Exercise 1 : Curien-Herbelin-Wadler's calculus

We consider a special type \perp and a continuation constant **top** of type \perp . Let $\neg A$ be an abbreviation for $A \rightarrow \perp$. Let A and B be simple types.

- 1. Give a term efq_A such that $\vdash efq_A : \bot \rightarrow A$;
- 2. Give a term lem_A such that $\vdash \mathsf{lem}_A : A \lor \neg A$;
- 3. Give a term edn_A such that $\vdash \operatorname{edn}_A : (\neg \neg A) \rightarrow A$;
- 4. Give a command c_A^B such that $c_A^B : (x : (A \rightarrow B) \rightarrow A) \vdash \beta : A)$
- 5. Give a term pl^B_A such that $x\!:\!(A\!\!\rightarrow\!\!B)\!\!\rightarrow\!\!A)\vdash \mathsf{pl}^B_A\!:\!A$;

Exercise 2 : Programming in the simply-typed λ -calculus

- 1. Let a be a simple atomic type and $\Gamma = (x:a, f:a \rightarrow a)$. Describe all λ -terms in normal form that are of type a in Γ .
- 2. Let \underline{n} be Church's numeral n.
 - (a) Write a λ -term suc such that suc $\underline{n} \longrightarrow^*_{\beta} \underline{n+1}$
 - (b) Write a λ -term plus such that plus $\underline{n} \xrightarrow{q} \longrightarrow_{\beta}^{*} \underline{n+q}$
 - (c) Write a λ -term times such that times $\underline{n} \xrightarrow{q} \xrightarrow{*}_{\beta} \underline{n \times q}$
- 3. Write three λ -terms true, false, if such that if true $M \xrightarrow{*}_{\beta} M$ and if false $M \xrightarrow{*}_{\beta} N$