Curry-Howard Correspondence
for Classical Logic

% Stéphane Graham-Lengrand
<evirae CNRS, Laboratoire d’Informatique de I'X

Stephane.Lengrand@Polytechnique.edu

X

Lecture IV
Classical Realisability

Overview

def. by induction on ¢ def. by induction on A

t is of type A t realises A t is a proof of A
t: A tIFA
Typing Realisability
Proof-Search Curry-Howard corr.

Computational interpretation of logic

Like typing, realising is a relation between terms and formulae

Example

Consider a closed term ¢:

—t:A—B ift=vt' withz:A-t:B have to consider terms

)
t1: C—A—B

ort = t1 to with < to:C

| for some C

with free variables

if for all t’ such that ' IF A,

t-A—B
we havett' IF B

may consider closed terms only

Why is this interesting?

Typing has been sold to you for safety:
“Well-typed programs cannot go wrong” (Milner)

Hence the expression ”

We could argue that in fact, we do not care about typing, but realisability:

When implementing a function from integers to integers,
we do not care whether our code ¢ satisfies t: int—int

(in other words, whether t = Az.t’ with...or ¢ = t1 t9 with...)

But what we really care about is whether,
when applying t to an integer, we compute a integer.

In other words, whether ¢t IF int—int

So, why did we ever do typing?

Well, because realisability is undecidable

(given t and A, determining whether ¢ |- A)

whereas typing is (usually) decidable (with exceptions like Curry-style System F, etc)

(given t and A, determining whether ¢ : A)
typing implies realising:
ift: Athent |F A

It is the
typing is about syntax, realisability is about semantics

(writing ¢ [- A for ¢ € [A], using notation of previous lectures)

A slogan:

Typing is a decidable approximation of realisability

Origins

Introduced by Kleene to formalise the Brouwer—Heyting—Kolmogorov interpretation of
intuitionistic logic
tIF AL AN Ay ift = (t1,t0) withty IF Ay and to IF Ag
tlE ALV Ay ittt =inj;(t')witht' IF A;fori =0ori=1
tIF Ay—As iftis a computable function such that, whenever u |- A1, t(u) IF Ag
tIF3zA(x) ift = (a,t’) with a an element of the “model” and t’ I+ A(a)
tIFVaxA(x) iftis acomputable function such that,

for all elements a of the “model”, t(a) IF A(a)

Parameterised by a way to interpret atomic formulae
t ranges over mathematical objects such as pairs, computable functions, etc
can be implemented as a number
(ok for pairs, injections, & computable functions can be assigned their Godel numbers)
can be implemented as an untyped A-term (untyped A-calculus being Turing-complete)

there comes Curry-Howard correspondence
7

A few remarks

But typed A-calculus is not Turing-complete:
if we only use typed \-terms as realisers, we are missing some computable functions,

and hence some potential realisers!

Also, think of how to realise Va® A(z) and how to prove it:

In order to realise Vx> A(z), we can, taking an inhabitant n of S as input,

give different realisers of A(n) depending on n (in any computable way)

In order to prove Y2 A(z), we need to produce a single proof, of A(z)

(i.e. a generic way of proving A(n), not depending on n)

And what about classical logic

Origins are really about constructivism:
a realiser of 3z A(x) can only be a pair whose first component is a witness

a realiser of A1 V A9 can only be one of the 2 injections

Doing something similar in classical logic seems difficult

But, since Griffin’s connection between control and classical proofs,

realisability has received renewed attention, mostly by Krivine et al.

Disclaimer:
Classical realisability only works for confluent restrictions of classical calculi
(e.g. CBV, CBN, polarity-based reduction)

Principles of classical realisability

e take an orthogonality relation _L between “proofs” and “counter-proofs” (i.e. between

things that could be realisers), closed under anti-reduction
e define an interpretation of formulae using orthogonal constructions

AV A = A{inj(t) | t € [Ai],}

dxAl, = {{a,?) [t € 4], .0}

[N], = ([N*])+ if Nis A; A As orVz A
[Pl = ([P],)* it Pis Ay V As or 3zA

By taking t I- A to meant € | A]], Adequacy now works in classical logic too:

If.1: A . then 1 tiF A

10

Remarks

Syntax for ¢ deliberately left abstract, but can use Curien-Herbelin-Wadler’s calculus
(see exercise sheet)

You can take realisers to not be terms themselves,

but a semantic interpretation of terms (in a specific model)

By picking such interpretations & the orthogonality relation,

Adequacy can give you properties of typed terms, e.g.

(Again: for those confluent restrictions of classical calculi such as CBV/CBN, etc

Otherwise, more advanced technique required: symmetric reducibility candidates)

Some properties lost (compared to intuitionistic realisability):

Because we have taken orthogonals,

From ¢ I A1 V Ay we do not necessarily have t of the form inj; (t') with t’ I A;

From t I 3x A(x) we do not necessarily have t of the form {(a, t’) with @ witness and .. .

Witness extraction fails in classical realisability (as expected). ..
...unless A(x) is of a particular form! (see exercise sheet)

11

Conclusion

Realisability is a semantical notion
that is entailed by typing

that can be adapted to classical logic,

despite having been introduced for very constructivist motivations
that relates to polarisation and focusing (see Dale’s lectures)

that allows to build models from other models to prove relative consistency theorems:
To prove “Theory A is consistent if Theory B is consistent”,

it suffices to transform a given model of B into a model of A.

Set theorists do this everyday with the notion of forcing: p IF A “p forces A”

Krivine showed that realisability generalises forcing.

With realisability, set theory axioms can be explained with computational notions

(control, clock, global state and memory management, etc.)

12

Questions?

13

