Curry-Howard Correspondence

for Classical Logic

Stéphane Graham-Lengrand CNRS, Laboratoire d'Informatique de l'X

Stephane.Lengrand@Polytechnique.edu

Lecture IV Classical Realisability

0			
Proof-Search	Curry-Howard corr.		
	Typing	Realisability	_
	$t\!:\!A$	$t \Vdash A$	
	t is of type A	t realises A	t is a proof of A
	def. by induction on t	def. by induction on ${\cal A}$	

Computational interpretation of logic

Like typing, realising is a relation between terms and formulae

Example

Consider a closed term *t*:

$$\begin{split} \vdash t : A \to B & \text{ if } t = \lambda x.t' \text{ with } x : A \vdash t' : B \\ \text{ or } t = t_1 \ t_2 \text{ with } \begin{cases} t_1 : C \to A \to B \\ t_2 : C \\ \text{ for some } C \end{cases} \end{split}$$

have to consider terms with free variables

$t \Vdash A {\rightarrow} B$	if for all t' such that $t' \Vdash A$,
	we have $t \ t' \Vdash B$

may consider closed terms only

Why is this interesting?

Typing has been sold to you for safety:

"Well-typed programs cannot go wrong" (Milner)

Hence the expression "type-safety"

We could argue that in fact, we do not care about typing, but realisability:

When implementing a function from integers to integers,

we do not care whether our code t satisfies $t:int \rightarrow int$

(in other words, whether $t = \lambda x \cdot t'$ with... or $t = t_1 t_2$ with...)

But what we really care about is whether,

when applying t to an integer, we compute a integer.

In other words, whether $t \Vdash \text{int} \rightarrow \text{int}$

So, why did we ever do typing?

Well, because realisability is undecidable

(given t and A, determining whether $t \Vdash A$)

whereas typing is (usually) decidable (with exceptions like Curry-style System F, etc) (given t and A, determining whether t : A)

BUT typing implies realising:

if t : A then $t \Vdash A$

It is the **Adequacy Lemma**:

typing is about syntax, realisability is about semantics

(writing $t \Vdash A$ for $t \in \llbracket A \rrbracket$, using notation of previous lectures)

A slogan:

Typing is a decidable approximation of realisability

Origins

Introduced by Kleene to formalise the Brouwer–Heyting–Kolmogorov interpretation of intuitionistic logic

$$t \Vdash A_1 \land A_2$$
 if $t = \langle t_1, t_2
angle$ with $t_1 \Vdash A_1$ and $t_2 \Vdash A_2$

$$t \Vdash A_1 \lor A_2$$
 if $t = \operatorname{inj}_i(t')$ with $t' \Vdash A_i$ for $i = 0$ or $i = 1$

 $t \Vdash A_1 \rightarrow A_2$ if t is a computable function such that, whenever $u \Vdash A_1$, $t(u) \Vdash A_2$

 $t \Vdash \exists x A(x)$ if $t = \langle a, t' \rangle$ with a an element of the "model" and $t' \Vdash A(a)$

$$t \Vdash \forall x A(x)$$
 if t is a computable function such that,
for all elements a of the "model", $t(a) \Vdash A(a)$

Parameterised by a way to interpret atomic formulae

t ranges over mathematical objects such as pairs, computable functions, etc can be implemented as a number

(ok for pairs, injections, & computable functions can be assigned their Gödel numbers) can be implemented as an untyped λ -term (untyped λ -calculus being Turing-complete)

there comes Curry-Howard correspondence

But typed λ -calculus is not Turing-complete:

if we only use typed λ -terms as realisers, we are missing some computable functions, and hence some potential realisers!

Also, think of how to realise $\forall x^{S}A(x)$ and how to prove it:

In order to realise $\forall x^S A(x)$, we can, taking an inhabitant n of S as input, give different realisers of A(n) depending on n (in any computable way)

In order to prove $\forall x^S A(x)$, we need to produce a single proof, of A(x)(i.e. a generic way of proving A(n), not depending on n)

And what about classical logic

Origins are really about constructivism:

a realiser of $\exists x A(x)$ can only be a pair whose first component is a witness a realiser of $A_1 \lor A_2$ can only be one of the 2 injections

Doing something similar in classical logic seems difficult

But, since Griffin's connection between control and classical proofs, realisability has received renewed attention, mostly by Krivine et al.

Disclaimer:

Classical realisability only works for confluent restrictions of classical calculi (e.g. CBV, CBN, polarity-based reduction)

Principles of classical realisability

- take an orthogonality relation ⊥ between "proofs" and "counter-proofs" (i.e. between things that could be realisers), closed under anti-reduction
- define an interpretation of formulae using orthogonal constructions

$$\begin{split} & [A_1 \lor A_2]_{\sigma} & := \{ \operatorname{inj}_i(t) \mid t \in \llbracket A_i \rrbracket_{\sigma} \} \\ & [\exists x A]_{\sigma} & := \{ \langle a, t \rangle \mid t \in \llbracket A \rrbracket_{\sigma, x \mapsto a} \} \\ & \llbracket N \rrbracket_{\sigma} & := (\llbracket N^{\perp} \rrbracket_{\sigma})^{\perp} & \text{if } N \text{ is } A_1 \land A_2 \text{ or } \forall x A \\ & \llbracket P \rrbracket_{\sigma} & := (\llbracket P \rrbracket_{\sigma})^{\perp \perp} & \text{if } P \text{ is } A_1 \lor A_2 \text{ or } \exists x A \end{split}$$

By taking $t \Vdash A$ to mean $t \in \llbracket A \rrbracket$, Adequacy now works in classical logic too:

If $\vdash_{c} t : A$ (*t* classical proof of *A*), then for any \perp (closed under anti-reduction) $t \Vdash A$

• Syntax for t deliberately left abstract, but can use Curien-Herbelin-Wadler's calculus

(see exercise sheet)

- You can take realisers to not be terms themselves, but a semantic interpretation of terms (in a specific model)
- By picking such interpretations & the orthogonality relation,
 Adequacy can give you properties of typed terms, e.g. Strong Normalisation
 (Again: for those confluent restrictions of classical calculi such as CBV/CBN, etc
 Otherwise, more advanced technique required: symmetric reducibility candidates)
- Some properties lost (compared to intuitionistic realisability):

Because we have taken orthogonals,

From $t \Vdash A_1 \lor A_2$ we do not necessarily have t of the form $\operatorname{inj}_i(t')$ with $t' \Vdash A_i$ From $t \Vdash \exists x A(x)$ we do not necessarily have t of the form $\langle a, t' \rangle$ with a witness and ... Witness extraction fails in classical realisability (as expected)... ... unless A(x) is of a particular form! (see exercise sheet) Realisability is a semantical notion

- that is entailed by typing
- that can be adapted to classical logic,
 despite having been introduced for very constructivist motivations
- that relates to polarisation and focusing (see Dale's lectures)
- that allows to build models from other models to prove relative consistency theorems: To prove "Theory A is consistent if Theory B is consistent", it suffices to transform a given model of B into a model of A. Set theorists do this everyday with the notion of forcing: *p* ⊨ *A* "p forces *A*" Krivine showed that realisability generalises forcing. With realisability, set theory axioms can be explained with computational notions

(control, clock, global state and memory management, etc.)

Questions?