
Curry-Howard Correspondence

for Classical Logic

Stéphane Graham-Lengrand

CNRS, Laboratoire d’Informatique de l’X

Stephane.Lengrand@Polytechnique.edu

Lecture II
Confluence?

2

Review from the previous lecture

Easy enough to introduce proof-terms to represent classical proofs

symmetry of classical logic = symmetry between programs and continuations

use of classical reasoning = control = programs can capture their continuations

3

Curien-Herbelin-Wadler - typing

Γ, x :A `̀̀ x :A ; ∆ Γ ; α :A `̀̀ α :A,∆

Γ, x :A `̀̀ t :B ; ∆

Γ `̀̀ λx.t :A→B ; ∆

Γ `̀̀ t :A ; ∆ Γ ; e :B `̀̀ ∆

Γ ; t ::e :A→B `̀̀ ∆

Γ `̀̀ t1 :A1 ; ∆ Γ `̀̀ t2 :A2 ; ∆

Γ `̀̀ 〈t1, t2〉 :A1 ∧A2 ; ∆

Γ ; e :Ai `̀̀ ∆

Γ ; inji(e) :A1 ∧A2 `̀̀ ∆

Γ `̀̀ t :Ai ; ∆

Γ `̀̀ inji(t) :A1 ∨A2 ; ∆

Γ ; e1 :A1 `̀̀ ∆ Γ ; e2 :A2 `̀̀ ∆

Γ ; 〈e1, e2〉 :A1 ∨A2 `̀̀ ∆

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c : (Γ, x :A `̀̀ ∆)

Γ ; µx.c :A `̀̀ ∆

Γ `̀̀ t :A ; ∆ Γ ; e :A `̀̀ ∆

〈t • e〉 : (Γ `̀̀ ∆)

4

Contents

I. Reduction
II. (Non-)confluence
III. From programming languages to rewriting theory
IV. The comeback of continuations
V. Classical logic and CBN/CBV

5

I. Reduction

6

Curien-Herbelin-Wadler - reduction

Reduction

(→) 〈λx.t1 • t2 ::e〉 → 〈t2 • µx.〈t1 • e〉〉

(∧) 〈〈t1, t2〉 • inji(e)〉 → 〈ti • e〉

(∨) 〈inji(t) • 〈e1, e2〉〉 → 〈t • ei〉

〈µβ.c • e〉 → {e�β}c

〈t • µx.c〉 →
{
t�x
}
c

Theorem : Subject Reduction OK

Theorem : Progress? OK

Cuts remaining in normal forms are of the form 〈x • e〉 and 〈t • α〉,
i.e. they represent contraction-left and contraction-right

Theorem : Normalisation? OK

(Barbanera-Berardi’s symmetric reducibility candidates, see next lecture)

Symmetry of LK = Symmetry of terms vs. continuations. Now in the very syntax.

7

II. (Non-)confluence

8

Lafont’s example

··· π
Γ `̀̀ ∆

Γ `̀̀ ∆, A

··· π
′

Γ′ `̀̀ ∆′

Γ′, A `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

Two ways to eliminate the cut:

··· π
Γ `̀̀ ∆

Γ,Γ′ `̀̀ ∆,∆′

or

··· π
′

Γ′ `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

but we could have the mix rule:
Γ `̀̀ ∆ Γ′ `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

Do we want this derivation as a normal proof?

9

Lafont’s example (in an additive world)

··· π
Γ `̀̀ ∆

Γ `̀̀ ∆, A

··· π
′

Γ `̀̀ ∆

Γ, A `̀̀ ∆

Γ `̀̀ ∆

Two ways to eliminate the cut:
··· π

Γ `̀̀ ∆
or

··· π
′

Γ `̀̀ ∆

but we could have:
Γ `̀̀ ∆ Γ `̀̀ ∆

Γ `̀̀ ∆

Do we want this derivation as a normal proof?

10

More problematic example

··· π
Γ `̀̀ ∆, A,A

Γ `̀̀ ∆, A

··· π
′

Γ, A,A `̀̀ ∆

Γ, A `̀̀ ∆

Γ `̀̀ ∆

··· π
′

•
··· π
′

•··· π(')

Γ `̀̀ ∆

or

··· π•
··· π•··· π
′(')

Γ `̀̀ ∆

e.g.:
(A → B) → A `̀̀ A A,A → C,A → D `̀̀ C ∧D

(A → B) → A,A → C,A → D `̀̀ C ∧D

11

In concrete terms

In Curien-Herbelin-Wadler’s calculus Curien and Herbelin [2000]; Wadler [2003], both

examples appear as:

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c′ : (Γ, x :A `̀̀ ∆)

Γ ; µx.c′ :A `̀̀ ∆

〈µα.c • µx.c′〉 : (Γ `̀̀ ∆)

α (resp. x) could be used 0 (weakening), 1, or several (contraction) times in c (resp. c′)

c : (Γ `̀̀ α :A,∆)

c′ : (Γ, x :A `̀̀ ∆)

Γ ; µx.c′ :A `̀̀ ∆
· ·{

µx.c′�α
}
c : (Γ `̀̀ ∆)

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆ c′ : (Γ, x :A `̀̀ ∆)
· ·

{µα.c�x}c′ : (Γ `̀̀ ∆)

(Dotted lines not inference rules, but properties of typing system)

12

In conclusion

Easy enough to give rewrite system on proof-terms to represent cut-elimination,

system follows the intuitions of continuations and control

Gives non-confluent calculus because cut-elimination is non-confluent in classical logic

because programs and continuations fight for the control of computation

This makes it very hard to give a semantics of classical proofs / typed proof-terms

Today’s challenge: Find a way to construct a denotational semantics

13

Back to the main issue

Remember that a CCC with ¬¬A ' A collapses.

3 ways to get away:

1. Break the symmetry between ∧ and ∨
2. Break the cartesian product (Dosen-Petric et al.)

3. Break the curryfication (Strassburger et al.)

In this course: Break the symmetry between ∧ and ∨

Why? Only one among the three for which computational interpretations of

cut-elimination are reasonably well-understood

14

Breaking the ∧∨ symmetry by the CBN/CBV approach

··· π
Γ `̀̀ ∆, A

··· π
′

Γ, A `̀̀ ∆

Γ `̀̀ ∆

Give systematic priority to

� the right (push π into π′)

� or to the left (push π′ into π)

1. Both solutions make the calculus confluent.

2. Suggests to construct 2 denotational semantics JcKN and JcKV with the hope that:

Jc0KN = Jc1KN iff “c0←→∗ c1 with systematic priority to the right”

Jc0KV = Jc1KV iff “c0←→∗ c1 with systematic priority to the left”

3. Relates to the notions of Call-by-name and Call-by-value

� Plotkin Plotkin [1975] CBV/CBN

� Moggi Moggi [1989] monadic λ-calculus

15

III. From programming languages to rewriting
theory

16

Call-by-name and call-by-value

proc MyFavoriteFunction(x){

... x ...

}

...

MyFavoriteFunction(A)

Should A be evaluated before entering the function (CBV) or when it is used (CBN)?

. . . depends on the compiler

. . . may depend on datatype (base types may have different behaviour)

In presence of side-effects, knowing which of the two the compiler implements, is vital

17

Functional programming

How to evaluate a functional program?

Evaluation should produce values. ex: Boolans true, false

In functional programming, functions are values (e.g. can be given as arguments)

⇒ No need to reduce them.

18

λ-calculus: a core functional language vs. a theory of functions

. . . equipped with an operational semantics (close to implementation)

. . . which can be expressed by an evaluation strategy

that selects a unique β-redex to reduce:

� Never reduce a λ-abstraction, as it is a “value” (this is called weak reduction)

� Always reduce M first in an application M N . Then:

– If M is an abstraction: reduce the β-redex first (CBN)

reduce N first (CBV)

– Otherwise, reduce N (never happens with closed terms)

Strategies denoted−→CBN and−→CBV

Neither is “better” than the other -cf. Haskell (CBN) vs. Caml (CBV)

19

λ-calculus: a core functional language vs. a theory of functions

. . . equipped with a denotational semantics (close to mathematical functions)

. . . where equalities are congruences (e.g. if M = N then λx.M = λx.N)

and reductions are congruences (this is called strong reduction)

Formally, in λ-calculus:

values: λx.M and x (denoted V . . .)

not values: MN

Why? because by evaluating MN , you may get something completely different

In this view,

“Call-by-name” = general β-reduction (λx.M) N −→β

{
N�x
}
M

“Call-by-value” = restriction to arguments being values

(λx.M) V −→βv

{
V�x
}
M

20

λ-calculus: a core functional language vs. a theory of functions

Question:
CBN: Is there a relation between−→CBN and−→β ?

CBV: Is there a relation between−→CBV and−→βv ?

Answer:

Clearly, −→CBN ⊆−→β and −→CBV ⊆−→βv

What about the other way round?

21

λ-calculus: a core functional language vs. a theory of functions

Bridge between weak and strong reductions = Plotkin’s result Plotkin [1975]:

CBN:−→∗β is the closure of−→∗CBN under
M1−→∗CBN C[M2] M2 −→ M3

M1 −→ C[M3]

CBV:−→∗βv is the closure of−→∗CBV under
M1−→∗CBV C[M2] M2 −→ M3

M1 −→ C[M3]

What’s the point?

This result allows us to call CBN and CBV

not some operational semantics of some functional programming language

but some rewriting theories in λ-calculus.

22

IV. The comeback of continuations

23

Compiling with continuations

CBN/CBV= question of compilation

λ-calculus can be compiled into (a fragment of) itself!

called Continuation Passing Style (CPS)-translation

CBN-translation (Plotkin Plotkin [1975])

x := λk.x k

λx.M := λk.(k (λx.M))

M N := λk.M (λy.y N k)

CBV-translation (Reynolds Reynolds [1972])

x := λk.k x

λx.M := λk.(k (λx.λk′.M k′))

M N := λk.M (λy.N (λz.y z k))

What’s the point? Look, arguments are always values!

⇒ CPS-evaluation (i.e. evaluation of the CPS-translated term) is strategy-indifferent

(−→β =−→βv for the translated terms)

24

The CPS-translations preserve reductions

Theorem (Simulations - soundness)

CBN If M −→β N then M−→∗β N

CBV If M −→βv N then M−→∗β N

Theorem (Simulations - completeness)

CBN If M←→∗β N then M←→∗β N

CBV Not the case for CBV! (unless extended -Moggi Moggi [1989])

25

The CPS-translations preserve types

We deal here with simple types A,B, . . . ::= α | A→B

Assume Γ `̀̀ M :A. Do we have:

Γ′ `̀̀ M :A′ (for some Γ′, A′)? Γ′′ `̀̀ M :A′′ (for some Γ′′, A′′)?

CPS-translations reveal 2 classes of terms in the target: values & continuations (like k)

The types of values and continuations in the translated terms depend on CBN or CBV:

We choose or we add a particular atomic type R, an abstract type of responses, then

CBN

α := α

A→ B := ((A→R)→R)→(B→R)→R

CBV

α := α

A→ B := A→(B→R)→R

Theorem : Preservation of typing

If Γ `̀̀ M :A then (Γ→R)→R `̀̀ M : (A→R)→R
If Γ `̀̀ M :A then Γ `̀̀ M : (A→R)→R

26

Variants

Fischer’s translation for CBV Fischer [1972]

x := λk.k x

λx.M := λk.(k (λk′.λx.M k′))

M N := λk.M (λy.N (λz.y k z))

α := α

A→ B := (B→R)→ A→R

Hofmann & Streicher’s translation for CBN Hofmann and Streicher [1997].using product

types

x := λk.x k

λx.M := λ〈x, k〉.M k

M N := λk.M 〈N, k〉

α := α→R

A→ B := (A→R)×B

Theorem : If Γ `̀̀ M :A then Γ→R `̀̀ M :A→R

27

CPS-translations and categorical semantics

Remember: simple-typed λ-terms have a semantics in a Cartesian Closed Category

CPS-translations compile the simply-typed λ-calculus into itself

in a semantically meaningful way:

We can now assign to a simply-typed λ-term M , the semantics (in a CCC) of M or M

(semantics now depends on CBN/CBV).

By the simulation theorem, reductions are sound w.r.t. that semantics.

CPS-Fragment⇒ we need less than a CCC:

Exponentials just of the form RA⇒ Response Category .

Sub-cat of the objects of that form: Continuation category = CCC + rich structure

also called Control Category (Selinger Selinger [2001])

Useful for classical logic.

28

V. Classical logic and CBN/CBV

29

Translating classical logic into intuitionistic logic

Turning P into P ′ by adding (enough) double negations, you get

If `c P then `i P ′.

Obviously, `c P ↔ P ′.

¬¬-translation, Goedel’s A-translation,. . .

α• := α

(A→ B)• := (((A•)→⊥)→⊥)→ (((B•)→⊥)→⊥)

α? := α

(A→ B)? := A?→(B?→⊥)→ ⊥

!!!

Having selected a response type⊥, a continuation is a proof of negation

30

Why such a fuss about intuitionistic vs. classical, then?

If it suffices to add negations in a classical provable formula,

are the two logics really different?

Yes. Adding negations breaks nice properties of intuitionistic logic:

In intuitionistic logic:

If `̀̀ A1 ∨A2 then either `̀̀ A1 or `̀̀ A2.

If `̀̀ ∃xA then there is t such that `̀̀
{
t�x
}
A

Getting t from the proof of `̀̀ ∃xA = Witness extraction
Also true in some theories, like arithmetics (Heyting arithmetics):

If HA `̀̀ ∃xA then there is t such that HA `̀̀
{
t�x
}
A

Cannot say anything when `̀̀ ¬¬(A1 ∨A2) or `̀̀ ¬¬∃xA

What to do with a classical proof of `̀̀ ∃xA?

If A is nice enough, Classical witness extraction.

31

Reminder: classical proof-terms Curien and Herbelin [2000]; Wadler

[2003]

terms t ::= x | µβ.c | λx.t | 〈t1, t2〉 | inji(t)

continuations e ::= α | µx.c | t ::e | 〈e1, e2〉 | inji(e)

commands c ::= 〈t • e〉

(→) 〈λx.t1 • t2 ::e〉 → 〈t2 • µx.〈t1 • e〉〉
(∧) 〈〈t1, t2〉 • inji(e)〉 → 〈ti • e〉
(∨) 〈inji(t) • 〈e1, e2〉〉 → 〈t • ei〉

〈µβ.c • e〉 → {e�β}c
〈t • µx.c〉 → {t�x}c

32

CBN and CBV for classical proof-terms Curien and Herbelin [2000];

Wadler [2003]

term values V ::= x | λx.t | 〈V1, V2〉 | inji(V)

continuation values E ::= α | t ::E | 〈E1, E2〉 | inji(E)

〈λx.t1 • t2 ::E〉 → 〈t2 • µx.〈t1 • E〉〉
〈〈t1, t2〉 • inji(E)〉 → 〈ti • E〉
〈inji(t) • 〈E1, E2〉〉 → 〈t • Ei〉

〈µβ.c • E〉 →
{
E�β
}
c

〈t • µx.c〉 → {t�x}c

〈λx.t • V ::e〉 → 〈V • µx.〈t • e〉〉
〈〈V1, V2〉 • inji(e)〉 → 〈Vi • e〉
〈inji(V) • 〈e1, e2〉〉 → 〈V • ei〉

〈µβ.c • e〉 → {e�β}c
〈V • µx.c〉 →

{
V�x
}
c

CBN CBV

plus some focussing rules to ensure progress.

The two reduction relations now denoted−→CBN and−→CBV .

Theorem−→CBN and−→CBV are confluent

33

CPS-translations of classical proof-terms Curien and Herbelin [2000];

Wadler [2003]
It is possible to define CPS-translations of terms, continuations, and commands:

CBN t e c

CBV t e c

Theorem (Preservation of reduction)

CBN If c1 −→CBN c2 then c1−→∗β c2
CBV If c1 −→CBV c2 then c1−→∗β c2

Theorem (Preservation of typing) If
Γ `̀̀ t :A ; ∆

Γ ; e :A `̀̀ ∆

c : (Γ `̀̀ ∆)

then

Γ→R,∆ `̀̀ t :A→R
Γ→R,∆ `̀̀ e : (A→R)→R
Γ→R,∆ `̀̀ c :R

Using Hofman-Streicher Hofmann and Streicher [1997]

Γ,∆→R `̀̀ t : (A→R)→R
Γ,∆→R `̀̀ e :A→R
Γ,∆→R `̀̀ c :R

Using Fischer Fischer [1972]

34

Categorical semantics

Define JcKV := JcK and JcKN := JcK
where JtK is the semantics, in a response category, of a λ-term t in the CPS-fragment

Assume c : (x1 :A1, . . . , xn :An `̀̀ α1 :B1, . . . , αm :Bm)

Remember that a control category is the

sub-category of a response category C
whose objects are in {RA|A ∈ C}

Write RA &RB for RA×B

CBN Write KA for the object corresponding to A, and CA for RKA ,

JcKN :

{
(CA1 × . . .× CAn ×KB1 × . . .×KBm)→ R in a response category

CA1 × . . .× CAn → CB1

&. . . &CBm in a control category

CBV Write VA for the object corresponding to A, KA for RVA and CA for RKA ,

JcKV :

(VA1 × . . .× VAn ×KB1 × . . .×KBm)→ R in a response category

KB1 × . . .×KBm → KA1

&. . . &KAn in a control category

KA1 ⊗ . . .⊗KAn → KB1 + . . .+KBm in a co-control category

(where⊗ is the dual of &)

35

Semantics for classical proofs: the historical point of view

Here we see that

CBN= Control categories,

CBV= Co-Control categories.

The semantics validate the reductions

If c −→CBN c′ then JcKN = Jc′KN

If c −→CBV c′ then JcKN = Jc′KV

Today’s goal is achieved

. . . by breaking the symmetry between ∧ and ∨:

&is not the dual of×!!

(equivalently, + is not the dual of⊗)

Due to Selinger Selinger [2001].

Comes from preliminary works:

� De Groote, Barbanera, Berardi, Ong,. . .

� Hofmann, Streicher, Reus Hofmann and Streicher [1997]; Streicher and Reus [1998]

Semantics of continuations.

Question of Duality CBV/CBN (in λµ) is conjectured.

36

Perspectives and hot topics

Many variants have been studied

� variants of Parigot’s λµ have different properties with respect to separation. Delimited

control (Saurin, Herbelin, etc)
� Lots of open issues on extensionality, observational equivalence and separation,

η-conversion, etc. . .

� Classical calculi and focusing: Zeilberger, Herbelin, Munch, Houtmann.

37

Questions?

38

References

39

P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th ACM SIGPLAN
Int. Conf. on Functional Programming (ICFP’00), pages 233–243. ACM Press, 2000.

M. J. Fischer. Lambda calculus schemata. In Proc. of the ACM Conf. on Proving Assertions
about Programs, pages 104–109. SIGPLAN Notices, Vol. 7, No 1 and SIGACT News, No 14,
Jan. 1972.

M. Hofmann and T. Streicher. Continuation models are universal for λµ-calculus. In Proc. of
the 12th Annual IEEE Symp. on Logic in Computer Science, pages 387–397. IEEE Com-
puter Society Press, July 1997.

E. Moggi. Computational lambda-calculus and monads. In Proc. of the 4th Annual IEEE Symp.
on Logic in Computer Science, pages 14–23. IEEE Computer Society Press, June 1989.

G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoret. Comput. Sci., 1:
125–159, 1975.

J. C. Reynolds. Definitional interpreters for higher-order programming languages. In Proc. of
the ACM annual Conf. , pages 717–740, 1972.

39-1

P. Selinger. Control categories and duality: on the categorical semantics of the λµ-calculus.
Math. Structures in Comput. Sci., 11(2):207–260, 2001.

T. Streicher and B. Reus. Classical logic, continuation semantics and abstract machines. J.
Funct. Programming, 8(6):543–572, 1998. URL http://journals.cambridge.
org/action/displayAbstract?aid=44197.

P. Wadler. Call-by-value is dual to call-by-name. In Proc. of the 8th ACM SIGPLAN Int. Conf.
on Functional programming (ICFP’03), volume 38, pages 189–201. ACM Press, Sept. 2003.
ISBN 1581137567.

39-2

http://journals.cambridge.org/action/displayAbstract?aid=44197
http://journals.cambridge.org/action/displayAbstract?aid=44197

