

Dimitra Giannakopoulou, NASA Ames

Automating
Compositional

Verification

collaborators

§  Corina Păsăreanu (CMU / NASA Ames)

§  and talented students / visitors:
Howard Barringer (Univ. of Manchester)
Colin Blundell (UPenn)
Jamieson Cobleigh (UMass, now MathWorks)
Michael Emmi (UCLA)
Mihaela Gheorgiu (Univ. of Toronto)
Chang-Seo Park (UC Berkeley)
Suzette Person (Univ. of Nebraska)
Rishabh Singh (MIT)

state-explosion problem

compositional verification

M2

M1

A

satisfies P?

"   check P on entire system: too many states!
"   use system’s natural decomposition into

components to break-up the verification
task

"   check components in isolation:

does system made up of M1 and M2 satisfy property P?

does M1 satisfy P?

§ 
“when we try to pick out anything by itself, we find

it hitched to everything else in the universe”
John Muir

assume-guarantee reasoning

“discharge” the
assumption

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉
M2

M1

A

satisfies P?

introduces assumptions / reasons about triples:

〈A〉 M 〈P〉 is true if whenever M is part of a
system that satisfies A, then the system must
also guarantee P

simplest assume-guarantee rule (ASYM):

how do we come up with the assumption?

the weakest assumption [ASE 2002]

§  given component M, property P, and the interface ∑ of M
with its environment, generate the weakest environment
assumption WA such that: 〈WA〉 M 〈P〉 holds

§  weakest means that for all environments E:

〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

M

 P

WA

weakest assumption in AG reasoning

〈true〉 M1 || M2 〈P〉 IFF 〈true〉 M2 〈WA〉
in other words:
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds
〈true〉 M2 〈WA〉 not holds implies 〈true〉 M1 || M2 〈P〉 not holds

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

weakest assumption makes
rule complete

for all E, 〈true〉 M || E 〈P〉 IFF 〈true〉 E 〈WA〉

formalisms

§  components modeled as finite state machines (FSM)
–  FSMs assembled with parallel composition operator “||”

•  synchronizes shared actions, interleaves remaining actions

§  a safety property P is a FSM
–  P describes all legal behaviors in terms of its alphabet

–  Perr – complement of P
•  determinize & complete P with an “error” state;
•  bad behaviors lead to error

–  component M satisfies P iff error state unreachable in (M || Perr)

§  assume-guarantee reasoning
–  assumptions and guarantees are FSMs
–  〈A〉 M 〈P〉 holds iff error state unreachable in (A || M || Perr)

example

Input Output
in send

ack

out
Input

 in send

ack

Output
 out send

ack

require in and out to alternate (property Order)

Ordererr in

 out

 in out

parallel composition

Input
 in send

ack

Output
 out send

ack

||

property satisfaction

||

Ordererr in

 out

 in out

Input
 in send

ack

crex. 1: (I0, O0) out (I0, Oerror)
crex. 2: (I0, O0) in (I1, O1) send (I2, O1) out (I2, O0) out (I2, Oerror)

0 1 2

0 1

assume-guarantee reasoning

||

Ordererr in

 out

 in out

Input
 in send

ack

send

out
send

ack

Assumption

crex 1: (I0, A0, O0) out X
crex 2: (I0, A0, O0) in (I1, A0, O1) send (I2, A1, O1) out (I2, A0, O0) out X

0 1 2

1 0

1 0

learning assumptions [TACAS 2003]

iterative solution +
intermediate results

L* learns unknown regular language
U (over alphabet Σ) and produces
minimal DFA A such that L(A) = U

(L* originally proposed by Angluin)

queries:
should word w be included in L(A)?

conjectures:
here is an A – is L(A) = U?

yes / no

yes!
no: word w should (not) be in L(A)

the oracle L* learner

 query c ↑αA

〈true〉 M2 〈Ai〉

oracle for WA in assume-guarantee reasoning

L*

query: string s
〈s〉 M1 〈P〉

conjecture: Ai 〈Ai〉 M1 〈P〉

false+crex c c ↑αA

c ↑αA

(simulate s on M1 || Perr)

(model check)

(model check)

false+crex c

〈WA〉 M1 〈P〉 holds
〈true〉 M2 〈WA〉 holds implies 〈true〉 M1 || M2 〈P〉 holds
〈true〉 M2 〈WA〉 does not hold implies 〈true〉 M1 || M2 〈P〉 does not hold

true / false

true

P satisfied

P violated
true

false

1.  〈A〉 M1 〈P〉
2.  〈true〉 M2 〈A〉

〈true〉 M1 || M2 〈P〉

characteristics

"   terminates with minimal automaton A for U
"   generates DFA candidates Ai: |A1| < | A2| < … < |A|
"   produces at most n candidates, where n = |A|
"   # queries: O(kn2 + n logm),

–  m is size of largest counterexample, k is size of alphabet
"   for assume-guarantee reasoning, may terminate early with a

smaller assumption than the weakest

assumptions conjectured by L* are not comparable semantically

example

we check: 〈true〉 Input || Output 〈Order〉
M1 = Input, M2 = Output, P = Order

assumption alphabet: {send, out, ack}

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

queries

E
Table T λ

S λ true

out false

S ⋅ Σ

ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

true
false
true

false
false
false

Ordererr in

 out out in

 Input
 in

ack

 send
Output

 send

ack

 out

candidate construction

E
Table T λ

S λ true

out false

S ⋅ Σ

ack
out
send
out, ack
out, out
out, send

S = set of prefixes
E = set of suffixes

2 states – error state omitted

 ack
send

Assumption A1
true
false
true

false
false
false

Ordererr in

 out out in

 Input
 in

ack

 send
Output

 send

ack

 out

counterexamples add to S

conjectures

 ack
send

A1: Oracle 1:
〈A1〉 Input 〈Order〉

Counterexample:
c = 〈in,send,ack,in〉

Return to L*:
c↑ Σ = 〈send,ack〉

Oracle 1:
〈A2〉 Input 〈Order〉

True

Oracle 2:
〈 true〉 Output 〈A2〉

True

 property Order holds
on Input || Output

 ack

 send

 out, send

A2: Queries

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send

1.  〈A1〉 M1 〈P〉
2.  〈true〉 M2 || M3 〈A1〉

3.  〈true〉 M1 || (M2 || M3) 〈P〉

more than 2 components [TACAS03, FMSD09]

1.  〈A2〉 M2 〈A1〉
2.  〈true〉 M3 〈A2〉

3.  〈true〉 M2 || M3 〈A1〉

symmetric rules: motivation

 ack,out,send

 ack

 send out

 ack

 send

 send

A4:

 ack

 send

 out, send

A2:
 ack
send

A1:

 ack
in

A1:
 ack

 in

 ack

A2:

 send

M1 = Input, M2 = Output, P = Order

M1 = Output, M2 = Input, P = Order

Ordererr in

 out out in

Output
 send

ack

 out
 Input

 in

ack

 send
 send

symmetric learning framework [SAVCBS05]

L*

〈A1〉 M1 〈P〉

L*

〈A2〉 M2 〈P〉

A1 A2

false false

L(coA1 || coA2) ⊆ L(P)

 counterexample
analysis

true true

false
P holds in M1||M2

P violated in M1||M2

refine A1

true

refine A2

refine A1 refine A2

§  beyond syntactic interfaces
(open file before close)

§  document implicit assumptions

§  safe: accept NO illegal

sequence of calls
§  permissive: accept ALL legal

sequences of calls

§  safe & permissive interface =
weakest assumption

interfaces

(queries)
should word w be included in L(A)?

(conjectures)
here is an A – is L(A) = U?
(is A safe and permissive?)

yes / no

yes!
no: word w should (not) be in L(A)

the oracle L* learner

checkSafe(interface A, FSM M)

(ok, err)

p

(A || M)

checkPermissive(interface A, FSM M)

(err,ok)

(err,err)

p
p

(Aerr || M)
if M is non-deterministic,
permissiveness check
requires subset construction

ASE 2002
Alur et al, 2005

Henzinger et al, 2005

permissiveness heuristics [FASE 2009]

(err,ok)

(err,err)

p
p

(Aerr || M)
model check for (err, ok)

query “p”
reached (err, ok) by “p”

backtrack & continue search…
no (“p” should not be in A)

resolves non-determinism
dynamically & selectively;

remember, it’s a heuristic

M0

A0

M1

A1

M2

A1

a b

Merror

Aerror

b

M1

Aerror

a

c

assume-guarantee reasoning

JavaPathfinder

interface generation / discharge

UML statecharts

http://babelfish.arc.nasa.gov/trac/jpf
jpf-cv

infinite components [CAV 2010]
§  use predicate abstraction (e.g., x ≥ 0, x < 0)
§  generate may and must abstraction

must transition

may transition

an interface safe w.r.t. Cmay and permissive w.r.t. Cmust
is safe and permissive w.r.t. concrete component C

Lillegal(Cmust)	

	
 	
 	
 Lillegal(C)	

Lillegal(Cmay)	

Llegal(Cmay)	

	
 	
 	
 Llegal(C)	

Llegal(Cmust)	

Query(σ, C)

1.  if checkSafe(σ,Cmust) != null
2.  return “no”
3.  cex = checkSafe(σ,Cmay)
4.  if cex == null
5.  return “yes”
6.  Preds = Preds U Refine(cex)
7.  Query(σ, C)

If concrete component is deterministic, so is the must abstraction…
ARMC model checker: Java2SDK library classes, OpenSSL, NASA CEV model

Lillegal(Cmust)	

	
 	
 	
 Lillegal(C)	

Lillegal(Cmay)	

Llegal(Cmay)	

	
 	
 	
 Llegal(C)	

Llegal(Cmust)	

related work
§  assume-guarantee reasoning for code (ICSE 2004, SAVCBS 2005,

IET Software 2009)
§  learning with alphabet refinement (TACAS 2007; also Chaki et al.)
§  learning assumptions for interface automata (FM 2008)
§  assume-guarantee abstraction refinement (CAV 2008)

"   compositional verification in symbolic setting (Alur et al. 05)
"   minimal assumptions as separating automata for languages L(M2)

and L(M1) ∩ L(coP) (Gupta et al. 07, Chen et al. 09)
"   learning omega-regular languages for liveness (Farzan et al. 08)
"   learning non-deterministic automata (Bollig et al. 09)
"   learning Boolean functions (Chen et al. 10)
"   assumption generation in probabilistic setting (Feng et al. 10)

summary and food for thought…

§  techniques are generic
§  better applied at design level
§  not a panacea…

–  perform well when alphabets & assumptions are small

§  what makes a system amenable to compositional techniques?
§  design for compositional verification; combine with other design

approaches
§  how can we make it practical for real systems? what types of

interfaces are useful in practice?
§  discovering good system decompositions
§  liveness, timed & probabilistic systems, non functional properties
§  multi core / parallelization?

thank you!

invoke a model checker

within a model checker?

permissiveness check

MC: model check for (Mi, Aerror)
reached (err, ok) by trace t

backtrack and continue search
if (memoized(t) == no) // t is spurious

if (query(t) == yes)
return t to L* // not permissive

else // memoized(t) == yes or t not in memoized
model checker produces t

else restart at MC

conjecture : Oracle 1

1.  cex = checkSafe(A, Cmay)
2.  if cex == null
3.  invoke Oracle2
4.  If Query(cex, C) == “false”
5.  return cex to L*
6.  else
7.  goto 1

conjecture : Oracle 2

1.  cex = checkPermissive(A, Cmust)
2.  if cex == null
3.  return A
4.  If Query(cex, C) == “true”
5.  return cex to L*
6.  else
7.  goto 1

§  tools: LTSA, SPIN
§  model derived from JPL’s Mars Exploration

Rover (MER) Resource Arbiter
–  local management of resource contention

between resource consumers (e.g. science
instruments, communication systems)

–  consists of k user threads and one server
thread (arbiter)

ARB

U5

U4

 request, cancel

U3

U2

U1

grant, deny
 rescind

Resource Arbiter
§  checked mutual exclusion between

resources (e.g. driving while capturing a
camera image are incompatible)

§  compositional verification scaled to >5
users vs. monolithic verification ran out
of memory [SPIN’06]

example 1: Mars Exploration Rover

§  tool: LTSA
§  consists of control software, state estimator, and 4 types of sensors
§  input provided as UML state-charts, properties of type:

–  “you need at least two operational sensors to proceed to next mode”
§  3 bugs detected
§  scaling achieved with compositional verification:

–  monolithic verification runs out of memory after > 13M states
–  compositional verification terminates successfully in secs. Largest state-space

explored is less than 60K states, as opposed to > 13M.

control
software

orbital
state

star planet
tracker

inertial
navigation

GPS

docking
sensor

example 2: autonomous rendezvous & docking

§  tools: LTSA, JavaPathfinder
§  model of NASA Ames K9 Rover Executive

–  executes flexible plans for autonomy
–  consists of Executive thread and ExecCondChecker

thread for monitoring state conditions
–  checked for specific shared variable: if Executive reads

its value, ExecCondChecker should not read the
variable before the Executive clears it

K9 Rover

§  generated assumption of 6 states for model in LTSA [TACAS 2003]
§  used generated assumption to check 8K lines of JAVA code translated from 10K

lines of C++ code using the JavaPathfinder model checker [ICSE 2004]
§  reduced memory used by JavaPathfinder > 3 times
§  used generated assumption to perform assume-guarantee testing of C++ code

using Eagle runtime monitoring framework [SAVCBS 2005, IET Software 2009]

example 3: K9 Rover Executive

