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I. Introduction
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Curry-Howard correspondence for Classical Logic

These lectures are part of the course

Logique linéaire et paradigmes logiques du calcul

(mostly)

Although, polarity and focusing -from linear logic- have played a major part in the

understanding of C-H correspondence for Classical Logic.

(see e.g. Olivier Laurent’s PhD work Laurent [2003])
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Curry-Howard correspondence

One of two sides of the coin

“computational interpretation of a logic”

output of a computation = cut-free proof

Side 1 computation as proof search

(starting from a formula to prove)

Logic programming (see e.g. Dale Miller’s course)

Side 2 computation as composition of proofs / cut-elimination

(starting from a proof with cuts)

Curry-Howard (see e.g. this course)
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II. What works and what does not
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Where it all works smoothly

Intuitionistic/minimal logic

Logic Programming language λ-calculus Categories

Propositions Types Objects

Proofs Typed programs λ-terms Morphisms

Cut/Composition Program composition β-redex Morphism composition

Where the stuff happens

(Cut-elimination)
Execution β-reduction

Equality of morphisms

(commuting diagrams)
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Original correspondence

For minimal logic:

Curry Combinators (S,K,I) ↔ Hilbert-style system

Howard Howard [1980] Typed λ-terms ↔ Natural Deduction

I : A→A

K : A→B→A (provides erasure)

S : (A→(B→C))→(A→B)→(A→C) (provides duplication)

I M −→ M

K M N −→ M

S M N P −→ M P (N P )
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Original correspondence

For minimal logic:

Curry Combinators (S,K,I) ↔ Hilbert-style system

Howard Howard [1980] Typed λ-terms ↔ Natural Deduction

Γ, x :A `̀̀ x :A

Γ, x :A `̀̀ M :B

Γ `̀̀ λx.M :A→B

Γ `̀̀ M :A→B Γ `̀̀ N :A

Γ `̀̀ M N :B

(λx.M) N −→β

{
N�x
}
M

λx.M x −→η M if x /∈ FV(M)

=βη sound and complete for Cartesian Closed Categories (CCC)
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Generalising the approach

Decorate proofs with syntactic terms: Γ ` A becomes Γ `̀̀ M :A

Proof transformations

Reductions (execution of) M : M −→S N

given by rewrite system S .

Desired properties of the reduction system

� Progress, i.e. any term containing undesirable structures can be reduced.

� Subject reduction property, i.e. preservation of typing:

If Γ `̀̀ M :A and M −→S N then Γ `̀̀ N :A

1. Confluence, programs are deterministic

2. Normalisation (strong), i.e. execution of programs terminates.
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Example

From minimal logic to intuitionistic logic = minimal logic + “Ex falso Quodlibet”

add rule:

Γ `̀̀ M :⊥

Γ `̀̀ abort(M) :A

Computational behaviour:

abort(M)N −→ abort(M)

In category theory: add to a CCC an initial object⊥
(i.e. for every object A there is a unique morphism⊥ −→ A)

Now, remember that ¬A is A→⊥
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How to get classical logic

Either add axiom schemes

(¬¬A)⇒ A (Elimination of double negation)

((A⇒ B)⇒ A)⇒ A (Peirce’s law)

A ∨ ¬A (Law of excluded middle)

In presence of “Ex falso Quodlibet” (⊥ ⇒ A): All equivalent

Without “Ex falso Quodlibet”: only EDN⇒PL⇒LEM

. . . Or with inference rules, for instance:

Γ,¬A `̀̀ ⊥

Γ `̀̀ A
for EDN

or by the structure of formalism cf. classical sequent calculus and right-contraction
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The bad news

Take a CCC with initial object⊥

Require that for all object A, A is naturally isomorphic to (A⇒ ⊥)⇒ ⊥

The category collapses to a boolean algebra:

at most 1 morphism between any 2 objects

= cannot distinguish 2 proofs of the same theorem

Quite useless for a theory of proofs, or for the proofs-as-program paradigm

Has classical logic a computational content?

Girard, Lafont, Taylor Proofs and types: No Girard et al. [1989]
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III. A bit of history
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The notion of continuation

Program execution flow:

↓ code P that has been executed, producing data v

v its output

↓ code E that remains to be executed, consuming data v

Continuation

= programming environment/context within which some code is executed
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The notion of continuation

. . . is also useful for compiling recursive calls

myfunction(a1,...,an){
some code;

x = myfunction(a1’,...,an’);

some code possibly using x;

}
When executing recursive call, whole environment must be saved to resume

computation (code that remains to be executed + state of memory).

Not needed if some code possibly using x is empty (tail recursion).

Trick = pass it to the recursive call as a “continuation” c’:

myfunction(a1,...,an,c){
some code;

return myfunction(a1’,...,an’,c’);

}
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The notion of continuation in λ-calculus

Program execution flow:

↓ code P that has been executed, producing data v

v its output

↓ code E that remains to be executed, consuming data v

can be seen in
� P is a λ-term that is reduced
� E is the context, in the syntactic sense (a term with a hole E[ ])

E[ ] can also be seen as a function λx.E[x]
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The notion of control

In pure λ-calculus, P has no knowledge of E[ ] while being evaluated.

Control =

letting a program know and manipulate its environment/continuation

getting “unpure features”, modelling goto instructions

� Reynolds Reynolds [1972], Strachey-Wadsworth Strachey and Wadsworth [2000]

(re-edition of 74)

on continuations and call-with-current-continuation (call-cc): cc

Added to programming langage Scheme

� Felleisen’s PhD work Felleisen [1987] on Syntactic Theory of Control: the C operator
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Connection with Logic (89-90)

The general idea:

E[abort(M)] −→ M

E[cc M ] −→ E[M (λx.E[x])]

E[CM ] −→ M (λx.E[x])

In presence of abort( ), cc and C are interdefinable:

CM := cc (λk.abort(M k)) k 6∈ FV(M)

cc M := C (λk.k (M k)) k 6∈ FV(M)

Griffin Griffin [1990]:

cc can be typed by ((A→B)→A)→A

C can be typed by (¬¬A)→A
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Central question about control

E[abort(M)] −→ M

E[cc M ] −→ E[M (λx.E[x])]

E[CM ] −→ M (λx.E[x])

Above rules are not “standard” rewrite rules. . .

What exactly does E[ ] stand for / range over?

More fundamentally:

What kind of continuation can be captured by a control operator?

Is the capture delimited? undelimited? etc
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One proposed formalisation: Parigot’s λµ-calculus Parigot [1992]

Terms M,N,P . . . ::= x | λx.M |M N | µα.c

Commands c ::= [α]M

Γ, x :A `̀̀ x :A; ∆

Γ, x :A `̀̀ M :B; ∆

Γ `̀̀ λx.M :A→B; ∆

Γ `̀̀ M :A→B; ∆ Γ `̀̀ N :A; ∆

Γ `̀̀ M N :B; ∆

c : (Γ `̀̀ ;α :A,∆)

Γ `̀̀ µα.c :A; ∆

Γ `̀̀ M :A;α :A,∆

[α]M : (Γ `̀̀ ;α :A,∆)
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Parigot’s λµ-calculus Parigot [1992]

Extra reduction rules:

(µα.c)N −→ µβ.
{
[β]M N�[α]M

}
c

[β]µα.c −→
{
β�α
}
c

Integrates Peirce’s law: cc := λx.µα.[α](x λy.µβ.[α]y) : ((A→B)→A)→A

Consider that contexts are of the form E[ ] = [γ]([ ]N1 . . . Nn)

If given a top-level continuation variable top :⊥ (Ariola-Herbelin Ariola and Herbelin

[2003]),

� integrates “Ex falso quod libet” λx.µα.[top]x : ⊥→A
� integrates DNE C := λx.µα.[top](x λy.µβ.[α]y) : (¬¬A)→A

So far, so good
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Symmetry
There’s something symmetric about classical logic:

� Boolean algebras

� De Morgan duality:

¬(A ∧B) = ¬A ∨ ¬B

¬(A ∨B) = ¬A ∧ ¬B
� Classical Sequent calculus LK

left-contraction symmetric to right-contraction ( 6= intuitionistic logic)

So far, not explicit in our proof theory + term calculi

Filinski Filinski [1989]: first formalisation of a duality between

� functions as values
� functions as continuations

Symmetric λ-calculus, with explicit conversions from one view to the other

No explicit connection with logic. Is there one?
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Barbanera - Berardi and after

Yes, there’s one.

See BB’s symmetric λ-calculus Barbanera and Berardi [1996]: Natural Deduction with

continuations

It is more like a one-sided sequent calculus

Symmetry of the calculus corresponds to symmetry/duality of LK

Other calculi for (bi-sided) versions of LK, with cut-elimination as computation:
� Urban’s calculus Urban [2000],

� Curien-Herbelin’s λµµ̃ Curien and Herbelin [2000] for⇒ (easier in bi-sided sequent

calculus),

later extended by Wadler Wadler [2003] for ∧ and ∨ (connecting to De Morgan)

26



Two independent works

Curien-Herbelin’s aim:

Express duality of computation syntactically (with a Filinski-like calculus)

Semantics, no proof of SN.

Urban’s aim:

Have a typing system as close as possible to LK, have a reduction system as close as

possible to basic cut-elimination procedures

SN, but no semantics.

Then: a broad literature on comparing such calculi.
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Curien-Herbelin-Wadler - syntax

terms t ::= x | µβ.c | λx.t | 〈t1, t2〉 | inji(t)

continuations e ::= α | µx.c | t ::e | 〈e1, e2〉 | inji(e)

commands c ::= 〈t • e〉
Intuition:

x, y, . . . : inputs (variables standing for terms)

α, β, . . . : outputs (variables standing for continuations)

terms = some inputs (free term variables)

+ one main output

+ alternative outputs (free continuation variables)

continuations = one main input

+ additional inputs (free term variables)

+ some outputs (free continuation variables)

commands = a term facing a continuation (this interaction creates computation)
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Curien-Herbelin-Wadler - typing

Γ, x :A `̀̀ x :A ; ∆ Γ ; α :A `̀̀ α :A,∆

Γ, x :A `̀̀ t :B ; ∆

Γ `̀̀ λx.t :A→B ; ∆

Γ `̀̀ t :A ; ∆ Γ ; e :B `̀̀ ∆

Γ ; t ::e :A→B `̀̀ ∆

Γ `̀̀ t1 :A1 ; ∆ Γ `̀̀ t2 :A2 ; ∆

Γ `̀̀ 〈t1, t2〉 :A1 ∧A2 ; ∆

Γ ; e :Ai `̀̀ ∆

Γ ; inji(e) :A1 ∧A2 `̀̀ ∆

Γ `̀̀ t :Ai ; ∆

Γ `̀̀ inji(t) :A1 ∨A2 ; ∆

Γ ; e1 :A1 `̀̀ ∆ Γ ; e2 :A2 `̀̀ ∆

Γ ; 〈e1, e2〉 :A1 ∨A2 `̀̀ ∆

c : (Γ `̀̀ α :A,∆)

Γ `̀̀ µα.c :A ; ∆

c : (Γ, x :A `̀̀ ∆)

Γ ; µx.c :A `̀̀ ∆

Γ `̀̀ t :A ; ∆ Γ ; e :A `̀̀ ∆

〈t • e〉 : (Γ `̀̀ ∆)
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Example: Law of Excluded Middle

A story: The devil, the fool, and the $1000000. (borrowed from Phil Wadler)

- I have an offer for you! My promise is:

Either I offer you $1000000

or, if you give me $1000000

then I will grant you any wish

I choose to offer you the latter.

- Here’s $1000000! I want immortality.

- Well done and thank you!

Now, I’ve changed my mind.

I’ve now decided to fulfill my promise

by offering you $1000000.

Here is your money back!
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Questions?
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