
Curry-Howard Correspondence

for Classical Logic

Stéphane Graham-Lengrand

CNRS, Laboratoire d’Informatique de l’X

Stephane.Lengrand@Polytechnique.edu

Lecture IV
Classical Realisability

2

Overview

Proof-Search

def. by induction on t

t is of type A

t :A

Typing

def. by induction on A

t realises A

t A

Realisability

Curry-Howard corr.

Computational interpretation of logic

t is a proof of A

Like typing, realising is a relation between terms and formulae

3

Example

Consider a closed term t:

` t :A→B if t = λx.t′ with x :A ` t′ :B have to consider terms

with free variables

or t = t1 t2 with

t1 :C→A→B

t2 :C

for some C

t A→B
if for all t′ such that t′ A,

we have t t′ B
may consider closed terms only

4

Why is this interesting?

Typing has been sold to you for safety:

“Well-typed programs cannot go wrong” (Milner)

Hence the expression “type-safety”

We could argue that in fact, we do not care about typing, but realisability:

When implementing a function from integers to integers,

we do not care whether our code t satisfies t :int→int

(in other words, whether t = λx.t′ with. . . or t = t1 t2 with. . .)

But what we really care about is whether,

when applying t to an integer, we compute a integer.

In other words, whether t int→int

5

So, why did we ever do typing?

Well, because realisability is undecidable

(given t and A, determining whether t A)

whereas typing is (usually) decidable (with exceptions like Curry-style System F, etc)

(given t and A, determining whether t :A)

BUT typing implies realising:

if t :A then t A

It is the Adequacy Lemma:

typing is about syntax, realisability is about semantics

(writing t A for t ∈ JAK, using notation of previous lectures)

A slogan:

Typing is a decidable approximation of realisability

6

Origins

Introduced by Kleene to formalise the Brouwer–Heyting–Kolmogorov interpretation of

intuitionistic logic

t A1 ∧A2 if t = 〈t1, t2〉 with t1 A1 and t2 A2

t A1 ∨A2 if t = inji(t
′) with t′ Ai for i = 0 or i = 1

t A1→A2 if t is a computable function such that, whenever u A1, t(u) A2

t ∃xA(x) if t = 〈a, t′〉 with a an element of the “model” and t′ A(a)

t ∀xA(x) if t is a computable function such that,

for all elements a of the “model”, t(a) A(a)

Parameterised by a way to interpret atomic formulae

t ranges over mathematical objects such as pairs, computable functions, etc

can be implemented as a number

(ok for pairs, injections, & computable functions can be assigned their Gödel numbers)

can be implemented as an untyped λ-term (untyped λ-calculus being Turing-complete)

there comes Curry-Howard correspondence
7

A few remarks

But typed λ-calculus is not Turing-complete:

if we only use typed λ-terms as realisers, we are missing some computable functions,

and hence some potential realisers!

Also, think of how to realise ∀xSA(x) and how to prove it:

In order to realise ∀xSA(x), we can, taking an inhabitant n of S as input,

give different realisers of A(n) depending on n (in any computable way)

In order to prove ∀xSA(x), we need to produce a single proof, of A(x)

(i.e. a generic way of proving A(n), not depending on n)

8

And what about classical logic

Origins are really about constructivism:

a realiser of ∃xA(x) can only be a pair whose first component is a witness

a realiser of A1 ∨A2 can only be one of the 2 injections

Doing something similar in classical logic seems difficult

But, since Griffin’s connection between control and classical proofs,

realisability has received renewed attention, mostly by Krivine et al.

Disclaimer:

Classical realisability only works for confluent restrictions of classical calculi

(e.g. CBV, CBN, polarity-based reduction)

9

Principles of classical realisability

� take an orthogonality relation ⊥ between “proofs” and “counter-proofs” (i.e. between

things that could be realisers), closed under anti-reduction

� define an interpretation of formulae using orthogonal constructions

[A1 ∨A2]σ := {inji(t) | t ∈ JAiKσ}

[∃xA]σ := {〈a, t〉 | t ∈ JAKσ,x7→a}

JNKσ := (
[
N⊥]

σ
)⊥ if N is A1 ∧A2 or ∀xA

JP Kσ := ([P]σ)
⊥⊥ if P is A1 ∨A2 or ∃xA

By taking t A to mean t ∈ JAK, Adequacy now works in classical logic too:

If `c t :A (t classical proof of A), then for any ⊥ (closed under anti-reduction) t A

10

Remarks

� Syntax for t deliberately left abstract, but can use Curien-Herbelin-Wadler’s calculus

(see exercise sheet)

� You can take realisers to not be terms themselves,

but a semantic interpretation of terms (in a specific model)

� By picking such interpretations & the orthogonality relation,

Adequacy can give you properties of typed terms, e.g. Strong Normalisation

(Again: for those confluent restrictions of classical calculi such as CBV/CBN, etc

Otherwise, more advanced technique required: symmetric reducibility candidates)

� Some properties lost (compared to intuitionistic realisability):

Because we have taken orthogonals,

From t A1 ∨A2 we do not necessarily have t of the form inji(t
′) with t′ Ai

From t ∃xA(x) we do not necessarily have t of the form 〈a, t′〉 with a witness and . . .

Witness extraction fails in classical realisability (as expected). . .
. . . unless A(x) is of a particular form! (see exercise sheet)

11

Conclusion

Realisability is a semantical notion

� that is entailed by typing

� that can be adapted to classical logic,

despite having been introduced for very constructivist motivations

� that relates to polarisation and focusing (see Dale’s lectures)

� that allows to build models from other models to prove relative consistency theorems:

To prove “Theory A is consistent if Theory B is consistent”,

it suffices to transform a given model of B into a model of A.

Set theorists do this everyday with the notion of forcing: p A “p forces A”

Krivine showed that realisability generalises forcing.

With realisability, set theory axioms can be explained with computational notions

(control, clock, global state and memory management, etc.)

12

Questions?

13

