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state-explosion problem 



compositional verification 

M2 

M1 

A 

satisfies P? 

"   check P on entire system: too many states! 
"   use system’s natural decomposition into 

components to break-up the verification 
task 

"   check components in isolation: 
  

does system made up of M1 and M2 satisfy property P? 

does M1 satisfy P?  



§  
“when we try to pick out anything by itself, we find 

it hitched to everything else in the universe”  
John Muir  

 



assume-guarantee reasoning 

“discharge” the  
assumption 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 
M2 

M1 

A 

satisfies P? 

introduces assumptions / reasons about triples: 

〈A〉 M 〈P〉   is true if whenever M is part of a  
system that satisfies A, then the system must  
also guarantee P 

simplest assume-guarantee rule (ASYM): 

how do we come up with the assumption? 



the weakest assumption [ASE 2002] 

§  given component M, property P, and the interface ∑ of M 
with its environment, generate the weakest environment 
assumption WA such that: 〈WA〉 M 〈P〉 holds 

§  weakest means that for all environments E:  

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 

 

M 

 P 

WA 



weakest assumption in AG reasoning  

 
 
 
 
〈true〉 M1 || M2 〈P〉 IFF 〈true〉 M2 〈WA〉  
in other words: 
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds 
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds 
 
 
 
 
 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 

weakest assumption makes  
rule complete 
 

for all E, 〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉 
 



formalisms 

§  components modeled as finite state machines (FSM) 
–  FSMs assembled with parallel composition operator “||” 

•  synchronizes shared actions, interleaves remaining actions  

§  a safety property P is a FSM 
–  P describes all legal behaviors in terms of its alphabet  

–  Perr – complement of P 
•  determinize & complete P with an “error” state;  
•  bad behaviors lead to error 

–  component M satisfies P iff error state unreachable in (M || Perr) 

§  assume-guarantee reasoning 
–  assumptions and guarantees are FSMs 
–  〈A〉 M 〈P〉 holds iff error state unreachable in (A || M || Perr)  



example 

Input Output 
in send 

ack 

out 
Input 

 in send 

ack 

Output 
 out send 

ack 

require in and out to alternate (property Order) 

Ordererr  in 

 out 

 in  out 



parallel composition  

Input 
 in send 

ack 

Output 
 out send 

ack 

|| 



property satisfaction  

|| 

Ordererr  in 

 out 

 in  out 

Input 
 in send 

ack 

crex. 1: (I0, O0) out (I0, Oerror)   
crex. 2: (I0, O0) in (I1, O1) send (I2, O1) out (I2, O0) out (I2, Oerror) 

0 1 2 

0 1 



assume-guarantee reasoning  

|| 

Ordererr  in 

 out 

 in  out 

Input 
 in send 

ack 

send 

out 
send 

ack 

Assumption 

crex 1: (I0, A0, O0) out  X 
crex 2: (I0, A0, O0) in (I1, A0, O1) send (I2, A1, O1) out (I2, A0, O0) out  X 

0 1 2 

1 0 

1 0 



learning assumptions [TACAS 2003] 

iterative solution +  
intermediate results    

L* learns unknown regular language 
U (over alphabet Σ) and produces 
minimal DFA  A such that L(A) = U 

(L* originally proposed by Angluin)  



queries:  
should word w be included in L(A)?  

conjectures:  
here is an A – is L(A) = U?  

yes / no  

yes!  
no: word w should (not) be in L(A)   

the oracle   L* learner   



  query c ↑αA 
 

〈true〉 M2 〈Ai〉 

oracle for WA in assume-guarantee reasoning   

L* 

query: string s 
〈s〉 M1 〈P〉 

conjecture: Ai 〈Ai〉 M1 〈P〉 

false+crex c c ↑αA 

c ↑αA 

(simulate s on M1 || Perr) 

(model check) 

(model check) 

false+crex c 

〈WA〉 M1 〈P〉 holds 
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds 
〈true〉 M2 〈WA〉 does not hold implies 〈true〉 M1 || M2 〈P〉 does not hold 
 

true / false 

true 

P satisfied 

P violated 
true 

false 

1.     〈A〉  M1   〈P〉 
2.  〈true〉  M2  〈A〉 

〈true〉 M1 || M2  〈P〉 



characteristics 

"   terminates with minimal automaton A for  U 
"   generates DFA candidates Ai: |A1| < | A2| < … < |A| 
"   produces at most n candidates, where n = |A| 
"   # queries: O(kn2 + n logm), 

–  m is size of largest counterexample, k is size of alphabet 
"   for assume-guarantee reasoning, may terminate early with a 

smaller assumption than the weakest  

assumptions conjectured by L* are not comparable semantically 



example  

we check: 〈true〉 Input || Output 〈Order〉 
M1 = Input, M2 = Output, P = Order 
 
assumption alphabet: {send, out, ack} 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 



queries  

E 
Table T  λ 

S λ true 

out false 

 
S ⋅ Σ 

ack 
out 
send 
out, ack 
out, out 
out, send 

S = set of prefixes 
E = set of suffixes 

true 
false 
true 

false 
false 
false 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 
Output 

 send 

ack 

   out 



candidate construction  

E 
Table T  λ 

S λ true 

out false 

 
S ⋅ Σ 

ack 
out 
send 
out, ack 
out, out 
out, send 

S = set of prefixes 
E = set of suffixes 

2 states – error state omitted 

 ack 
send 

Assumption A1 
true 
false 
true 

false 
false 
false 

Ordererr    in 

    out     out  in 

 Input 
 in 

ack 

 send 
Output 

 send 

ack 

   out 

counterexamples add to S 



conjectures 

 ack 
send 

A1: Oracle 1:  
〈A1〉 Input 〈Order〉 

Counterexample: 
c = 〈in,send,ack,in〉 

Return to L*: 
c↑ Σ = 〈send,ack〉 

Oracle 1:  
〈A2〉 Input 〈Order〉 

True 

Oracle 2:  
〈 true〉 Output 〈A2〉  

True 

 property Order holds  
on Input || Output 

 ack 

 send 

 out, send 

A2: Queries 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 



1.     〈A1〉  M1  〈P〉 
2.  〈true〉 M2 || M3 〈A1〉 

3.  〈true〉 M1 || (M2 || M3) 〈P〉 

more than 2 components [TACAS03, FMSD09] 

1.     〈A2〉  M2  〈A1〉 
2.    〈true〉 M3 〈A2〉 

3.  〈true〉 M2 || M3 〈A1〉  



symmetric rules: motivation  

 ack,out,send 

 ack 

 send  out 

 ack 

 send 

 send 

A4: 

 ack 

 send 

 out, send 

A2: 
 ack 
send 

A1: 

 ack 
in 

A1: 
 ack 

 in 

 ack 

A2: 

 send 

M1 = Input, M2 = Output, P = Order 

M1 = Output, M2 = Input, P = Order 

Ordererr    in 

    out     out  in 

Output 
 send 

ack 

   out 
 Input 

 in 

ack 

 send 
 send 



symmetric learning framework [SAVCBS05] 

L* 

〈A1〉 M1 〈P〉 
  

L* 

〈A2〉 M2 〈P〉 
  

A1 A2 

false false 

L(coA1 || coA2) ⊆ L(P) 
 

   counterexample 
analysis 

true true 

false 
P holds in M1||M2 

P violated in M1||M2 

refine A1 

true 

refine A2 

refine A1 refine A2 



§  beyond syntactic interfaces 
(open file before close) 

§  document implicit assumptions 
 
§  safe: accept NO illegal  

sequence of calls 
§  permissive: accept ALL legal 

sequences of calls 

§  safe & permissive interface = 
weakest assumption   

 

 
 
 
 

interfaces 



(queries)  
should word w be included in L(A)?  

(conjectures)  
here is an A – is L(A) = U? 
(is A safe and permissive?) 
 

yes / no  

yes!  
no: word w should (not) be in L(A)   

the oracle   L* learner   



checkSafe(interface A, FSM M) 

(ok, err) 

p

(A || M) 



checkPermissive(interface A, FSM M) 

(err,ok) 

(err,err) 

p
p

(Aerr || M) 
if M is non-deterministic, 
permissiveness check 
requires subset construction 

ASE 2002 
Alur et al, 2005 

Henzinger et al, 2005  



permissiveness heuristics [FASE 2009] 

(err,ok) 

(err,err) 

p
p

(Aerr || M) 
model check for (err, ok) 

query “p”   
reached (err, ok) by “p” 

backtrack & continue search… 
no (“p” should not be in A)  

resolves non-determinism  
dynamically & selectively; 



remember, it’s a heuristic 

M0 

A0 

M1 

A1 

M2 

A1 

a b 

Merror 

Aerror 

b 

M1 

Aerror 

a 

c 



assume-guarantee reasoning 

JavaPathfinder 

interface generation / discharge 

UML statecharts 

http://babelfish.arc.nasa.gov/trac/jpf 
jpf-cv 

 



infinite components [CAV 2010] 
§  use predicate abstraction (e.g., x ≥ 0, x < 0) 
§  generate may and must abstraction  

 
 

must transition 

may transition 

an interface safe w.r.t. Cmay and permissive w.r.t. Cmust  
is safe and permissive w.r.t. concrete component C 

Lillegal(Cmust)	
  

	
  	
  	
  Lillegal(C)	
  
Lillegal(Cmay)	
  

Llegal(Cmay)	
  

	
  	
  	
  Llegal(C)	
  
Llegal(Cmust)	
  



Query(σ, C)  

1.  if checkSafe(σ,Cmust) != null 
2.         return “no” 
3.  cex = checkSafe(σ,Cmay) 
4.  if cex == null 
5.         return “yes” 
6.  Preds = Preds U Refine(cex) 
7.  Query(σ, C) 

If concrete component is deterministic, so is the must abstraction…  
ARMC model checker: Java2SDK library classes, OpenSSL, NASA CEV model  

 

Lillegal(Cmust)	
  

	
  	
  	
  Lillegal(C)	
  
Lillegal(Cmay)	
  

Llegal(Cmay)	
  

	
  	
  	
  Llegal(C)	
  
Llegal(Cmust)	
  



related work 
§  assume-guarantee reasoning for code (ICSE 2004, SAVCBS 2005, 

IET Software 2009) 
§  learning with alphabet refinement (TACAS 2007; also Chaki et al.) 
§  learning assumptions for interface automata (FM 2008) 
§  assume-guarantee abstraction refinement (CAV 2008)  

"   compositional verification in symbolic setting (Alur et al. 05) 
"   minimal assumptions as separating automata for languages L(M2) 

and L(M1) ∩ L(coP)  (Gupta et al. 07, Chen et al. 09) 
"   learning omega-regular languages for liveness (Farzan et al. 08) 
"   learning non-deterministic automata (Bollig et al. 09) 
"   learning Boolean functions (Chen et al. 10)    
"   assumption generation in probabilistic setting (Feng et al. 10) 



summary and food for thought… 
 
§  techniques are generic 
§  better applied at design level 
§  not a panacea…  

–  perform well when alphabets & assumptions are small 

§  what makes a system amenable to compositional techniques? 
§  design for compositional verification; combine with other design 

approaches  
§  how can we make it practical for real systems? what types of 

interfaces are useful in practice? 
§  discovering good system decompositions 
§  liveness, timed & probabilistic systems, non functional properties 
§  multi core / parallelization?   



thank you! 



invoke a model checker 

within a model checker?  



permissiveness check 

MC: model check for (Mi, Aerror) 
reached (err, ok) by trace t 

backtrack and continue search 
if (memoized(t) == no) // t is spurious 

if (query(t) == yes) 
return t to L* // not permissive  

else  // memoized(t) == yes or t not in memoized  
model checker produces t 

else restart at MC   



conjecture : Oracle 1 

1.  cex = checkSafe(A, Cmay) 
2.  if cex == null 
3.         invoke Oracle2 
4.  If Query(cex, C) == “false” 
5.         return cex to L* 
6.  else 
7.  goto 1 



conjecture : Oracle 2 

1.  cex = checkPermissive(A, Cmust) 
2.  if cex == null 
3.         return A 
4.  If Query(cex, C) == “true” 
5.         return cex to L* 
6.  else 
7.  goto 1 



§  tools: LTSA, SPIN  
§  model derived from JPL’s Mars Exploration 

Rover (MER) Resource Arbiter 
–  local management of resource contention 

between resource consumers (e.g. science 
instruments, communication systems) 

–  consists of k user threads and one server 
thread (arbiter) 

ARB 

U5 
 
 

U4 
 
 request, cancel 

U3 
 
 

U2 
 
 

U1 
 
 

grant, deny 
   rescind 

Resource Arbiter 
§  checked mutual exclusion between 

resources (e.g. driving while capturing a 
camera image are incompatible) 

§  compositional verification scaled to >5 
users vs. monolithic verification ran out 
of memory [SPIN’06]  

example 1: Mars Exploration Rover 



§  tool: LTSA 
§  consists of control software, state estimator,  and 4 types of sensors 
§  input provided as UML state-charts, properties of type: 

–  “you need at least two operational sensors to proceed to next mode” 
§  3 bugs detected 
§  scaling achieved with compositional verification: 

–  monolithic verification runs out of memory after > 13M states  
–  compositional verification terminates successfully in secs. Largest state-space 

explored is less than 60K states, as opposed to > 13M. 

control 
software 

orbital 
state 

star planet  
tracker 

inertial  
navigation 

GPS 

docking  
sensor 

example 2: autonomous rendezvous & docking 



§  tools: LTSA, JavaPathfinder 
§  model of NASA Ames K9 Rover Executive 

–  executes flexible plans for autonomy 
–  consists of Executive thread and ExecCondChecker 

thread for monitoring state conditions 
–  checked for specific shared variable: if Executive reads 

its value, ExecCondChecker should not read the 
variable before the Executive clears it 

 

K9 Rover 

§  generated assumption of 6 states for model in LTSA [TACAS 2003] 
§  used generated assumption to check 8K lines of JAVA code translated from 10K 

lines of C++ code using the JavaPathfinder model checker [ICSE 2004] 
§  reduced memory used by JavaPathfinder > 3 times 
§  used generated assumption to perform assume-guarantee testing of C++ code 

using Eagle runtime monitoring framework [SAVCBS 2005, IET Software 2009]   

example 3: K9 Rover Executive 


