
Curry-Howard Correspondence

for Classical Logic

Stéphane Graham-Lengrand

CNRS, Laboratoire d’Informatique de l’X

Stephane.Lengrand@Polytechnique.edu

Practicalities

E-mail address: Stephane.Lengrand@Polytechnique.edu

Website: http://www.lix.polytechnique.fr/˜lengrand/

Slides . . .

Schedule: Tuesdays, from 16:15 to 19:15

7th December, 14th December, 3rd January, 10th January (guest lecture by Beniamino

Accattoli)

Room : 2035, Sophie Germain building

2

Stephane.Lengrand@Polytechnique.edu
http://www.lix.polytechnique.fr/~lengrand/

Lecture I
Classical logic as a typing system

3

Contents

I. Introduction
II. What works and what does not
III. A bit of history

4

I. Introduction

5

Curry-Howard correspondence for Classical Logic

These lectures are part of the course

Logique linéaire et paradigmes logiques du calcul

(mostly)

Although, polarity and focusing -from linear logic- have played a major part in the

understanding of C-H correspondence for Classical Logic.

(see e.g. Olivier Laurent’s PhD work Laurent [2003])

6

Curry-Howard correspondence

One of two sides of the coin

“computational interpretation of a logic”

output of a computation = cut-free proof

Side 1 computation as proof search

(starting from a formula to prove)

Logic programming (see e.g. Dale Miller’s course)

Side 2 computation as composition of proofs / cut-elimination

(starting from a proof with cuts)

Curry-Howard (see e.g. this course)

7

II. What works and what does not

8

Where it all works smoothly

Intuitionistic/minimal logic

Logic Programming language λ-calculus Categories

Propositions Types Objects

Proofs Typed programs λ-terms Morphisms

Cut/Composition Program composition β-redex Morphism composition

Where the stuff happens

(Cut-elimination)
Execution β-reduction

Equality of morphisms

(commuting diagrams)

9

Original correspondence

For minimal logic:

Curry Combinators (S,K,I) ↔ Hilbert-style system

Howard Howard [1980] Typed λ-terms ↔ Natural Deduction

I : A→A

K : A→B→A (provides erasure)

S : (A→(B→C))→(A→B)→(A→C) (provides duplication)

I M −→ M

K M N −→ M

S M N P −→ M P (N P)

10

Original correspondence

For minimal logic:

Curry Combinators (S,K,I) ↔ Hilbert-style system

Howard Howard [1980] Typed λ-terms ↔ Natural Deduction

Γ, x :A `̀̀ x :A

Γ, x :A `̀̀ M :B

Γ `̀̀ λx.M :A→B

Γ `̀̀ M :A→B Γ `̀̀ N :A

Γ `̀̀ M N :B

(λx.M) N −→β

{
N�x
}
M

λx.M x −→η M if x /∈ FV(M)

=βη sound and complete for Cartesian Closed Categories (CCC)

11

Generalising the approach

Decorate proofs with syntactic terms: Γ ` A becomes Γ `̀̀ M :A

Proof transformations

Reductions (execution of) M : M −→S N

given by rewrite system S .

Desired properties of the reduction system

� Progress, i.e. any term containing undesirable structures can be reduced.

� Subject reduction property, i.e. preservation of typing:

If Γ `̀̀ M :A and M −→S N then Γ `̀̀ N :A

1. Confluence, programs are deterministic

2. Normalisation (strong), i.e. execution of programs terminates.

12

Example

From minimal logic to intuitionistic logic = minimal logic + “Ex falso Quodlibet”

add rule:

Γ `̀̀ M :⊥

Γ `̀̀ abort(M) :A

Computational behaviour:

abort(M)N −→ abort(M)

In category theory: add to a CCC an initial object⊥
(i.e. for every object A there is a unique morphism⊥ −→ A)

Now, remember that ¬A is A→⊥

13

How to get classical logic

Either add axiom schemes

(¬¬A)⇒ A (Elimination of double negation)

((A⇒ B)⇒ A)⇒ A (Peirce’s law)

A ∨ ¬A (Law of excluded middle)

In presence of “Ex falso Quodlibet” (⊥ ⇒ A): All equivalent

Without “Ex falso Quodlibet”: only EDN⇒PL⇒LEM

. . . Or with inference rules, for instance:

Γ,¬A `̀̀ ⊥

Γ `̀̀ A
for EDN

or by the structure of formalism cf. classical sequent calculus and right-contraction

14

The bad news

Take a CCC with initial object⊥

Require that for all object A, A is naturally isomorphic to (A⇒ ⊥)⇒ ⊥

The category collapses to a boolean algebra:

at most 1 morphism between any 2 objects

= cannot distinguish 2 proofs of the same theorem

Quite useless for a theory of proofs, or for the proofs-as-program paradigm

Has classical logic a computational content?

Girard, Lafont, Taylor Proofs and types: No Girard et al. [1989]

15

III. A bit of history

16

The notion of continuation

Program execution flow:

↓ code P that has been executed, producing data v

v its output

↓ code E that remains to be executed, consuming data v

Continuation

= programming environment/context within which some code is executed

17

The notion of continuation

. . . is also useful for compiling recursive calls

myfunction(a1,...,an){
some code;

x = myfunction(a1’,...,an’);

some code possibly using x;

}
When executing recursive call, whole environment must be saved to resume

computation (code that remains to be executed + state of memory).

Not needed if some code possibly using x is empty (tail recursion).

Trick = pass it to the recursive call as a “continuation” c’:

myfunction(a1,...,an,c){
some code;

return myfunction(a1’,...,an’,c’);

}
18

The notion of continuation in λ-calculus

Program execution flow:

↓ code P that has been executed, producing data v

v its output

↓ code E that remains to be executed, consuming data v

can be seen in
� P is a λ-term that is reduced
� E is the context, in the syntactic sense (a term with a hole E[])

E[] can also be seen as a function λx.E[x]

19

The notion of control

In pure λ-calculus, P has no knowledge of E[] while being evaluated.

Control =

letting a program know and manipulate its environment/continuation

getting “unpure features”, modelling goto instructions

� Reynolds Reynolds [1972], Strachey-Wadsworth Strachey and Wadsworth [2000]

(re-edition of 74)

on continuations and call-with-current-continuation (call-cc): cc

Added to programming langage Scheme

� Felleisen’s PhD work Felleisen [1987] on Syntactic Theory of Control: the C operator

20

Connection with Logic (89-90)

The general idea:

E[abort(M)] −→ M

E[cc M] −→ E[M (λx.E[x])]

E[CM] −→ M (λx.E[x])

In presence of abort(), cc and C are interdefinable:

CM := cc (λk.abort(M k)) k 6∈ FV(M)

cc M := C (λk.k (M k)) k 6∈ FV(M)

Griffin Griffin [1990]:

cc can be typed by ((A→B)→A)→A

C can be typed by (¬¬A)→A

21

Central question about control

E[abort(M)] −→ M

E[cc M] −→ E[M (λx.E[x])]

E[CM] −→ M (λx.E[x])

Above rules are not “standard” rewrite rules. . .

What exactly does E[] stand for / range over?

More fundamentally:

What kind of continuation can be captured by a control operator?

Is the capture delimited? undelimited? etc

22

One proposed formalisation: Parigot’s λµ-calculus Parigot [1992]

Terms M,N,P . . . ::= x | λx.M |M N | µα.c

Commands c ::= [α]M

Γ, x :A `̀̀ x :A; ∆

Γ, x :A `̀̀ M :B; ∆

Γ `̀̀ λx.M :A→B; ∆

Γ `̀̀ M :A→B; ∆ Γ `̀̀ N :A; ∆

Γ `̀̀ M N :B; ∆

c : (Γ `̀̀ ;α :A,∆)

Γ `̀̀ µα.c :A; ∆

Γ `̀̀ M :A;α :A,∆

[α]M : (Γ `̀̀ ;α :A,∆)

23

Parigot’s λµ-calculus Parigot [1992]

Extra reduction rules:

(µα.c)N −→ µβ.
{
[β]M N�[α]M

}
c

[β]µα.c −→
{
β�α
}
c

Integrates Peirce’s law: cc := λx.µα.[α](x λy.µβ.[α]y) : ((A→B)→A)→A

Consider that contexts are of the form E[] = [γ]([]N1 . . . Nn)

If given a top-level continuation variable top :⊥ (Ariola-Herbelin Ariola and Herbelin

[2003]),

� integrates “Ex falso quod libet” λx.µα.[top]x : ⊥→A
� integrates DNE C := λx.µα.[top](x λy.µβ.[α]y) : (¬¬A)→A

So far, so good

24

Symmetry
There’s something symmetric about classical logic:

� Boolean algebras

� De Morgan duality:

¬(A ∧B) = ¬A ∨ ¬B

¬(A ∨B) = ¬A ∧ ¬B
� Classical Sequent calculus LK

left-contraction symmetric to right-contraction (6= intuitionistic logic)

So far, not explicit in our proof theory + term calculi

Filinski Filinski [1989]: first formalisation of a duality between

� functions as values
� functions as continuations

Symmetric λ-calculus, with explicit conversions from one view to the other

No explicit connection with logic. Is there one?

25

Barbanera - Berardi and after

Yes, there’s one.

See BB’s symmetric λ-calculus Barbanera and Berardi [1996]: Natural Deduction with

continuations

It is more like a one-sided sequent calculus

Symmetry of the calculus corresponds to symmetry/duality of LK

Other calculi for (bi-sided) versions of LK, with cut-elimination as computation:
� Urban’s calculus Urban [2000],

� Curien-Herbelin’s λµµ̃ Curien and Herbelin [2000] for⇒ (easier in bi-sided sequent

calculus),

later extended by Wadler Wadler [2003] for ∧ and ∨ (connecting to De Morgan)

26

Two independent works

Curien-Herbelin’s aim:

Express duality of computation syntactically (with a Filinski-like calculus)

Semantics, no proof of SN.

Urban’s aim:

Have a typing system as close as possible to LK, have a reduction system as close as

possible to basic cut-elimination procedures

SN, but no semantics.

Then: a broad literature on comparing such calculi.

27

Curien-Herbelin-Wadler - syntax

terms t ::= x | µβ.c | λx.t | 〈t1, t2〉 | inji(t)

continuations e ::= α | µx.c | t ::e | 〈e1, e2〉 | inji(e)

commands c ::= 〈t • e〉
Intuition:

x, y, . . . : inputs (variables standing for terms)

α, β, . . . : outputs (variables standing for continuations)

terms = some inputs (free term variables)

+ one main output

+ alternative outputs (free continuation variables)

continuations = one main input

+ additional inputs (free term variables)

+ some outputs (free continuation variables)

commands = a term facing a continuation (this interaction creates computation)

28

Curien-Herbelin-Wadler - typing

Γ, x :A `̀̀ x :A ; ∆ Γ ; α :A `̀̀ α :A,∆

Γ, x :A `̀̀ t :B ; ∆

Γ `̀̀ λx.t :A→B ; ∆

Γ `̀̀ t :A ; ∆ Γ ; e :B `̀̀ ∆

Γ ; t ::e :A→B `̀̀ ∆

Γ `̀̀ t1 :A1 ; ∆ Γ `̀̀ t2 :A2 ; ∆

Γ `̀̀ 〈t1, t2〉 :A1 ∧A2 ; ∆

Γ ; e :Ai `̀̀ ∆

Γ ; inji(e) :A1 ∧A2 `̀̀ ∆

Γ `̀̀ t :Ai ; ∆

Γ `̀̀ inji(t) :A1 ∨A2 ; ∆

Γ ; e1 :A1 `̀̀ ∆ Γ ; e2 :A2 `̀̀ ∆

Γ ; 〈e1, e2〉 :A1 ∨A2 `̀̀ ∆

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c : (Γ, x :A `̀̀ ∆)

Γ ; µx.c :A `̀̀ ∆

Γ `̀̀ t :A ; ∆ Γ ; e :A `̀̀ ∆

〈t • e〉 : (Γ `̀̀ ∆)

29

Example: Law of Excluded Middle

A story: The devil, the fool, and the $1000000. (borrowed from Phil Wadler)

- I have an offer for you! My promise is:

Either I offer you $1000000

or, if you give me $1000000

then I will grant you any wish

I choose to offer you the latter.

- Here’s $1000000! I want immortality.

- Well done and thank you!

Now, I’ve changed my mind.

I’ve now decided to fulfill my promise

by offering you $1000000.

Here is your money back!

30

Questions?

31

References

32

Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proc. of the 30th Intern. Col. on
Automata, Languages and Programming (ICALP), volume 2719 of LNCS, pages 871–885.
Springer-Verlag, July 2003.

F. Barbanera and S. Berardi. A symmetric lambda-calculus for classical program extraction.
Inform. and Comput., 125(2):103–117, 1996.

P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th ACM SIGPLAN
Int. Conf. on Functional Programming (ICFP’00), pages 233–243. ACM Press, 2000.

M. Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and State in
Imperative Higher-Order Programming Languages. PhD thesis, Department of Computer
Science, Indiana University, Bloomington, Indiana, Aug. 1987.

A. Filinski. Declarative continuations and categorical duality. Master’s thesis, DIKU, Computer
Science Department, University of Copenhagen, Aug. 1989. DIKU Rapport 89/11.

32-1

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types, volume 7 of Cambridge Tracts in
Theoret. Comput. Sci. Cambridge University Press, 1989.

T. G. Griffin. A formulae-as-type notion of control. In P. Hudak, editor, Proc. of the 17th
Annual ACM Symp. on Principles of Programming Languages (POPL’90), pages 47–58.
ACM Press, Jan. 1990. doi: 10.1145/96709.96714.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,
pages 479–490. Academic Press, London, 1980. Reprint of a manuscript written 1969.

O. Laurent. Polarized proof-nets and lambda-mu calculus. Theoret. Comput. Sci., 1(290):
161–188, 2003.

M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduction. In
A. Voronkov, editor, Proc. of the Int. Conf. on Logic Programming and Automated Reasoning
(LPAR’92), volume 624 of LNCS, pages 190–201. Springer-Verlag, July 1992.

32-2

J. C. Reynolds. Definitional interpreters for higher-order programming languages. In Proc. of
the ACM annual Conf. , pages 717–740, 1972.

C. Strachey and C. P. Wadsworth. Continuations: A mathematical semantics for handling
fulljumps. Higher-Order and Symbolic Computation, 13:135–152, April 2000. ISSN 1388-
3690. doi: 10.1023/A:1010026413531. URL http://dl.acm.org/citation.
cfm?id=609150.609224.

C. Urban. Classical Logic and Computation. PhD thesis, University of Cambridge, 2000.

P. Wadler. Call-by-value is dual to call-by-name. In Proc. of the 8th ACM SIGPLAN Int. Conf.
on Functional programming (ICFP’03), volume 38, pages 189–201. ACM Press, Sept. 2003.
ISBN 1581137567.

32-3

http://dl.acm.org/citation.cfm?id=609150.609224
http://dl.acm.org/citation.cfm?id=609150.609224

