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Lecture II
Confluence?
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Review from the previous lecture

Easy enough to introduce proof-terms to represent classical proofs

symmetry of classical logic = symmetry between programs and continuations

use of classical reasoning = control = programs can capture their continuations
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Curien-Herbelin-Wadler - typing

Γ, x :A `̀̀ x :A ; ∆ Γ ; α :A `̀̀ α :A,∆

Γ, x :A `̀̀ t :B ; ∆

Γ `̀̀ λx.t :A→B ; ∆

Γ `̀̀ t :A ; ∆ Γ ; e :B `̀̀ ∆

Γ ; t ::e :A→B `̀̀ ∆

Γ `̀̀ t1 :A1 ; ∆ Γ `̀̀ t2 :A2 ; ∆

Γ `̀̀ 〈t1, t2〉 :A1 ∧A2 ; ∆

Γ ; e :Ai `̀̀ ∆

Γ ; inji(e) :A1 ∧A2 `̀̀ ∆

Γ `̀̀ t :Ai ; ∆

Γ `̀̀ inji(t) :A1 ∨A2 ; ∆

Γ ; e1 :A1 `̀̀ ∆ Γ ; e2 :A2 `̀̀ ∆

Γ ; 〈e1, e2〉 :A1 ∨A2 `̀̀ ∆

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c : (Γ, x :A `̀̀ ∆)

Γ ; µx.c :A `̀̀ ∆

Γ `̀̀ t :A ; ∆ Γ ; e :A `̀̀ ∆

〈t • e〉 : (Γ `̀̀ ∆)
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I. Reduction
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Curien-Herbelin-Wadler - reduction

Reduction

(→) 〈λx.t1 • t2 ::e〉 → 〈t2 • µx.〈t1 • e〉〉

(∧) 〈〈t1, t2〉 • inji(e)〉 → 〈ti • e〉

(∨) 〈inji(t) • 〈e1, e2〉〉 → 〈t • ei〉

〈µβ.c • e〉 → {e�β}c

〈t • µx.c〉 →
{
t�x
}
c

Theorem : Subject Reduction OK

Theorem : Progress? OK

Cuts remaining in normal forms are of the form 〈x • e〉 and 〈t • α〉,
i.e. they represent contraction-left and contraction-right

Theorem : Normalisation? OK

(Barbanera-Berardi’s symmetric reducibility candidates, see next lecture)

Symmetry of LK = Symmetry of terms vs. continuations. Now in the very syntax.
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II. (Non-)confluence
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Lafont’s example

··· π
Γ `̀̀ ∆

Γ `̀̀ ∆, A

··· π
′

Γ′ `̀̀ ∆′

Γ′, A `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

Two ways to eliminate the cut:

··· π
Γ `̀̀ ∆

Γ,Γ′ `̀̀ ∆,∆′

or

··· π
′

Γ′ `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

but we could have the mix rule:
Γ `̀̀ ∆ Γ′ `̀̀ ∆′

Γ,Γ′ `̀̀ ∆,∆′

Do we want this derivation as a normal proof?
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Lafont’s example (in an additive world)

··· π
Γ `̀̀ ∆

Γ `̀̀ ∆, A

··· π
′

Γ `̀̀ ∆

Γ, A `̀̀ ∆

Γ `̀̀ ∆

Two ways to eliminate the cut:
··· π

Γ `̀̀ ∆
or

··· π
′

Γ `̀̀ ∆

but we could have:
Γ `̀̀ ∆ Γ `̀̀ ∆

Γ `̀̀ ∆

Do we want this derivation as a normal proof?
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More problematic example

··· π
Γ `̀̀ ∆, A,A

Γ `̀̀ ∆, A

··· π
′

Γ, A,A `̀̀ ∆

Γ, A `̀̀ ∆

Γ `̀̀ ∆

··· π
′

•
··· π
′

•··· π(')

Γ `̀̀ ∆

or

··· π•
··· π•··· π
′(')

Γ `̀̀ ∆

e.g.:
(A → B) → A `̀̀ A A,A → C,A → D `̀̀ C ∧D

(A → B) → A,A → C,A → D `̀̀ C ∧D
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In concrete terms

In Curien-Herbelin-Wadler’s calculus Curien and Herbelin [2000]; Wadler [2003], both

examples appear as:

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c′ : (Γ, x :A `̀̀ ∆)

Γ ; µx.c′ :A `̀̀ ∆

〈µα.c • µx.c′〉 : (Γ `̀̀ ∆)

α (resp. x) could be used 0 (weakening), 1, or several (contraction) times in c (resp. c′)

c : (Γ `̀̀ α :A,∆)

c′ : (Γ, x :A `̀̀ ∆)

Γ ; µx.c′ :A `̀̀ ∆
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·{

µx.c′�α
}
c : (Γ `̀̀ ∆)

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆ c′ : (Γ, x :A `̀̀ ∆)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

{µα.c�x}c′ : (Γ `̀̀ ∆)

(Dotted lines not inference rules, but properties of typing system)
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In conclusion

Easy enough to give rewrite system on proof-terms to represent cut-elimination,

system follows the intuitions of continuations and control

Gives non-confluent calculus because cut-elimination is non-confluent in classical logic

because programs and continuations fight for the control of computation

This makes it very hard to give a semantics of classical proofs / typed proof-terms

Today’s challenge: Find a way to construct a denotational semantics
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Back to the main issue

Remember that a CCC with ¬¬A ' A collapses.

3 ways to get away:

1. Break the symmetry between ∧ and ∨
2. Break the cartesian product (Dosen-Petric et al.)

3. Break the curryfication (Strassburger et al.)

In this course: Break the symmetry between ∧ and ∨

Why? Only one among the three for which computational interpretations of

cut-elimination are reasonably well-understood
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Breaking the ∧∨ symmetry by the CBN/CBV approach

··· π
Γ `̀̀ ∆, A

··· π
′

Γ, A `̀̀ ∆

Γ `̀̀ ∆

Give systematic priority to

� the right (push π into π′)

� or to the left (push π′ into π)

1. Both solutions make the calculus confluent.

2. Suggests to construct 2 denotational semantics JcKN and JcKV with the hope that:

Jc0KN = Jc1KN iff “c0←→∗ c1 with systematic priority to the right”

Jc0KV = Jc1KV iff “c0←→∗ c1 with systematic priority to the left”

3. Relates to the notions of Call-by-name and Call-by-value

� Plotkin Plotkin [1975] CBV/CBN

� Moggi Moggi [1989] monadic λ-calculus
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III. From programming languages to rewriting
theory
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Call-by-name and call-by-value

proc MyFavoriteFunction(x){

... x ...

}

...

MyFavoriteFunction(A)

Should A be evaluated before entering the function (CBV) or when it is used (CBN)?

. . . depends on the compiler

. . . may depend on datatype (base types may have different behaviour)

In presence of side-effects, knowing which of the two the compiler implements, is vital
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Functional programming

How to evaluate a functional program?

Evaluation should produce values. ex: Boolans true, false

In functional programming, functions are values (e.g. can be given as arguments)

⇒ No need to reduce them.
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λ-calculus: a core functional language vs. a theory of functions

. . . equipped with an operational semantics (close to implementation)

. . . which can be expressed by an evaluation strategy

that selects a unique β-redex to reduce:

� Never reduce a λ-abstraction, as it is a “value” (this is called weak reduction)

� Always reduce M first in an application M N . Then:

– If M is an abstraction: reduce the β-redex first (CBN)

reduce N first (CBV)

– Otherwise, reduce N (never happens with closed terms)

Strategies denoted−→CBN and−→CBV

Neither is “better” than the other -cf. Haskell (CBN) vs. Caml (CBV)
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λ-calculus: a core functional language vs. a theory of functions

. . . equipped with a denotational semantics (close to mathematical functions)

. . . where equalities are congruences (e.g. if M = N then λx.M = λx.N )

and reductions are congruences (this is called strong reduction)

Formally, in λ-calculus:

values: λx.M and x (denoted V . . . )

not values: MN

Why? because by evaluating MN , you may get something completely different

In this view,

“Call-by-name” = general β-reduction (λx.M) N −→β

{
N�x
}
M

“Call-by-value” = restriction to arguments being values

(λx.M) V −→βv

{
V�x
}
M
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λ-calculus: a core functional language vs. a theory of functions

Question:
CBN: Is there a relation between−→CBN and−→β ?

CBV: Is there a relation between−→CBV and−→βv ?

Answer:

Clearly, −→CBN ⊆−→β and −→CBV ⊆−→βv

What about the other way round?
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λ-calculus: a core functional language vs. a theory of functions

Bridge between weak and strong reductions = Plotkin’s result Plotkin [1975]:

CBN:−→∗β is the closure of−→∗CBN under
M1−→∗CBN C[M2] M2 −→ M3

M1 −→ C[M3]

CBV:−→∗βv is the closure of−→∗CBV under
M1−→∗CBV C[M2] M2 −→ M3

M1 −→ C[M3]

What’s the point?

This result allows us to call CBN and CBV

not some operational semantics of some functional programming language

but some rewriting theories in λ-calculus.
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IV. The comeback of continuations
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Compiling with continuations

CBN/CBV= question of compilation

λ-calculus can be compiled into (a fragment of) itself!

called Continuation Passing Style (CPS)-translation

CBN-translation (Plotkin Plotkin [1975])

x := λk.x k

λx.M := λk.(k (λx.M))

M N := λk.M (λy.y N k)

CBV-translation (Reynolds Reynolds [1972])

x := λk.k x

λx.M := λk.(k (λx.λk′.M k′))

M N := λk.M (λy.N (λz.y z k))

What’s the point? Look, arguments are always values!

⇒ CPS-evaluation (i.e. evaluation of the CPS-translated term) is strategy-indifferent

(−→β =−→βv for the translated terms)
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The CPS-translations preserve reductions

Theorem (Simulations - soundness)

CBN If M −→β N then M−→∗β N

CBV If M −→βv N then M−→∗β N

Theorem (Simulations - completeness)

CBN If M←→∗β N then M←→∗β N

CBV Not the case for CBV! (unless extended -Moggi Moggi [1989])
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The CPS-translations preserve types

We deal here with simple types A,B, . . . ::= α | A→B

Assume Γ `̀̀ M :A. Do we have:

Γ′ `̀̀ M :A′ (for some Γ′, A′)? Γ′′ `̀̀ M :A′′ (for some Γ′′, A′′)?

CPS-translations reveal 2 classes of terms in the target: values & continuations (like k)

The types of values and continuations in the translated terms depend on CBN or CBV:

We choose or we add a particular atomic type R, an abstract type of responses, then

CBN

α := α

A→ B := ((A→R)→R)→(B→R)→R

CBV

α := α

A→ B := A→(B→R)→R

Theorem : Preservation of typing

If Γ `̀̀ M :A then (Γ→R)→R `̀̀ M : (A→R)→R
If Γ `̀̀ M :A then Γ `̀̀ M : (A→R)→R
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Variants

Fischer’s translation for CBV Fischer [1972]

x := λk.k x

λx.M := λk.(k (λk′.λx.M k′))

M N := λk.M (λy.N (λz.y k z))

α := α

A→ B := (B→R)→ A→R

Hofmann & Streicher’s translation for CBN Hofmann and Streicher [1997].using product

types

x := λk.x k

λx.M := λ〈x, k〉.M k

M N := λk.M 〈N, k〉

α := α→R

A→ B := (A→R)×B

Theorem : If Γ `̀̀ M :A then Γ→R `̀̀ M :A→R
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CPS-translations and categorical semantics

Remember: simple-typed λ-terms have a semantics in a Cartesian Closed Category

CPS-translations compile the simply-typed λ-calculus into itself

in a semantically meaningful way:

We can now assign to a simply-typed λ-term M , the semantics (in a CCC) of M or M

(semantics now depends on CBN/CBV).

By the simulation theorem, reductions are sound w.r.t. that semantics.

CPS-Fragment⇒ we need less than a CCC:

Exponentials just of the form RA⇒ Response Category .

Sub-cat of the objects of that form: Continuation category = CCC + rich structure

also called Control Category (Selinger Selinger [2001])

Useful for classical logic.
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V. Classical logic and CBN/CBV

29



Translating classical logic into intuitionistic logic

Turning P into P ′ by adding (enough) double negations, you get

If `c P then `i P ′.

Obviously, `c P ↔ P ′.

¬¬-translation, Goedel’s A-translation,. . .

α• := α

(A→ B)• := (((A•)→⊥)→⊥)→ (((B•)→⊥)→⊥)

α? := α

(A→ B)? := A?→(B?→⊥)→ ⊥

!!!

Having selected a response type⊥, a continuation is a proof of negation
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Why such a fuss about intuitionistic vs. classical, then?

If it suffices to add negations in a classical provable formula,

are the two logics really different?

Yes. Adding negations breaks nice properties of intuitionistic logic:

In intuitionistic logic:

If `̀̀ A1 ∨A2 then either `̀̀ A1 or `̀̀ A2.

If `̀̀ ∃xA then there is t such that `̀̀
{
t�x
}
A

Getting t from the proof of `̀̀ ∃xA = Witness extraction
Also true in some theories, like arithmetics (Heyting arithmetics):

If HA `̀̀ ∃xA then there is t such that HA `̀̀
{
t�x
}
A

Cannot say anything when `̀̀ ¬¬(A1 ∨A2) or `̀̀ ¬¬∃xA

What to do with a classical proof of `̀̀ ∃xA?

If A is nice enough, Classical witness extraction.
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Reminder: classical proof-terms Curien and Herbelin [2000]; Wadler

[2003]

terms t ::= x | µβ.c | λx.t | 〈t1, t2〉 | inji(t)

continuations e ::= α | µx.c | t ::e | 〈e1, e2〉 | inji(e)

commands c ::= 〈t • e〉

(→) 〈λx.t1 • t2 ::e〉 → 〈t2 • µx.〈t1 • e〉〉
(∧) 〈〈t1, t2〉 • inji(e)〉 → 〈ti • e〉
(∨) 〈inji(t) • 〈e1, e2〉〉 → 〈t • ei〉

〈µβ.c • e〉 → {e�β}c
〈t • µx.c〉 → {t�x}c
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CBN and CBV for classical proof-terms Curien and Herbelin [2000];

Wadler [2003]

term values V ::= x | λx.t | 〈V1, V2〉 | inji(V )

continuation values E ::= α | t ::E | 〈E1, E2〉 | inji(E)

〈λx.t1 • t2 ::E〉 → 〈t2 • µx.〈t1 • E〉〉
〈〈t1, t2〉 • inji(E)〉 → 〈ti • E〉
〈inji(t) • 〈E1, E2〉〉 → 〈t • Ei〉

〈µβ.c • E〉 →
{
E�β
}
c

〈t • µx.c〉 → {t�x}c

〈λx.t • V ::e〉 → 〈V • µx.〈t • e〉〉
〈〈V1, V2〉 • inji(e)〉 → 〈Vi • e〉
〈inji(V ) • 〈e1, e2〉〉 → 〈V • ei〉

〈µβ.c • e〉 → {e�β}c
〈V • µx.c〉 →

{
V�x
}
c

CBN CBV

plus some focussing rules to ensure progress.

The two reduction relations now denoted−→CBN and−→CBV .

Theorem−→CBN and−→CBV are confluent
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CPS-translations of classical proof-terms Curien and Herbelin [2000];

Wadler [2003]
It is possible to define CPS-translations of terms, continuations, and commands:

CBN t e c

CBV t e c

Theorem (Preservation of reduction)

CBN If c1 −→CBN c2 then c1−→∗β c2
CBV If c1 −→CBV c2 then c1−→∗β c2

Theorem (Preservation of typing) If
Γ `̀̀ t :A ; ∆

Γ ; e :A `̀̀ ∆

c : (Γ `̀̀ ∆)

then

Γ→R,∆ `̀̀ t :A→R
Γ→R,∆ `̀̀ e : (A→R)→R
Γ→R,∆ `̀̀ c :R

Using Hofman-Streicher Hofmann and Streicher [1997]

Γ,∆→R `̀̀ t : (A→R)→R
Γ,∆→R `̀̀ e :A→R
Γ,∆→R `̀̀ c :R

Using Fischer Fischer [1972]
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Categorical semantics

Define JcKV := JcK and JcKN := JcK
where JtK is the semantics, in a response category, of a λ-term t in the CPS-fragment

Assume c : (x1 :A1, . . . , xn :An `̀̀ α1 :B1, . . . , αm :Bm)

Remember that a control category is the

sub-category of a response category C
whose objects are in {RA|A ∈ C}

Write RA &RB for RA×B

CBN Write KA for the object corresponding to A, and CA for RKA ,

JcKN :

{
(CA1 × . . .× CAn ×KB1 × . . .×KBm)→ R in a response category

CA1 × . . .× CAn → CB1

&. . . &CBm in a control category

CBV Write VA for the object corresponding to A, KA for RVA and CA for RKA ,

JcKV :


(VA1 × . . .× VAn ×KB1 × . . .×KBm)→ R in a response category

KB1 × . . .×KBm → KA1

&. . . &KAn in a control category

KA1 ⊗ . . .⊗KAn → KB1 + . . .+KBm in a co-control category

(where⊗ is the dual of &)
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Semantics for classical proofs: the historical point of view

Here we see that

CBN= Control categories,

CBV= Co-Control categories.

The semantics validate the reductions

If c −→CBN c′ then JcKN = Jc′KN

If c −→CBV c′ then JcKN = Jc′KV

Today’s goal is achieved

. . . by breaking the symmetry between ∧ and ∨:

&is not the dual of×!!

(equivalently, + is not the dual of⊗)

Due to Selinger Selinger [2001].

Comes from preliminary works:

� De Groote, Barbanera, Berardi, Ong,. . .

� Hofmann, Streicher, Reus Hofmann and Streicher [1997]; Streicher and Reus [1998]

Semantics of continuations.

Question of Duality CBV/CBN (in λµ) is conjectured.
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Perspectives and hot topics

Many variants have been studied

� variants of Parigot’s λµ have different properties with respect to separation. Delimited

control (Saurin, Herbelin, etc)
� Lots of open issues on extensionality, observational equivalence and separation,

η-conversion, etc. . .

� Classical calculi and focusing: Zeilberger, Herbelin, Munch, Houtmann.
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Questions?
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