - 1
sumn_TCC1: OBLIGATION
   FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;
% Termination TCC generated (at line 8, column 29) for sumn
sumn_TCC2: OBLIGATION
   FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;
```
Termination: Ackermann’s function

Proof obligations are also generated corresponding to the termination conditions for nested recursive definitions.

\[
\text{ack}(m,n): \text{RECURSIVE nat} = \\
\quad (\text{IF } m=0 \text{ THEN } n+1 \\
\qquad \text{ELSIF } n=0 \text{ THEN } \text{ack}(m-1,1) \\
\qquad \quad \text{ELSE } \text{ack}(m-1, \text{ack}(m, n-1)) \\
\qquad \text{ENDIF}) \\
\text{MEASURE } \text{lex2}(m, n)
\]
Termination: McCarthy’s 91-function

```plaintext
f91: THEORY
BEGIN
i, j: VAR nat

g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)

f91(i): RECURSIVE { j | j = g91(i) }
   = (IF i>100
       THEN i-10
       ELSE f91(f91(i+11))
       ENDIF)
   MEASURE (IF i>101 THEN 0 ELSE 101-i ENDIF)
END f91
```
proof by induction

sumn_prop :

|------
{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct "n")
Inducting on n on formula 1, this yields 2 subgoals:
sumn_prop.1 :

|------
{1} sumn(0) = (0 * (0 + 1)) / 2
Proof by Induction

Expanding the definition of sumn, this simplifies to:

```
sumn_prop.1 :

   |-------
{1}  0 = 0 / 2
```

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.1.
Proof by Induction

sumn_prop.2 :

|-------
{1} FORALL j:
 sumn(j) = (j * (j + 1)) / 2 IMPLIES
 sumn(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (skosimp)
Skolemizing and flattening,
this simplifies to:
sumn_prop.2 :

{-1} sumn(j!1) = (j!1 * (j!1 + 1)) / 2
|-------
{1} sumn(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2
Proof by Induction

Expanding the definition of sumn, this simplifies to:

\[\text{sumn}_\text{prop.2} : \]

\[[-1] \quad \text{sumn}(j!1) = (j!1 \cdot (j!1 + 1)) / 2 \]

\[|------ \]

\[\{1\} \quad 1 + \text{sumn}(j!1) + j!1 = (2 + j!1 + (j!1 \cdot j!1 + 2 \cdot j!1)) / 2 \]

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.2.

Q.E.D.
An Induction/Simplification Strategy

sumn_prop :

|--------
{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct-and-simplify "n")

sumn rewrites sumn(0)
 to 0
sumn rewrites sumn(1 + j!1)
 to 1 + sumn(j!1) + j!1

By induction on n, and by repeatedly rewriting and simplifying, Q.E.D.
Summary

- Variables allow general facts to be stated, proved, and instantiated over interesting datatypes such as numbers.
- Proof commands for quantifiers include `skolem`, `skolem!`, `skosimp`, `skosimp*`, `inst`, `inst?`, `reduce`.
- Proof commands for reasoning with definitions and lemmas include `lemma`, `expand`, `rewrite`, `auto-rewrite`, `auto-rewrite-theory`, `assert`, and `grind`.
- Predicate subtypes with proof obligation generation allow refined type definitions.
- Commands for reasoning with numbers include `induct`, `assert`, `grind`, `induct-and-simplify`.

N. Shankar
Interactive Theorem Proving with PVS
Exercise

1. Define an operations for extracting the quotient and remainder of a natural number with respect to a nonzero natural number, and prove its correctness.

2. Define an addition operation over two n-digit numbers over a base b ($b > 1$) represented as arrays, and prove its correctness.

3. Define a function for taking the greatest common divisor of two natural numbers, and state and prove its correctness.

4. Prove the decidability of first-order logic over linear arithmetic equalities and inequalities over the reals.
Higher-Order Logic: Overview

- Thus far, variables ranged over ordinary datatypes such as numbers, and the functions and predicates were fixed (constants).
- Higher order logic allows free and bound variables to range over functions and predicates as well.
- This requires strong typing for consistency, otherwise, we could define $R(x) = \neg x(x)$, and derive $R(R) = \neg R(R)$.
- Higher order logic can express a number of interesting concepts and datatypes that are not expressible within first-order logic: transitive closure, fixpoints, finiteness, etc.
Types in Higher Order Logic

- Base types: bool, nat, real
- Tuple types: \([T_1, \ldots, T_n]\) for types \(T_1, \ldots, T_n\).
- Tuple terms: \((a_1, \ldots, a_n)\)
- Projections: \(\pi_i(a)\)
- Function types: \([T_1 \rightarrow T_2]\) for domain type \(T_1\) and range type \(T_2\).
- Lambda abstraction: \(\lambda(x : T_1) : a\)
- Function application: \(f \ a\).
Semantics of Higher Order Types

\[
\begin{align*}
[\text{bool}] &= \{0, 1\} \\
[\text{real}] &= \mathbb{R} \\
\llbracket [T_1, \ldots, T_n] \rrbracket &= \llbracket T_1 \rrbracket \times \ldots \times \llbracket T_n \rrbracket \\
\llbracket T_1 \rightarrow T_2 \rrbracket &= \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket}
\end{align*}
\]
Higher-Order Proof Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-reduction</td>
<td>[\Gamma \vdash (\lambda (x : T) : a)(b) = a[b/x], \Delta]</td>
</tr>
<tr>
<td>Extensionality</td>
<td>[\Gamma \vdash (\forall (x : T) : f(x) = g(x)), \Delta]</td>
</tr>
<tr>
<td></td>
<td>[\Gamma \vdash f = g, \Delta]</td>
</tr>
<tr>
<td>Projection</td>
<td>[\Gamma \vdash \pi_i(a_1, \ldots, a_n) = a_i, \Delta]</td>
</tr>
<tr>
<td>Tuple Ext.</td>
<td>[\Gamma \vdash \pi_1(a) = \pi_1(b), \Delta, \ldots, \Gamma \vdash \pi_n(a) = \pi_i(b), \Delta]</td>
</tr>
<tr>
<td></td>
<td>[\Gamma \vdash a = b, \Delta]</td>
</tr>
</tbody>
</table>
Tuple and Function Expressions in PVS

- Tuple type: \([T_1, \ldots, T_n]\).
- Tuple expression: \((a_1, \ldots, a_n)\). \((a)\) is identical to \(a\).
- Tuple projection: \(\text{PROJ}_3(a)\) or \(a'3\).
- Function type: \([T_1 \rightarrow T_2]\). The type \([[[T_1, \ldots, T_n] \rightarrow T]\) can be written as \([T_1, \ldots, T_n \rightarrow T]\).
- Lambda Abstraction: \(\text{LAMBDA } x, y, z: x * (y + z)\).
- Function Application: \(f(a_1, \ldots, a_n)\)
Induction in Higher Order Logic

- Given \(\text{pred} : \text{TYPE} = [T \rightarrow \text{bool}] \)

 \[
 \begin{align*}
 p & : \text{VAR} \ \text{pred[nat]} \\
 \text{nat_induction} & : \text{LEMMA} \\
 (p(0) \ \text{AND} \ \forall j : p(j) \ \text{IMPLIES} \ p(j+1)) & \ \text{IMPLIES} \ (\forall i : p(i))
 \end{align*}
 \]

- \text{nat_induction} is derived from well-founded induction, as are other variants like structural recursion, measure induction.
functions [D, R: TYPE]: THEORY
BEGIN
 f, g: VAR [D -> R]
 x, x1, x2: VAR D

 extensionality_postulate: POSTULATE
 (FORALL (x: D): f(x) = g(x)) IFF f = g
 congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)
 eta: LEMMA (LAMBDA (x: D): f(x)) = f

 injective?(f): bool =
 (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))
 surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))
 bijective?(f): bool = injective?(f) & surjective?(f)
 :
END functions
sets [T: TYPE]: THEORY
BEGIN
 set: TYPE = [t -> bool]
 x, y: VAR T
 a, b, c: VAR set

 member(x, a): bool = a(x)

 empty?(a): bool = (FORALL x: NOT member(x, a))

 emptyset: set = {x | false}

 subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

 union(a, b): set = {x | member(x, a) OR member(x, b)}
END sets
Useful Higher Order Datatypes: Finite Sets

Finite sets: Predicate subtypes of sets that have an injective map to some initial segment of nat.

```plaintext
finite_sets_def[T: TYPE]: THEORY
BEGIN
  x, y, z: VAR T
  S: VAR set[T]
  N: VAR nat

  is_finite(S): bool = (EXISTS N, (f: [(S) -> below[N]]):
                        injective?(f))

  finite_set: TYPE = (is_finite) CONTAINING emptyset[T]
  :
END finite_sets_def
```
Useful Higher Order Datatypes: Sequences

sequences[T: TYPE]: THEORY
BEGIN
 sequence: TYPE = [nat->T]
 i, n: VAR nat
 x: VAR T
 p: VAR pred[T]
 seq: VAR sequence

 nth(seq, n): T = seq(n)

 suffix(seq, n): sequence =
 (LAMBDA i: seq(i+n))

 delete(n, seq): sequence =
 (LAMBDA i: (IF i < n THEN seq(i) ELSE seq(i + 1) ENDIF))

END sequences
Arrays

- Arrays are just functions over a subrange type.
- An array of size N over element type T can be defined as

\[
\text{INDEX}: \text{TYPE} = \text{below}(N) \\
\text{ARR}: \text{TYPE} = \text{ARRAY}[\text{INDEX} \to T]
\]

- The k’th element of an array A is accessed as $A(k-1)$.
- Out of bounds array accesses generate unprovable proof obligations.
Function and Array Updates

- Updates are a distinctive feature of the PVS language.
- The update expression \(f \text{ WITH } [(a) := v] \) (loosely speaking) denotes the function \((\lambda i : \text{IF } i = a \text{ THEN } v \text{ ELSE } f(i) \text{ ENDIF})\).
- Nested update \(f \text{ WITH } [(a_1)(a_2) := v] \) corresponds to \(f \text{ WITH } [(a_1) := f(a_1) \text{ WITH } [(a_2) := v]]\).
- Simultaneous update \(f \text{ WITH } [(a_1) := v_1, (a_2) := v_2] \) corresponds to \((f \text{ WITH } [(a_1) := v_1]) \text{ WITH } [(a_2) := v_2]\).
- Arrays can be updated as functions. Out of bounds updates yield unprovable TCCs.
Record Types

- Record types: $[\# l_1 : T_1, \ldots, l_n : T_n\#]$, where the l_i are labels and T_i are types.
- Records are a variant of tuples that provided labelled access instead of numbered access.
- Record access: $l(r)$ or $r'\!l$ for label l and record expression r.
- Record updates: $r \text{ WITH } [\prime l := v]$ represents a copy of record r where label l has the value v.
array_record : THEORY

BEGIN

ARR: TYPE = ARRAY[below(5) -> nat]
rec: TYPE = [# a : below(5), b : ARR #]

r, s, t: VAR rec

test: LEMMA r WITH ['b(r'a) := 3, 'a := 4] =
 (r WITH ['a := 4]) WITH ['b(r'a) := 3]

test2: LEMMA r WITH ['b(r'a) := 3, 'a := 4] =
 (# a := 4, b := (r'b WITH [(r'a) := 3]) #)

END array_record
test :

|-------
{1} FORALL (r: rec):
 r WITH [(b)(r'a) := 3, (a) := 4] =
 (r WITH [(a) := 4]) WITH [(b)(r'a) := 3]

Rule? (assert)
Simplifying, rewriting, and recording with decision procedures, Q.E.D.
Proofs with Updates

test2 :

|-------
{1} FORALL (r: rec):
 r WITH [(b)(r'a) := 3, (a) := 4] =
 (# a := 4, b := (r'b WITH [(r'a) := 3]) #)

Rule? (skolem!)
Skolemizing,
this simplifies to:
Proofs with Updates

test2 :

|------
{1} r!1 WITH [(b)(r!1'a) := 3, (a) := 4] =
 (# a := 4, b := (r!1'b WITH [(r!1'a) := 3]) #)

Rule? (apply-extensionality)
Applying extensionality,
Q.E.D.
Dependent Types

- Dependent records have the form
 \[\#l_1 : T_1, l_2 : T_2(l_1), \ldots, l_n : T_N(l_1, \ldots, l_{n-1})\].

```plaintext
finite_sequences [T: TYPE]: THEORY
BEGIN
  finite_sequence: TYPE
    = [# length: nat, seq: [below[length] -> T] #]
END finite_sequences
```

- Dependent function types have the form \[x : T_1 \rightarrow T_2(x)\]

```plaintext
abs(m): \{n: nonneg_real | n >= m\}
  = IF m < 0 THEN -m ELSE m ENDIF
```
Higher order variables and quantification admit the definition of a number of interesting concepts and datatypes.

We have given higher-order definitions for functions, sets, sequences, finite sets, arrays.

Dependent typing combines nicely with predicate subtyping as in finite sequences.

Record and function updates are powerful operations.
The third lecture combines the language and proof capabilities from the first two lectures. We look at examples such as

1. Equivalence of deterministic and nondeterministic finite automata
2. Knaster–Tarski theorem
3. Continuation-based Program Transformation
4. Big Number Arithmetic
5. Ordered Binary Trees
The equivalence of deterministic and nondeterministic automata through the subset construction is a basic theorem in computing.

In higher-order logic, sets (over a type A) are defined as predicates over A.

The set operations are defined as:

- $\text{member}(x, a): \text{bool} = a(x)$
- $\text{emptyset}: \text{set} = \{x \mid \text{false}\}$
- $\text{subset?}(a, b): \text{bool} = (\forall x: \text{member}(x, a) \Rightarrow \text{member}(x, b))$
- $\text{union}(a, b): \text{set} = \{x \mid \text{member}(x, a) \lor \text{member}(x, b)\}$
Image and Least Upper Bound

- Given a function \(f \) from domain \(D \) to range \(R \) and a set \(X \) on \(D \), the image operation returns a set over \(R \).

 \[
 \text{image}(f, X) : \text{set}[R] = \{ y : R \mid (\exists x : (X)) : y = f(x) \}
 \]

- Given a set of sets \(X \) of type \(T \), the least upper bound is the union of all the sets in \(X \).

 \[
 \text{lub}(\text{setofpred}) : \text{pred}[T] = \\
 \text{LAMBDA } s : \exists p : \text{member}(p, \text{setofpred}) \land p(s)
 \]
Deterministic Automata

DFA [Sigma : TYPE,
 state : TYPE,
 start : state,
 delta : [Sigma -> [state -> state]],
BEGIN
 DELTA((string : list[Sigma]))((S : state)):
 RECURSIVE state =
 (CASES string OF
 null : S,
 cons(a, x): delta(a)(DELTA(x)(S))
 ENDCASES)
 MEASURE length(string)
 DAccept?((string : list[Sigma])) : bool =
 final?(DELTA(string)(start))
END DFA
NFA
 [Sigma : TYPE,
 state : TYPE,
 start : state,
 ndelta : [Sigma -> [state -> set[state]]],

BEGIN
 NDELTA((string : list[Sigma]))((s : state)) :
 RECURSIVE set[state] =
 (CASES string OF
 null : singleton(s),
 cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))
 ENDCASES)
 MEASURE length(string)

 Accept?((string : list[Sigma])) : bool =
 (EXISTS (r : (final?)) :
 member(r, NDELTA(string)(start)))

END NFA
equiv[Sigma : TYPE,
 state : TYPE,
 start : state,
 ndelta : [Sigma -> [state -> set[state]]],
 final? : set[state]]: THEORY

BEGIN

IMPORTING NFA[Sigma, state, start, ndelta, final?]

dstate: TYPE = set[state]

delta((symbol : Sigma))((S : dstate)): dstate =
lub(image(ndelta(symbol), S))

dfinal?((S : dstate)): bool =
(EXISTS (r : (final?): member(r, S))

dstart : dstate = singleton(start)
IMPORTING DFA[\Sigma, dstate, dstart, delta, dfinal?]

main: LEMMA
 (FORALL (x : list[\Sigma]), (s : state):
 NDELTA(x)(s) = DELTA(x)(singleton(s)))

equiv: THEOREM
 (FORALL (string : list[\Sigma]):
 Accept?(string) IFF DAccept?(string))

END equiv
Tarski–Knaster Theorem

Tarski_Knaster

: THEORY
BEGIN
ASSUMING
 x, y, z: VAR T
 X, Y, Z : VAR set[T]
 f, g : VAR [T -> T]
 antisymmetry: ASSUMPTION x <= y AND y <= x IMPLIES x = y
 transitivity : ASSUMPTION x <= y AND y <= z IMPLIES x <= z
 glb_is_lb: ASSUMPTION X(x) IMPLIES glb(X) <= x
 glb_is_glb: ASSUMPTION
 (FORALL x: X(x) IMPLIES y <= x) IMPLIES y <= glb(X)
ENDASSUMING

N. Shankar
Interactive Theorem Proving with PVS
Tarski–Knaster Theorem

\[
\begin{align*}
\text{monotone?(} f \text{): bool} &= (\forall x, y : x \leq y \implies f(x) \leq f(y)) \\
\text{\text{lfp}(} f \text{)} : T &= \text{glb}(\{x \mid f(x) \leq x\}) \\
\text{TK1: THEOREM} \\
\text{mono?(} f \text{)} &\implies \text{lfp}(f) = f(\text{lfp}(f)) \\
\text{END Tarski_Knaster}
\end{align*}
\]

Monotone operators on complete lattices have fixed points. The fixed point defined above can be shown to be the least such fixed point.
Continuation-Based Program Transformation

wand [dom, rng: TYPE, %function domain, range
 a: [dom -> rng], %base case function
 d: [dom-> rng], %recursion parameter
 b: [rng, rng -> rng],%continuation builder
 c: [dom -> dom], %recursion destructor
 p: PRED[dom], %branch predicate
 m: [dom -> nat], %termination measure
 F : [dom -> rng]] %tail-recursive function

: THEORY
BEGIN

END wand
ASSUMING %3 assumptions: b associative, % c decreases measure, and % F defined recursively % using p, a, b, c, d.

\[
\begin{align*}
\text{u, v, w: VAR rng} \\
\text{assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))}
\end{align*}
\]

\[
\begin{align*}
\text{x, y, z: VAR dom} \\
\text{wf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)}
\end{align*}
\]

\[
\begin{align*}
\text{F_def: ASSUMPTION} \\
\text{F(x) =} \\
\text{(IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)}
\end{align*}
\]

ENDASSUMING
Continuation-Based Program Transformation (contd.)

\begin{verbatim}
f: VAR [rng -> rng]
%FC is F redefined with explicit continuation f.
 FC(x, f) : RECURSIVE rng =
 (IF p(x)
 THEN f(a(x))
 ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))
 ENDIF)
 MEASURE m(x)
%FFC is main invariant relating FC and F.
 FFC: LEMMA FC(x, f) = f(F(x))
%FA is FC with accumulator replacing continuation.
 FA(x, u): RECURSIVE rng =
 (IF p(x)
 THEN b(a(x), u)
 ELSE FA(c(x), b(d(x), u)) ENDIF)
 MEASURE m(x)
%Main invariant relating FA and FC.
 FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))
\end{verbatim}
Recursive datatypes like lists, stacks, queues, binary trees, leaf trees, and abstract syntax trees, are commonly used in specification.

Manual axiomatizations for datatypes can be error-prone.

Verification system should (and many do) automatically generate datatype theories.

The PVS DATATYPE construct introduces recursive datatypes that are freely generated by given constructors, including lists, binary trees, abstract syntax trees, but excluding bags and queues.

The PVS proof checker automates various datatype simplifications.
A list datatype with constructors null and cons is declared as:

```plaintext
list [T: TYPE]: DATATYPE
BEGIN
  null: null?
  cons (car: T, cdr:list): cons?
END list
```

- The accessors for cons are car and cdr.
- The recognizers are null? for null and cons? for cons-terms.
- The declaration generates a family of theories with the datatype axioms, induction principles, and some useful definitions.
Introducing PVS: Number Representation

```plaintext
bignum [ base : above(1) ] : THEORY
BEGIN
  l, m, n: VAR nat
  cin : VAR upto(1)
  digit : TYPE = below(base)

  JUDGEMENT 1 HAS_TYPE digit

  i, j, k: VAR digit
  bignum : TYPE = list[digit]
  X, Y, Z, X1, Y1: VAR bignum

  val(X) : RECURSIVE nat =
    CASES X of
    null: 0,
    cons(i, Y): i + base * val(Y)
    ENDCASES
  MEASURE length(X);
```
Adding a Digit to a Number

\[+(X, i)\colon \text{RECURSIVE bignum} =\]
\[
(CASES \ X \ of
 \null\colon \text{cons}(i, \ null),
 \text{cons}(j, Y):\]
 \[
 (\text{IF} \ i + j < \text{base}
 \text{THEN} \text{cons}(i+j, Y)
 \text{ELSE} \text{cons}(i + j - \text{base}, Y + 1)
 \text{ENDIF})
 \]
 \text{ENDCASES})
\]
\text{MEASURE} \ length(X);\]

\[
\text{correct_plus: LEMMA}
\]
\[
\text{val}(X + i) = \text{val}(X) + i
\]
Adding Two Numbers

```plaintext
bigplus(X, Y, (cin : upto(1))): RECURSIVE bignum =
    CASES X of
    null: Y + cin,
    cons(j, X1):
        CASES Y of
        null: X + cin,
        cons(k, Y1):
            (IF cin + j + k < base
                THEN cons((cin + j + k - base),
                          bigplus(X1, Y1, 1))
                ELSE cons((cin + j + k), bigplus(X1, Y1, 0))
            ENDIF)
        ENDCASES
    ENDCASES
MEASURE length(X)

bigplus_correct: LEMMA
    val(bigplus(X, Y, cin)) = val(X) + val(Y) + cin
```
Binary Trees

- Parametric in value type T.
- Constructors: leaf and node.
- Recognizers: leaf? and node?.
- node accessors: val, left, and right.

```
binary_tree[T : TYPE] : DATATYPE
BEGIN
  leaf : leaf?
  node(val : T, left : binary_tree, right : binary_tree) : node?
END binary_tree
```
The `binary_tree` declaration generates three theories axiomatizing the binary tree data structure:

- `binary_tree_adt`: Declares the constructors, accessors, and recognizers, and contains the basic axioms for extensionality and induction, and some basic operators.
- `binary_tree_adt_map`: Defines map operations over the datatype.
- `binary_tree_adt_reduce`: Defines an recursion scheme over the datatype.

Datatype axioms are already built into the relevant proof rules, but the defined operations are useful.
Basic Binary Tree Theory

binary_tree_adt[T: TYPE]: THEORY
BEGIN
 binary_tree: TYPE
 leaf?, node?: [binary_tree -> boolean]
 leaf: (leaf?)
 node: [[T, binary_tree, binary_tree] -> (node?)]
 val: [(node?) -> T]
 left: [(node?) -> binary_tree]
 right: [(node?) -> binary_tree]
 ...
END binary_tree_adt

Predicate subtyping is used to precisely type constructor terms and avoid misapplied accessors.
An Extensionality Axiom per Constructor

Extensionality states that a node is uniquely determined by its accessor fields.

```
binary_tree_node_extensionality: AXIOM
   (FORALL (node?_var: (node?)),
    (node?_var2: (node?):
     val(node?_var) = val(node?_var2)
     AND left(node?_var) = left(node?_var2)
     AND right(node?_var) = right(node?_var2)
     IMPLIES node?_var = node?_var2)
```
Accessor/Constructor Axioms

Asserts that \(\text{val}(\text{node}(v, A, B)) = v \).

\[
\text{binary_tree_val_node: AXIOM} \\
\quad (\text{FORALL (node1_var: T), (node2_var: \text{binary_tree}), (node3_var: \text{binary_tree}):}) \\
\quad \quad \text{val}(\text{node}(\text{node1}_\text{var}, \text{node2}_\text{var}, \text{node3}_\text{var})) = \text{node1}_\text{var})
\]
An Induction Axiom

Conclude $\text{FORALL } A: p(A)$ from $p(\text{leaf})$ and $p(A) \land p(B) \supset p(\text{node}(v, A, B))$.

```
binary_tree_induction: AXIOM
  (FORALL (p: [binary_tree -> boolean]):
   p(leaf)
   AND
   (FORALL (node1_var: T), (node2_var: binary_tree), (node3_var: binary_tree):
    p(node2_var) AND p(node3_var)
    IMPLIES p(node(node1_var, node2_var, node3_var)))
  IMPLIES (FORALL (binary_tree_var: binary_tree):
    p(binary_tree_var)))
```
Pattern-matching Branching

- The CASES construct is used to branch on the outermost constructor of a datatype expression.
- We implicitly assume the disjointness of (node?) and (leaf?):

\[
\begin{align*}
\text{CASES leaf OF} & \quad = \quad u \\
\text{leaf : } & \quad u, \\
\text{node}(a, y, z) : & \quad v(a, y, z) \\
\text{ENDCASES} & \\
\text{CASES node(b, w, x) OF} & \quad = \quad v(b, w, x) \\
\text{leaf : } & \quad u, \\
\text{node}(a, y, z) : & \quad v(a, y, z) \\
\text{ENDCASES} &
\end{align*}
\]
Useful Generated Combinators

\[
\text{reduce_nat(leaf?_fun:nat, node?_fun:[[T, nat, nat] \to nat]):}
\]
\[
[binary_tree \to nat] = \ldots
\]

\[
\text{every(p: PRED[T])(a: binary_tree): boolean = \ldots}
\]

\[
\text{some(p: PRED[T])(a: binary_tree): boolean = \ldots}
\]

\[
\text{subterm(x, y: binary_tree): boolean = \ldots}
\]

\[
\text{map(f: [T \to T1])(a: binary_tree[T]): binary_tree[T1] = \ldots}
\]
Ordered Binary Trees

- Ordered binary trees can be introduced by a theory that is parametric in the value type as well as the ordering relation.
- The ordering relation is subtyped to be a total order.

\[
\text{total_order?}(<): \text{bool} = \text{partial_order?}(<) \land \text{dichotomous?}(<)
\]

```plaintext
obt [T : TYPE, <= : (total_order?[T])] : THEORY
BEGIN
IMPORTING binary_tree[T]
A, B, C: VAR binary_tree
x, y, z: VAR T
pp: VAR pred[T]
i, j, k: VAR nat

END obt
```
The number of nodes in a binary tree can be computed by the \texttt{size} function which is defined using \texttt{reduce_nat}.

\begin{verbatim}
size(A) : nat =
reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)
\end{verbatim}
The Ordering Predicate

Recursively checks that the left and right subtrees are ordered, and that the left (right) subtree values lie below (above) the root value.

```
ordered?(A) : RECURSIVE bool =
    (IF node?(A)
        THEN (every((LAMBDA y: y<=val(A)), left(A)) AND
              every((LAMBDA y: val(A)<=y), right(A)) AND
              ordered?(left(A)) AND
              ordered?(right(A)))
        ELSE TRUE
    ENDIF)
MEASURE size
```
Insertion

- Compares x against root value and recursively inserts into the left or right subtree.

```prolog
insert(x, A) : RECURSIVE binary_tree[T] =
(CASES A OF
    leaf: node(x, leaf, leaf),
    node(y, B, C): (IF x <= y THEN node(y, insert(x, B), C)
        ELSE node(y, B, insert(x, C))
    ENDIF)
ENDCASES)
MEASURE (LAMBDA x, A: size(A))
```

- The following is a very simple property of insert.

```prolog
ordered_insert_step: LEMMA
    pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))
```
Proof of insert property

ordered?_insert_step :
 |------
{1} (FORALL (A: binary_tree[T], pp: pred[T], x: T):
 pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A)))

Rule? (induct-and-simplify "A")

every rewrites every(pp!1, leaf) to TRUE
insert rewrites insert(x!1, leaf) to node(x!1, leaf, leaf)
every rewrites every(pp!1, node(x!1, leaf, leaf)) to TRUE
 :

By induction on A, and by repeatedly rewriting and simplifying, Q.E.D.
Orderedness of insert

ordered?_insert: THEOREM
 ordered?(A) IMPLIES ordered?(insert(x, A))

is proved by the 4-step PVS proof

(""
 (induct-and-simplify "A" :rewrites "ordered?_insert_step")
 (rewrite "ordered?_insert_step")
 (typepred "obt.<=")
 (grind :if-match all))
binary_props[T : TYPE] : THEORY
BEGIN
IMPORTING binary_tree_adt[T]
A, B, C, D: VAR binary_tree[T]
x, y, z: VAR T
leaf_leaf: LEMMA leaf?(leaf)
node_node: LEMMA node?(node(x, B, C))
leaf_leaf1: LEMMA A = leaf IMPLIES leaf?(A)
node_node1: LEMMA A = node(x, B, C) IMPLIES node?(A)
val_node: LEMMA val(node(x, B, C)) = x
leaf_node: LEMMA NOT (leaf?(A) AND node?(A))
node_leaf: LEMMA leaf?(A) OR node?(A)
leaf_ext: LEMMA (FORALL (A, B: (leaf?): A = B)
node_ext: LEMMA
 (FORALL (A : (node?):) : node(val(A), left(A), right(A)) = A)
END binary_props
combinators : THEORY
BEGIN
combinators: DATATYPE
BEGIN
 K: K?
 S: S?
 app(operator, operand: combinators): app?
END combinators

x, y, z: VAR combinators

reduces_to: PRED[[combinators, combinators]]

K: AXIOM reduces_to(app(app(K, x), y), x)
S: AXIOM reduces_to(app(app(app(S, x), y), z),
 app(app(x, z), app(y, z)))
END combinators
Scalar Datatypes

colors: DATATYPE
BEGIN
 red: red?
 white: white?
 blue: blue?
END colors

The above verbose inline declaration can be abbreviated as:

colors: TYPE = {red, white, blue}
Disjoint Unions

definition

\[
\text{disj}_\text{union}[A, B: \text{TYPE}] : \text{DATATYPE} \\
\text{BEGIN} \\
\quad \text{inl}(\text{left} : A) : \text{inl} \? \\
\quad \text{inr}(\text{right} : B) : \text{inr} \? \\
\text{END disj}_\text{union}
\]
Mutually Recursive Datatypes

- PVS does not directly support mutually recursive datatypes.
- These can be defined as subdatatypes (e.g., term, expr) of a single datatype.

```
arith: DATATYPE WITH SUBTYPES expr, term
BEGIN
  num(n:int): num? :term
  sum(t1:term,t2:term): sum? :term
  % ...
  eq(t1: term, t2: term): eq? :expr
  ift(e: expr, t1: term, t2: term): ift? :term
  % ...
END arith
```
Summary

- The PVS datatype mechanism succinctly captures a large class of useful datatypes by exploiting predicate subtypes and higher-order types.
- Datatype simplifications are built into the primitive inference mechanisms of PVS.
- This makes it possible to define powerful and flexible high-level strategies.
- The PVS datatype is loosely inspired by the Boyer-Moore Shell principle.
- Other systems HOL [Melham89, Gunter93] and Isabelle [Paulson] have similar datatype mechanisms as a provably conservative extension of the base logic.
Specifications are a prerequisite for verification.

Many serious flaws are already introduced in the requirements gathering phase through missing, incomplete, incompatible, or ambiguous specifications.

Specifying security, concurrency, fault tolerance, and real-time properties is a difficult art.

Formally modeling domains like power grid, control systems, transportation, and commerce can be quite challenging.

Strong analytic tools are needed for analyzing specifications for flaws.

Since specifications are not always executable, this is one area where formal methods can definitely earn its keep.
The Design Challenge

- Software design methodologies are still in their infancy.
- Due to the paucity of specification tools, we currently rely on a build-and-test approach to software.
- Hence, critical specifications may only be discovered late in the construction.
- Methodologies like extreme programming make a virtue of the ephemeral nature of specifications.
- However, good software design is also good mathematics. It requires powerful abstractions (like synchronous languages), precise interfaces, and verifiable properties.
- Design and verification must coexist so that the software that is developed is correct by construction, and remains correct through maintenance.
The Verification Challenge

- There are diverse approaches to verification and it is too early to bet on any of these.
- Verification technology must be exploited to enhance the productivity of software designers and developers.
- The short-term goal is establish the absence of run-time errors (buffer overflow, numeric overflow and underflow, out-of-bounds access, uncaught exceptions, nontermination, deadlock, livelock) in low-level code.
- The medium-term goal is to verify strong properties and interfaces for software systems and libraries.
- The long-term goal is demonstrate the safety, security, and reliability of applications built on formally verified platforms, services, and libraries.
Verification: Not by Technology Alone

- Technology alone will not be sufficient for effective verification.
- The requirements still have to be spelled out clearly.
- The software architecture must yield a clear separation of concerns, coherent abstractions, and precise interfaces that guide the construction of the software as well as its correctness proof.
- Design issues like security, fault tolerance, and adaptability require engineering judgement.
- Verification must be the enabling technology for a discipline of software engineering that is based on a rigorous modeling, detailed semantic definitions, elegant mathematics, and engineering and algorithm insight.
The future of verification lies in the aggressive and tasteful use of logic, automation, and interaction.

Expressive logics are needed for large-scale specifications and semantic definitions.

Aggressive automation is needed for managing large-scale formal development.

Interaction allows automation to be controlled with human insight, judgement, and creativity.

With proper integration into design tools, automated formal methods ought to be able to support the productive (>5KLOC per programmer-year) development of verified software.