Automating
Compositional
Verification

Dimitra Giannakopoulou, NASA Ames

collaborators

= Corina Pasareanu (CMU / NASA Ames)

* and talented students / visitors:
Howard Barringer (Univ. of Manchester)
Colin Blundell (UPenn)
Jamieson Cobleigh (UMass, now MathWorks)
Michael Emmi (UCLA)
Mihaela Gheorgiu (Univ. of Toronto)
Chang-Seo Park (UC Berkeley)
Suzette Person (Univ. of Nebraska)
Rishabh Singh (MIT)

state-explosion problem

compositional verification

does system made up of M, and M, satisfy property P?

» check P on entire system: too many states!

» use system s natural decomposition into
components to break-up the verification
task

check components in isolation:

does M, satisfy P?

“when we try to pick out anything by itself, we find
it hitched to everything else in the universe”

John Muir

assume-guarantee reasoning

introduces assumptions / reasons about triples:

(A) M (P)| is true if whenever M is part of a

system that satisfies A, then the system must
also guarantee P

simplest assume-guarantee rule (AsyMm):

L (A M, P “discharge” the
2. (true) M, (A) <=t assumption

(true) M, || M, (P)

how do we come up with the assumption!?

the weakest assumption [ASE 2002]

e

= given component M, property P, and the interface) of M
with its environment, generate the weakest environment
assumption WA such that: (WA) M (P) holds

= weakest means that for all environments E:

(true) M || E (P) IFF (true) E (WA)

weakest assumption in AG reasoning

. (A) M, (P) |
2. (true) M, (A) weakest assumption makes
rule complete

(true) M, || M, (P)

for all E, (true) M || E (P) IFF (true) E (WA)

(true) M, || M, (P) IFF (true) M, (WA)

in other words:

(true) M, (WA) holds implies (true) M, || M, (P) holds

(true) M, (WA) not holds implies {(true) M, || M, (P) not holds

formalisms

" components modeled as finite state machines (FSM)
— FSMs assembled with parallel composition operator “||”
* synchronizes shared actions, interleaves remaining actions
= 3 safety property P is a FSM

— P describes all legal behaviors in terms of its alphabet

— P, — complement of P

* determinize & complete P with an “error” state;

* bad behaviors lead to error

— component M satisfies P iff error state unreachable in (M || P,,,)

" assume-guarantee reasoning

— assumptions and guarantees are FSMs
— (A) M (P) holds iff error state unreachable in (A || M || P

err)

example

require in and out to alternate (property Order)

o 1
—

ack

parallel composition

property satisfaction

crex. I: (ly, Op) out (g, Ogrror)
crex. 2: (ly, Op) in (14, O4) send (l,, O,) out (l,, Oy) out (l,, Ogror)

assume-guarantee reasoning

Assumption
send

0>
out

send

crex I: (Iy, Ay, Op) out X
crex 2: (15, Ag, Op) in (14, Ay, O4) send (l,, A;, O,) out (l,, Ay, Op) out X

learning assumptions [TACAS 2003]

iterative solution +
intermediate results

L* learns unknown regular language

U (over alphabet X) and produces

minimal DFA A such that L(A) = U
(L* originally proposed by Angluin)

L * learner the oracle

queries:
should wiord w, be‘included-in L(A)?

yes / no

cohjectures:
hére is an'/A —is L(A) = U!?
yes!

no: word w should (not) be in L(A)

oracle for WA in assume-guarantee reasoning

L*

e

true / false

query:string s

<

>

(s) M, (P)

(simulate son M, || P.,.)

c TaA

falsetcrex c

conjecture: A,

<

} true

({true) M, (A)

. (A M, (P)
2. (true) M, (A)

(true) M, || M, (P)

* (A)M, (P) |(model check)

(model check)

> P satisfied

false+crex c

c oA

query ¢ TaA
]

false

true

(WA) M, (P) holds

(true) M, (WA) holds implies (true) M, || M, (P) holds

true) M, (WA) does not hold implies (true) M, || M, (P) does not hold
2 P | 2

> P violated

characteristics

assumptions conjectured by L* are not comparable semantically

» terminates with minimal automaton A for U
» generates DFA candidates A: [A|| < |A,| < ... <|A]
» produces at most n candidates, where n = |A|
» # queries: O(kn? + n logm),
— m is size of largest counterexample, k is size of alphabet

» for assume-guarantee reasoning, may terminate early with a
smaller assumption than the weakest

example

we check: (true) Input || Output (Order)
M, = Input, M, = Output, P = Order

assumption alphabet: {send, out, ack}

queries

E
Table T A

S A true
out false

ack true

S°2 | out false
send true

out, ack false

out, out false

out, send false

S = set of prefixes
E = set of suffixes

candidate construction

E
Table T A .
S A true 7 2 states — error state omitted
out false
ack true _
Assumption A
S' 2| oyt false P 1
send true ack
out, ack false send
out, out false
out, send false

counterexamples add to S

S = set of prefixes
E = set of suffixes

conjectures

‘ Oracle 1: Counterexample: Return to L*:
k ‘ ‘
on (:C) (A,) Input (Order) c = (in,send,ack,in) ct 2 = (send,ack)

send

A,: send
Queries Oracle 1: Oracle 2:
) 3K mm) (A,) Input (Order)y EEEp (true) Output (A,)
True U
out, send

‘ property Order holds
on Input || Output

more than 2 components [TACASO03, FMSDO09]

1. (A My (A
1. (A) M, (P) 2. (true) M; (A,)
2. (true) M, || M; (A) _ (true) My || M3 (A)
mmmm) (true) M, || (M, || M;) (P)

symmetric rules: motivation

M1 = Input, M, = Output, P = Order

A,: send
s:zZCo) ook
out, send
Ml = OLITPLIT Mz = Input, P = Order ack,out,send

in

ack
100 = (0 Qe

ack

symmetric learning framework [SAVCBS05]

refine A, ‘) refine A,
. L* L* ;
refine A, A, A, refine A,
V} A 4
(A1) M, (P) (A2) M, (P)
false false
true true

L(coA || coA;) S L(P) g _
———~ , Pholdsin M,||M,

v

false

\ 4

counterex.ample — P violated in M,||M,
analysis

interfaces

beyond syntactic interfaces
(open file before close)

document implicit assumptions

safe: accept NO illegal
sequence of calls

permissive: accept ALL legal
sequences of calls

safe & permissive interface =
weakest assumption

L * learner the oracle

(queries)
should word w be_ included in L(A)?

yes / ho

(conjectures)

here is an A — is L(A) = U!?

(is\A safe and permissive?) yes!
no: word w should (not) be in L(A)

checkSafe(interface A, FSM M)

(Al M)

checkPermissive(interface A, FSM M)

(Aerr [| M)

if M is non-deterministic,
permissiveness check
requires subset construction

ASE 2002
Alur et al, 2005

Henzinger et al, 2005

permissiveness heuristics [FASE 2009]

(Aerr [| M)

model check for (err, ok)

reached (err, ok) by "p
query “P ?

6 77

no (p should not beinA)
backtrack & continue search...

resolves non-determinism
dynamically & selectively;

remember, it’ s a heuristic

JavaPathfinder

UML statecharts

jpf-cv
http://babelfish.arc.nasa.gov/trac/jpf

" use predicate abstraction (e.g., x 2 0, x < 0)

" generate may and must abstraction

must transition Lillegal(C)

Lillegal(cmust)

X may transition

00600

Llegal(c)

Llegal (Cmay)

an interface safe w.r.t. C™¥ and permissive w.r.t. CMust
is safe and permissive w.r.t. concrete component C

Query(c, C)

N oUW =

if checkSafe(c,C™must) 1= null

11 77
return no
cex = checkSafe(c,Cma)

if cex == null

Lillegal(c)

Lillegal(cmust)

return “yes'
Preds = Preds U Refine(cex)

Query(c, C)

Llegal(cmay)

If concrete component is deterministic, so is the must abstraction...
ARMC model checker: Java2SDK library classes, OpenSSL, NASA CEV model

related work

" assume-guarantee reasoning for code (ICSE 2004, SAVCBS 2005,
IET Software 2009)

* |earning with alphabet refinement (TACAS 2007; also Chaki et al.)
" |earning assumptions for interface automata (FM 2008)
" assume-guarantee abstraction refinement (CAV 2008)

» compositional verification in symbolic setting (Alur et al. 05)

v

minimal assumptions as separating automata for languages L(M,)
and L(M,) M L(coP) (Gupta et al. 07, Chen et al. 09)

learning omega-regular languages for liveness (Farzan et al. 08)
learning non-deterministic automata (Bollig et al. 09)

learning Boolean functions (Chen et al. |0)

vy v v ¥

assumption generation in probabilistic setting (Feng et al. |0)

summary and food for thought...

techniques are generic
better applied at design level

not a panacea...
— perform well when alphabets & assumptions are small

what makes a system amenable to compositional techniques!?

design for compositional verification; combine with other design
approaches

how can we make it practical for real systems?! what types of
interfaces are useful in practice!?

discovering good system decompositions
liveness, timed & probabilistic systems, non functional properties
multi core / parallelization?

thank you!

invoke a model checker
within a model checker?

permissiveness check

> MC: model check for (M, A

reached (err, ok) by trace t

€erro I‘)

if (memoized(t) == no) // t is spurious
backtrack and continue search

else // memoized(t) == yes or t not in memoized
model checker produces t

if (query(t) == yes)
return t to L* // not permissive

else restart at MC

conjecture : Oracle |

cex = checkSafe(A, C™)

if cex == null
invoke Oracle2

If Query(cex, C) == “false”
return cex to L*

else

N o U1 AW DN —

goto |

conjecture : Oracle 2

cex = checkPermissive(A, C™Must)
if cex == null
return A
If Query(cex, C) == “true”
return cex to L*

else

N o U1 AW DN —

goto |

example |: Mars Exploration Rover

= tools: LTSA, SPIN

* model derived from JPL’ s Mars Exploration
Rover (MER) Resource Arbiter

— local management of resource contention
between resource consumers (e.g. science

instruments, communication systems)

— consists of k user threads and one server

thread (arbiter)

Resource Arbiter

" checked mutual exclusion between
resources (e.g. driving while capturing a
camera image are incompatible)

= compositional verification scaled to >5
users vs. monolithic verification ran out

of memory [SPIN’ 06]

grant, deny

request, cancel>

rescind

ARB

example 2: autonomous rendezvous & docking

tool: LTSA

consists of control software, state estimator, and 4 types of sensors

input provided as UML state-charts, properties of type:
— “you need at least two operational sensors to proceed to next mode”

3 bugs detected

scaling achieved with compositional verification:

— monolithic verification runs out of memory after > |3M states

— compositional verification terminates successfully in secs. Largest state-space

explored is less than 60K states, as opposed to > |3M.

docking
sensor

control
software

orbital
state

star planet
tracker

inertial
navigation

GPS

example 3: K9 Rover Executive

W K9 Rover

L——

" tools: LTSA, JavaPathfinder
* model of NASA Ames K9 Rover Executive
— executes flexible plans for autonomy

— consists of Executive thread and ExecCondChecker
thread for monitoring state conditions

— checked for specific shared variable: if Executive reads
its value, ExecCondChecker should not read the
variable before the Executive clears it

= generated assumption of 6 states for model in LTSA [TACAS 2003]

= used generated assumption to check 8K lines of JAVA code translated from 10K
lines of C++ code using the JavaPathfinder model checker [ICSE 2004]

" reduced memory used by JavaPathfinder > 3 times

" used generated assumption to perform assume-guarantee testing of C++ code
using Eagle runtime monitoring framework [SAVCBS 2005, IET Software 2009]

