
The Curry-Howard view

of classical logic

a short introduction

Stéphane Graham-Lengrand

Version: 29th March 2016

Table of Contents

Notations and prerequisites 1

1 Classical proofs as programs 3
1.1 Curry-Howard correspondence: concepts and instances 4

1.1.1 Simply-typed combinators . 4
1.1.2 Simply-typed λ-calculus . 6
1.1.3 The categorical aspect . 8
1.1.4 Applying the methodology to other systems 10

1.2 Continuations and control . 12
1.3 Contributions in the 90s . 15
1.4 System L . 20
1.5 Non-confluence of cut-elimination in classical logic 25
1.6 Continuations, Call-by-Name and Call-by-Value 27
1.7 Classical logic and CBN/CBV . 32

1.7.1 Identifying CBN and CBV in System L 33
1.7.2 Two stable fragments . 36
1.7.3 Denotational semantics of CBN and CBV 37

Conclusion . 39

2 Orthogonality, normalisation and witness extraction 41
2.1 Revisiting Proofs of Strong Normalisation for System F 42

2.1.1 Orthogonality models and the Adequacy Lemma 43
2.1.2 Applicative orthogonality models and Strong Normalisation 44

2.2 Adapting the approach to classical calculi . 45
2.2.1 The case of a confluent calculus . 46
2.2.2 The case of a non-confluent calculus 47

2.3 Orthogonality models for extracting witnesses from classical proofs 50
Conclusion . 54

iii

iv TABLE OF CONTENTS

3 Polarisation and focussing 55
3.1 Recovering confluence by polarisation . 56

3.1.1 Symmetry, asymmetry, and η-expansions 56
3.1.2 Towards polarised System L . 58
3.1.3 Focussing . 61
3.1.4 Weak η-conversion . 62
3.1.5 Related works . 63

3.2 Computational interpretation of a focussed calculus 64
3.2.1 Informal relation to System L . 66
3.2.2 Identifying phases as atomic steps . 67
3.2.3 Functional interpretation as pattern-matching 72

Conclusion . 74

Bibliography 74

Index 82

A Basic definitions for categories 85

Notations and prerequisites

In these notes, we assume the reader to be already familiar with some areas and concepts of
logic and computer science. Unless specifically given, the notations and definitions used in
these notes are rather standard, and formally follow [Len06]. The areas and concepts are:
• Set theory; see e.g. [Kri71].

In particular we will use the concepts of, and notations for, subsets, power sets, union,
intersection and difference of sets, relations, functions, injectivity, surjectivity, etc. Our
notation for the power set of A is P(A). Our notation for the set of total functions from
A to B is denoted A → B; the set of partial functions from A to B is denoted A ⇀ B.
We also assume the reader to be familiar with natural numbers, lists and trees.

• The standard difference between object-level and meta-level.
In particular, variables of the meta-level are called meta-variables and (unless otherwise
stated) “rules” and “systems” are meta-level devices (i.e. a rule has no existence at the
object level, but its instances do -and the collection of them, for example).

• Trees and derivations.
We use inference rules and systems to define sets of (valid) derivations and derivabil-
ity of judgements, as well as partial derivations; when we state that a rule is deriv-
able/admissible/invertible (in a system) we actually mean that its instances are deriv-
able/admissible/invertible (in the collection of derivations defined by the system).

• Rewriting (first-order and higher-order); see e.g. [Ter03].
In particular, the notations −→n , −→+ , −→∗ , ←→∗ , denote the composition n times
of a (binary) relation −→ , the transitive closure, the transitive and reflexive closure, and
the transitive, reflexive and symmetric closure, of the relation −→ , respectively.
We assume that the reader is familiar with the properties of confluence and Church-Rosser,
weak normalisation, strong normalisation, and the usual techniques to prove them, in
particular the simulation techniques.
Following [Len06], the notation

(γ) M −→ N

introduces a rewrite rule whose contextual closure (or more precisely, the contextual clo-
sure of its instances) is denoted M −→γ N . We also use this notation when γ is a system
of rules.
Our languages will often be made of terms whose syntax is defined by a BNF-grammar.
Some of its syntactic categories may contain variables. We assume the reader is familiar
with variable binding, α-conversion and equivariance; specifying binders and their scopes
automatically defines what the free variables of a term, denoted FV(t), are; capture-
avoiding substitution of u for x in t is denoted

1

2 Notations and prerequisites

{u�x} t
where x is a variable of some syntactic category with variables and u is a term of that
syntactic category.

• Basic proof theory; see e.g. [TS00]. In particular, standard proof formalisms such as Nat-
ural Deduction and Sequent Calculus, for intuitionistic and classical logic (propositional
and first-order).

Chapter 1

Classical proofs as programs

Contents
1.1 Curry-Howard correspondence: concepts and instances 4

1.1.1 Simply-typed combinators . 4
1.1.2 Simply-typed λ-calculus . 6
1.1.3 The categorical aspect . 8
1.1.4 Applying the methodology to other systems 10

1.2 Continuations and control . 12
1.3 Contributions in the 90s . 15
1.4 System L . 20
1.5 Non-confluence of cut-elimination in classical logic 25
1.6 Continuations, Call-by-Name and Call-by-Value 27
1.7 Classical logic and CBN/CBV . 32

1.7.1 Identifying CBN and CBV in System L 33
1.7.2 Two stable fragments . 36
1.7.3 Denotational semantics of CBN and CBV 37

Conclusion . 39

The Curry-Howard correspondence [CF58, How80] has been one of the most fruitful con-
nections between proofs and computation: As one of the embodiments of constructivism,
where mathematical proofs bear computational content, the correspondence naturally emerged
in the context of minimal and intuitionistic logic, and gave rise to the field of Type The-
ory [ML82, ML84].

Despite the non-constructive character of proofs in classical logic, arising from the Law of
Excluded Middle, or the Double Negation Elimination etc, it is natural to investigate what
part of the Curry-Howard correspondence can still be built for that logic.

In this chapter we review the foundations of the correspondence in the framework of
classical logic, along the main lines of investigation that were explored over the past 25 years
since Griffin’s seminal work [Gri90].

The first step in this programme is to turn a proof format for classical logic into a typing
system for a language. For such a language to be of computational nature, an operational
semantics and/or a denotational semantics has to be designed.

3

4 Chapter 1. Classical proofs as programs

Section 1.1 reviews the basic concepts of the Curry-Howard correspondence, both in their
original framework and at a more abstract level. Section 1.2 present some concepts in pro-
gramming, namely continuations and control, which will prove useful to understand classical
proofs as programs. Section 1.3 presents early formalisations of the above concepts as proof-
term calculi for classical logic while Section 1.4 presents in more details one of the most
convenient ones, which relates to Gentzen’s classical sequent calculus. Section 1.6 uses con-
tinuations to describe the evaluation strategies known as Call-by-Name and Call-by-Value
while Section 1.7 explains how this can be used to build semantics for classical proofs.

1.1 Curry-Howard correspondence: concepts and instances

The correspondence relates logic to programming languages, and is sometimes taken to involve
a third aspect, namely category theory (as it forms a popular framework to build the semantics
of programming languages). Table 1.1 gives a high-level view of the correspondence,1 which
operates at several levels: mathematical formulae, or propositions, correspond to the types
of a given programming language; proofs of such propositions correspond to programs that
can be given the corresponding type; the way proofs can be composed corresponds to the
way programs can be composed/applied; finally (and this is where we adopt the view of
computation as proof-normalisation), cut-elimination corresponds to program execution.

Logic Programming language Categories
Propositions Types Objects
Proofs Typed programs Morphisms
Cut/Composition Program composition Morphism composition

Cut-elimination Program execution Equality of morphisms
(commuting diagrams)

Table 1.1: High-level view of the Curry-Howard correspondence
The rest of this section gives a brief overview of the correspondence in the framework

of minimal and intuitionistic logic. An in-depth presentation of the correspondence can be
found in the book [SU06].

1.1.1 Simply-typed combinators

The original instance of the correspondence was given in the study of combinators [CF58],
which yields a simple language made of three basic programs I, K, S and with program
application as its only construct:

Definition 1 (The (I, K, S)-combinatoric system)
The syntax is given by the following grammar:

M,N, . . . ::= I K S M N

The last construct, program application, is associative to the left, i.e. (M N) P can be
abbreviated as M N P .

1We use the expression (Curry-Howard) “correspondence” rather than the popular (Curry-Howard) “iso-
morphism”, as it is difficult to specify what the isomorphism exactly is before specifying exactly what formal
systems we intend to relate.

1.1. Curry-Howard correspondence: concepts and instances 5

and its operational semantics is given by the following first-order rewrite system
IM −→ M
KM N −→ M
SM N P −→ M P (N P)

※

Clearly, the operational semantics defines I as the identity, while K provides erasure
and S provides duplication. The reduction relation is confluent and defines a model of
computation that turns out to be Turing-complete. At the cost of losing that property, the
language can be given an intuitive typing system, using simple types:

Definition 2 (Simple types) Simple types are defined by the following grammar:
A,B, . . . ::= a A→B

where a ranges over a fixed set of elements called atomic types. The symbol→ is associative
to the right, i.e. A→(B→C) can be abbreviated as A→B→C. ※

The typing system is defined as follows:

Definition 3 (Simple types for the (I, K, S)-combinatoric system)
Typing is a binary relation between terms and simple types, denoted with expressions such
as ` M :A. That relation is defined for the combinators as follows:

` I :A→A
` K :A→B→A
` S : (A→(B→C))→(A→B)→(A→C)

and program application is typed by the following rule:
` M :A→B ` N :A

` M N :B
Derivability of the typing statement ` M :A, from the above axioms and using the program
application rule, is denoted `stC M :A. ※

The reduction defined by the rewrite system preserves types, a property called Subject
Reduction:

Theorem 1 (Subject reduction for simply-typed combinatoric system)
If ` M :A and M −→ N then ` N :A. ※

Proof: By induction on the derivation of M −→ N , with the base cases corresponding to
the 3 rewrite rules themselves. �

The essence of the Curry-Howard correspondence, is the simple remark that, viewing
the functional type construct → as the logical symbol for implication, simples types are
isomorphic2 to the syntax of formulae for propositional minimal logic [Joh36] and that typing
derivations are isomorphic to proofs in a particular Frege-Hilbert system [Fre79, Hil28] for
minimal logic.

2The isomorphism with simple types assumes that atomic types are isomorphic to atomic formulae.

6 Chapter 1. Classical proofs as programs

Definition 4 (Propositional minimal logic)
Formulae of minimal logic are defined by the following grammar:

A,B, . . . ::= a A⇒B
where a ranges over a fixed set of elements called atomic formulae.
Proofs are the derivations built with the Modus Ponens rule

` A⇒B ` A

` B
from the axioms:

A⇒A
A⇒B⇒A
(A⇒(B⇒C))⇒(A⇒B)⇒(A⇒C)

The symbol ⇒ is associative to the right.
Derivability of ` A, from the above axioms and using the program application rule, is
denoted `FH⇒ A. ※

Via the correspondence, the Subject Reduction property allows the view of the reduction
relation as a proof-transforming procedure.

1.1.2 Simply-typed λ-calculus

Curry’s view about minimal logic was extended by Howard to intuitionistic first-order arith-
metic [How80]. A different format was also proposed, both for proofs and for programs, and
became perhaps the most popular setting for the Curry-Howard correspondence: Natural
Deduction [Gen35] was the formalism used for proofs, and the λ-calculus [Chu41] was the
formalism used for programs. This instance of the Curry-Howard correspondence that we
present is a version of natural deduction using sequents and a version of the simply-typed
λ-calculus using typing contexts.

Definition 5 (λ-calculus) The syntax of the λ-calculus is given by the following grammar:
M,N, . . . ::= x λx.M M N

where x ranges over a denumerable set of variables, and the construct λx.M binds x in M .3

Standard conventions are used for parentheses [Bar84]: the scopes of binders extend as
much as parentheses allow (i.e. λx.M N abbreviates λx.(M N)); program application is
associative to the left (i.e.M N P abbreviates (M N) P); moreover, binder can be grouped,
so that λxy.M abbreviates λx.λy.M .
The following rewrite rules

(β) (λx.M) N −→
{
N�x

}
M

(η) λx.M x −→ M if x /∈ FV(M)
define the reduction relations −→β , −→η and −→βη . ※

As for the combinatoric system from Section 1.1.1, the reduction relations are confluent:

Theorem 2 (Confluence) −→β , −→η and −→βη are confluent. ※

3As mentioned in the section about notations, specifying binders and their scopes automatically defines
free variables, α-conversion, capture-avoiding substitution, etc.

1.1. Curry-Howard correspondence: concepts and instances 7

Proof: See for instance [Bar84]. �

Definition 6 (Simply-typed λ-calculus) Typing contexts are finite maps from variables
to simple types, with () denoting the empty context (sometimes the notation () is completely
omitted), Γ,Γ′ denoting the union of contexts Γ and Γ′ (assuming it is defined), and x :A
denoting the singleton context mapping variable x to the simple type A.
The typing rules of the simply-typed λ-calculus are given in Fig. 1.
Derivability of the typing statement Γ ` M :A in that system is denoted Γ `stλ M :A. ※

Γ, x :A ` x :A

Γ, x :A ` M :B
Γ ` λx.M :A→B

Γ ` M :A→B Γ ` N :A
Γ ` M N :B

Figure 1: Simply-typed λ-calculus

As for the combinatoric system from Section 1.1.1, the reduction relations satisfy Subject
Reduction:
Theorem 3 (Subject reduction for simply-typed λ-calculus)

1. If Γ, x :A ` M :B and Γ ` N :A then Γ `
{
N�x

}
M :B.

2. If Γ ` M :A and M −→βη N then Γ ` N :A.
※

Proof: See for instance [Bar84]. �

Our second instance of the Curry-Howard correspondence relates the simply-typed λ-
calculus with the Natural Deduction system NJ⇒ for minimal logic.

Definition 7 (Natural Deduction for minimal logic - NJ⇒)
System NJ⇒ is the inference system given in Fig. 2, where
• A, B range over formulae of minimal logic;
• Γ stands for a “collection” of formulae. By collection we mean either set or multiset,4

with Γ,Γ′ denoting the union of Γ and Γ′, A denoting either the formula A itself or the
singleton {A} (or {{A}}), while the empty set (or multiset) is sometimes ommitted;

• Γ ` A is a structure called sequent.
Derivations in that system are called proofs in NJ⇒.
Derivability in NJ⇒ of a sequent Γ ` A is denoted Γ `NJ⇒ A. ※

Γ, A ` A

Γ, A ` B
Γ ` A⇒B

Γ ` A⇒B Γ ` A
Γ ` B

Figure 2: Natural Deduction for minimal logic - NJ⇒
4That choice will change the number of proofs of a given formula.

8 Chapter 1. Classical proofs as programs

Comparing Fig. 1 and Fig. 2 reveals our second instance of the Curry-Howard correspon-
dence, although the exact meaning of the word ‘correspondence’ is in this case more subtle
than for our first instance:

Clearly, the bijective aspect that pertains to the word “isomorphism” is jeopardised as

x :A, y :A ` x :A and x :A, y :A ` y :A are clearly two distinct typing derivations which

would both ‘correspond to’ the proof A,A ` A (whether we use sets or multisets). More-
over, binding introduces an ambiguity in the way we count typing derivations: is there one
or infinitely many derivations of ` λx.x :A→A?5

For this reason, these notes take the view that the interesting aspects of the Curry-
Howard correspondence do not include the bijective aspect of an encoding from one system
into another, but rather its compositionality (for trees), and the soundness and completeness
properties:

In the present case, the forgetful encoding that maps every typing derivation to a proof
is compositional with respect to the tree-structure of derivations; its surjectivity provides
completeness of type inhabitation -whether there exists a λ-term of a given type- with respect
to the provability of the corresponding formula; soundness is simply the fact that the tree
obtained by forgetting variables and terms from a typing derivation is a correct proof.

These are the properties that we will aim at when investigating the variants of the Curry-
Howard correspondence.

As for the combinatoric system from Section 1.1.1, the Subject Reduction property allows
the view of the reduction relations −→β , −→η and −→βη as proof-transforming procedures.

In summary, the most well-known settings for the Curry-Howard correspondence are:

Frege-Hilbert system ↔ Combinators (S,K,I) [CF58]
Natural Deduction ↔ Typed λ-terms [How80]

1.1.3 The categorical aspect

We now briefly mention what is sometimes considered a third aspect of the Curry-Howard
corespondence, in category theory.

Categories can be used to shed a semantical light on the Curry-Howard correspondence.
In our case, a particular kind of category provides models of the simply-typed λ-calculus:
cartesian closed categories (CCC). In brief, CCC feature a terminal object, products, and
exponential objects. We start with a few notational conventions:

Notation 8 (Category)
The class of morphisms from object A to object B is denoted hom(A,B), and the expression
f : A −→ B denotes that f is a morphism from A to B. Identity morphisms are denoted
IdA, and the composition of f : A −→ B and g : B −→ C is denoted f · g : A −→ C.

5Formally, the typing system allows infinitely many premisses for that typing judgement, depending on the
variable that we pick to place in the typing context with type A.

1.1. Curry-Howard correspondence: concepts and instances 9

In a cartesian closed category (CCC),
• the terminal object is denoted 1, with morphisms 1A : A −→ 1
• the product of A and B is denoted A × B, with projections denoted π1 : A×B −→ A

and π2 : A×B −→ B (and more generally, the ith projection from n objects is denoted
πi/n) and morphism pairing denoted 〈f1, f2〉 : C −→ A×B for every f1 : C −→ A and
f2 : C −→ B.

• the exponential of A and B is denoted BA, with morphisms eval : BA ×A −→ B and a
currified morphism Λg : X −→ BA for every g : X ×A −→ B.

※

For a formal definition of the above concepts, see Appendix 3.2.3.

Definition 9 (Semantics of the simply-typed λ-calculus in a CCC)
Consider a cartesian closed category.
Consider a mapping that interprets every atomic type a as an object JaK of the CCC, and
extend it to all simple types by defining JA→BK as JBKJAK .
Consider a total order on the λ-calculus variables; when writing a typing context as
x1 :A1, . . . , xn :An we now follow the convention that x1, . . . , xn is an increasing sequence;
we then define the semantics of any typing context by

Jx1 :A1, . . . , xn :AnK := 1× JA1K × · · · × JAnK

The semantics of a typing derivation π for the typing judgement Γ ` M :A is defined ac-
cording to Fig. 3, by induction on π, as a morphism JπK : JΓK −→ JAK. ※

r

x1 :A1, . . . , xn :An ` xi :Ai

z
:= πi+1/n+1 : 1× JA1K × · · · × JAnK −→ JAiK

u

w
v

··· π
Γ, x :A ` M :B

Γ ` λx.M :A→B

}

�
~ := Λg : JΓK −→ JBKJAK

where g =
t ··· π

Γ, x :A ` M :B

|

: JΓK × JAK −→ JBK

u

w
v

··· π1
Γ ` M :A→B

··· π2
Γ ` N :A

Γ ` M N :B

}

�
~ := 〈g1, g2〉 · eval : JΓK −→ JBK

where g1 =
t ··· π1

Γ ` M :A→B

|

: JΓK −→ JBKJAK

and g2 =
t ··· π2

Γ ` N :A

|

: JΓK −→ JAK

Figure 3: Semantics of the simply-typed λ-calculus in a CCC

Note that in the case of a λ-abstraction, we assume that x is (strictly) greater than any

10 Chapter 1. Classical proofs as programs

variable in Γ. Any derivation in which this is not the case can easily be turned into one
satisfying this condition: variables can always be renamed6 so that they are introduced in the
typing context in increasing order.7

Now as mentioned earlier, we can relate the reductions in the simply-typed λ-calculus to
the equality of morphisms in CCC:

Theorem 4 (Soundness and completeness)

Assume
··· π

Γ `stλ M :A
and

··· π
′

Γ `stλ N :A
.

M←→∗βη N if and only if in every CCC we have JπK = Jπ′K. ※

The equality theorems that can be derived from the axioms of CCC (and that therefore
hold in every CCC) are reflected syntactically in the simply-typed λ-calculus, and the simply-
typed λ-calculus is therefore said to form an internal language for CCC.

Note that it is easy to define the semantics of the (I, K, S)-combinatoric system (with
simple types) in a CCC, for instance by encoding combinators as simply-typed λ-terms:

Theorem 5 (Semantics of the (I, K, S)-combinatoric system)
The encoding of Fig. 4 satisfies satisfies the following properties:
• If `stC M :A then `stλ M :A, with a function π 7→ π transforming a derivation of the

former into a derivation of the latter.
• If M −→ M ′ then M −→β M ′.
The above properties allow the definition of the semantics JπK of a typing derivation π of
`stC M :A as the morphism JπK : 1 −→ JAK, such that the following holds:
If π←→∗ π′ then JπK = Jπ′K. ※

I := λx.x
K := λxy.x
S := λxyz.x z (y z)
M N := M N

Figure 4: (I, K, S)-combinators as λ-terms

1.1.4 Applying the methodology to other systems

The approach of the Curry-Howard correspondence can be, and has been, generalised with
the following methodology:
• The first step is to decorate proofs with proof-terms: Γ ` A becomes Γ′ ` M :A, with

Γ′ being a typing context whose co-domain (i.e. the types which have been assigned to
variables) is Γ;

6Using equivariance of typing derivations.
7Alternative presentations of the simply-typed λ-calculus may be more convenient to define its semantics

in a CCC: the use of De Bruijn indices (see e.g. [Bar84]) instead of named variables provides a natural way
of ordering the objects in the interpretation of a typing environment (without resorting to ordering the set
of variables); if variables carry their own type (or when each type comes with its own set of variables), the
interpretation can be defined on the terms themselves rather than their typing derivations.

1.1. Curry-Howard correspondence: concepts and instances 11

• the second is to express proof transformations in terms of proof-term reduction, denoted
M −→S N , often given by a rewrite system S.

The desired properties of reduction are
• Progress, i.e. any term containing “undesirable structures” can be reduced.
• Subject reduction property, i.e. preservation of typing:

If Γ ` M :A and M −→S N then Γ ` N :A
• possibly Confluence, programs are deterministic.
• possibly Normalisation, i.e. the fact that the execution of programs terminates.

The notion of “undesirable structures” is of course one of the concepts to identify in an
interesting way; for instance in the simply-typed λ-calculus, a structure of the form (λx.M) N
corresponds to the introduction of implication followed by the elimination of the introduced
implication, a situation which we may consider undesirable from a proof-theoretic point of
view.

To illustrate this methodology, we show how the correspondence from Section 1.1.2 can be
extended to intuitionistic logic with both the implication connective and the logical constant
⊥.

First note that by identifying ⊥ simply as one of the atomic formulae, intuitionistic nega-
tion can be defined as follows: ¬A := A⇒⊥. With this definition, the following rules are
instances of those of the simply-typed λ-calculus:

Γ, x :A ` M :⊥
Γ ` λx.M :¬A

Γ ` M :¬A Γ ` N :A
Γ ` M N :⊥

and these reflect the usual Natural Deduction rules for negation, but what is missing, to have
intuitionistic logic, is the rule named Ex falso quodlibet (EFQ):

Γ ` ⊥
Γ ` A

We now see what that rule may become in the Curry-Howard correspondence.

Example 1 (Extension of the Curry-Howard correspondence for NJ⇒,⊥)
We extend the syntax of the λ-calculus with the following construct:

M,N, . . . ::= . . . abort(M)

and we add to the simply-typed λ-calculus a typing rule corresponding to EFQ:
Γ ` M :⊥

Γ ` abort(M) :A
We may then add to the λ-calculus a rule such as

([) abort(M) N −→ abort(M)
to computationally interpret the new construct as a greedy consumer of arguments, and
−→[, −→β[, −→η[, and −→βη[are all confluent.
With these definitions, we still have Subject Reduction:
If Γ ` M :A and M −→βη[N then Γ ` N :A.
We can also interpret EFQ in category theory by requiring from a CCC the extra axiom
that there is an initial object ⊥, i.e. an object such that, from every object A there is a
unique morphism 0A : ⊥ −→ A (which is the dual of the terminal object 1 of the CCC). ※

12 Chapter 1. Classical proofs as programs

From there, it is natural to try to extend the above correspondence to classical logic, which
can be obtained from intuitionistic logic by adding any one of the three axiom schemes:

Elimination of double negation (EDN): (¬¬A)⇒A
Peirce’s law (PL): ((A⇒B)⇒A)⇒A
Law of excluded middle (LEM): A ∨ ¬A

In presence of EFQ (in short, the axiom scheme ⊥⇒A), the above schemes are all equivalent
in terms of formula provability. Interestingly enough and as noted in [AH03], without EFQ,
we only have the following implications between the schemes:

EDN⇒PL⇒LEM
EDN⇒EFQ

Alternatives to adding axiom schemes is to add inference rules such as
Γ,¬A ` ⊥

Γ ` A
for EDN

or even to change the structure of the proof formalism, for instance by using the classical
sequent calculus [Gen35] with right-contraction.

When thinking about classical logic, we have a tendency to identify a formula A with ¬¬A,
as suggested not only by the elimination of double negation but also by models of classical
provability in boolean algebras.

Now, attempts to apply the Curry-Howard methodology to, say, the above axiom schemes
or inference rule, are limited by the following fact:

A CCC with initial object ⊥ and such that every object A is naturally isomorphic to ⊥⊥A ,
collapses to a boolean algebra: there is at most 1 morphism between any 2 objects (see the
proof in [LS86] or [Str11]).

That means that such a category would not distinguish two proofs of the same theorem,
which is rather useless for a theory of proofs, or for the proofs-as-programs paradigm.

At that point, the natural question to ask is whether classical logic has computational con-
tent? To that question, and based on the above remarks, the book Proofs and Types [GTL89]
answers in 1989:

“[The Curry-Howard] interpretation is not possible with classical logic: there is no sensible
way of considering proofs as algorithms. In fact, classical logic has no denotational semantics,
except the trivial one which identifies all the proofs of the same type.”

In the rest of this chapter we explore the alternative answers that have been given to the
question since then.

1.2 Continuations and control

For this we start with some concepts which at first sight may seem unrelated: continuations
and control.

A freeze-frame shot taken at one point of a program’s execution flow could be represented,
in a high-level view, as follows:

↓ code P that has been executed, producing data v
v its output
↓ code E that remains to be executed, consuming data v

1.2. Continuations and control 13

The code E that remains to be executed, and more generally the programming environment
or programming context within which some code is executed, is called continuation.

The concept is also useful for compiling recursive calls: consider the following pseudo code
myfunction(a1,...,an){

some code;
x = myfunction(a1’,...,an’);
some code possibly using x;

}
When executing the recursive call, the code that remains to be executed (i.e. some code
possibly using x), together with the values of the local variables, needs to be stored in
order to resume computation after the recursive call has returned with a value for x. But
this is not needed in the case of tail recursion, in which some code possibly using x just
returns (the value for) x.
The above code can be transformed into a tail-recursive code by modelling the remaining
code some code possibly using x as a “continuation” function c’ taking the value of x as
input, and by passing that continuation c’ as an extra argument to the recursive call, now in
charge of executing it once the value of x is determined:
myfunction(a1,...,an,c){

some code;
return myfunction(a1’,...,an’,c’);

}
The function myfunction now generally takes an extra argument c (the continuation function
describing what to do with the result) and uses it in e.g. some code or in the contruction of
c’. Originally, the continuation is often the identity function (“do nothing with your result,
just return it”), but it usually becomes more and more sophisticated with each recursive call.

Now we see what these concepts become in the case where the programming language is
the λ-calculus. An instance of the above program execution flow picture

↓ code P that has been executed, producing data v
v its output
↓ code E that remains to be executed, consuming data v

can be seen by considering
• P to be a λ-term that is reduced,
• v to be the value to which P reduces,
• E to be the context, in the syntactic sense: a term with a hole E[] (with the original
λ-term being E[P], i.e. the context E[] whose hole has been filled with the λ-term P).
This is only a general idea: whether that view accurately describes program execution

depends on the evaluation strategy for λ-terms; in particular, whether λ-terms are reduced
inside-out, what notion of “value” is considered (is it a normal form?), what grammar for
contexts E[] ranges over, etc.

But in pure λ-calculus, it is clear that P has no knowledge of E[] while being evaluated.
Control is about letting a program know and manipulate its evaluation context. Origi-

nally, the concept was used to model goto instructions, and other features that are not pure
functional programming.

In the case of λ-calculus, the evaluation context E[] within which a term is evaluated
gives rise to a continuation function λx.E[x] (for a fresh variable x) that could be passed as

14 Chapter 1. Classical proofs as programs

an argument.

Reynolds [Rey72], Strachey-Wadsworth [SW00] (re-edition of 74) explored continuations
and control along those lines, letting a program capture its evaluation context with a feature
known as call-with-current-continuation (call-cc): cc. This was added to the programming
language Scheme.

Felleisen’s PhD work [Fel87] on the Syntactic Theory of Control introduced another control
operator: C.

The general idea of these control operators is given by the following reduction rules:
E[cc M] −→ E[M (λx.E[x])]
E[C M] −→ M (λx.E[x])

In presence of abort() and its (slightly modified) rule
E[abort(M)] −→ M

cc and C are interdefinable:
C M := cc (λk.abort(M k)) k 6∈ FV(M)
cc M := C (λk.k (M k)) k 6∈ FV(M)

Indeed,
E[cc M] = E[C (λk.k (M k))]

−→ (λk.k (M k)) (λx.E[x])
−→ (λx.E[x]) (M λx.E[x])
−→ E[M (λx.E[x])]

E[C M] = E[cc (λk.abort(M k))]
−→ E[(λk.abort(M k)) (λx.E[x])]
−→ E[abort(M λx.E[x])]
−→ M (λx.E[x])

Of course, the above rules are not “standard” rewrite rules (clearly not first-order rewrite
rules) and remain informal because we have not specified what E[] exactly stands for or
ranges over.

More fundamentally, a central question about control is: what kind of continuation can
be captured by a control operator and how? Is the capture delimited? undelimited? etc.

But what is interesting is that the above intuitions are sufficient to start seeing a connec-
tion with classical logic, as initiated by Griffin in [Gri90]:

cc can be typed by PL: ((A→B)→A)→A
C can be typed by EDN: (¬¬A)→A

With these types, the rewrite rules satisfy the following Subject Reduction properties:
The following (again, informal) typing tree for E[cc M]

Γ ` λx.E[x] :A→B
Γ ` cc : ((A→B)→A)→A Γ ` M : (A→B)→A

Γ ` cc M :A
Γ ` E[cc M] :B

can be transformed into a typing tree for E[M (λx.E[x])]

1.3. Contributions in the 90s 15

Γ ` λx.E[x] :A→B
Γ ` M : (A→B)→A Γ ` λx.E[x] :A→B

Γ ` M (λx.E[x]) :A
Γ ` E[M (λx.E[x])] :B

while the following (again, informal) typing tree for E[C M]

Γ ` λx.E[x] :A→⊥
Γ ` C : ((A→⊥)→⊥)→A Γ ` M : (A→⊥)→⊥

Γ ` C M :A
Γ ` E[C M] :⊥

can be transformed into a typing tree for E[M (λx.E[x])]

Γ ` M : (A→⊥)→⊥ Γ ` λx.E[x] :A→⊥
Γ ` M (λx.E[x]) :⊥

We can already see that, for the Subject Reduction property to hold in the case of C, the
context E[] cannot be any context: it has to produce something of type ⊥. Similarly, for the
generalised abort rule to satisfy Subject Reduction, the context E[] also needs to produce
something of type ⊥.

In fact, C generalises abort(_), since we can define
abort(M) := C (λx.M)

where x is a fresh (and therefore dummy) variable.

This reflects what we have already seen in pure logic: EDN ⇔ (PL ∧ EFQ)

1.3 Contributions in the 90s

One possible formalisation of the above informal concepts was proposed by Parigot [Par92]
in the form of the λµ-calculus.

Definition 10 (λµ-calculus) The syntax of terms extends that of λ-calculus as follows:
Terms M,N,P . . . ::= x λx.M M N µα.c
Commands c ::= [α]M

where α ranges over a new set of variables called continuation variables, and µα.c binds α in
c. The scope of this binder, as well as that of the unique command construct [α]M , extend
as much as parentheses allow, so that µα.M N stands for µα.(M N) and [α]M N stands for
[α](M N).

16 Chapter 1. Classical proofs as programs

The typing rules extend those of λ-calculus as follows:

Γ, x :A ` x :A; ∆

Γ, x :A ` M :B; ∆
Γ ` λx.M :A→B; ∆

Γ ` M :A→B; ∆ Γ ` N :A; ∆
Γ ` M N :B; ∆

c : (Γ ` ;α :A,∆)
Γ ` µα.c :A; ∆

Γ ` M :A;α :A,∆
[α]M : (Γ ` ;α :A,∆)

where Γ is a typing context for term-variables and ∆ is a typing context for continuation-
variables. Derivability of sequents in this system is respectively denoted Γ `λµ M :A ; ∆
and c : (Γ `λµ ; ∆).
The reduction rules extend the β-reduction of λ-calculus as follows:

(λx.M) N −→
{
N�x

}
M

(µα.c) N −→ µβ.
{

[β]M N�[α]M
}
c

[β]µα.c −→
{
β�α

}
c

where
{

[β]M N�[α]M
}
c is an unconventional substitution operation, consisting in replacing,

in c, every subcommand (i.e. subterm that is a command) of the form [α]M by [β]M N ,
with the usual capture-avoiding conditions pertaining to substitution.
The rules define a reduction relation −→λµ on both terms and commands. ※

A basic intuition of the syntax is that each continuation variable α represents a “place”
where various sub-terms of a given type (that of α) can be “stored” with a construct such
as [α]M . The construct µα.c retrieves what is stored under the continuation variable α and
presents it as if it was a simple term. The second rewrite rule distributes for instance an
argument to every sub-term stored under the variable α.

This calculus provides a computational interpretation of classical logic. Indeed, the typing
system, when forgetting variables and terms, turns into the proof system of Fig. 5, where Γ
and ∆ now stand for sets or multisets of formulae. We see that the system generalises NJ⇒,
in particular with a more general form of sequent: A1, . . . , An ` A;B1, . . . , Bm, and a new
form of sequent A1, . . . , An ` ;B1, . . . , Bm.

Γ, A ` A; ∆

Γ, A ` B; ∆
Γ ` A⇒B; ∆

Γ ` A⇒B; ∆ Γ ` A; ∆
Γ ` B; ∆

Γ ` ;A,∆
Γ ` A; ∆

Γ ` A;A,∆
Γ ` ;A,∆

Figure 5: The proof system corresponding to the simply-typed λµ-calculus

1.3. Contributions in the 90s 17

Just like a sequent A1, . . . , An ` A of NJ⇒ can be interpreted as the formula
(A1 ∧ · · · ∧An)⇒A, the two sequent forms above can respectively be interpreted as the for-
mulae (A1 ∧ · · · ∧An)⇒(A∨B1 ∨ · · · ∨Bm) and (A1 ∧ · · · ∧An)⇒(B1 ∨ · · · ∨Bm). With this
interpretation, the system of Fig. 5 can be easily checked to be sound with respect to classical
logic, and for completeness we can see that
• the rules of NJ⇒ are particular instances of the first three rules;
• the system features a right-contraction rule, which allows Peirce’s Law to be proved, as

we see below.
As with the simply-typed λ-calculus, the rewrite rules satisfy Subject Reduction, which

allows the λµ-calculus to describe a proof-transforming procedure for the system of Fig. 5:

Theorem 6 (Subject reduction for the simply-typed λµ-calculus)
1. If Γ `λµ M :A; ∆ and M −→λµ M ′ then Γ `λµ M ′ :A; ∆.
2. If c : (Γ `λµ ; ∆) and c −→λµ c′ then c′ : (Γ `λµ ; ∆).

※
Remark 7 This calculus integrates Peirce’s law: By defining

cc := λx.µα.[α](x λy.µβ.[α]y)
we can build the following typing tree:

x : (A→B)→A ` x : (A→B)→A;α :A

x : (A→B)→A, y :A ` y :A;α :A, β :B
[α]y : (x : (A→B)→A, y :A ` ;α :A, β :B)
x : (A→B)→A, y :A ` µβ.[α]y :B;α :A
x : (A→B)→A ` λy.µβ.[α]y :A→B;α :A

x : (A→B)→A ` x λy.µβ.[α]y :A;α :A
[α](x λy.µβ.[α]y) : (x : (A→B)→A ` ;α :A)
x : (A→B)→A ` µα.[α](x λy.µβ.[α]y) :A;

` cc : ((A→B)→A)→A;

Now, consider that contexts are of the form E[] = [γ]([] N1 . . . Nn). We can perform the
following reduction:

E[cc M] = [γ](λx.µα.[α](x λy.µβ.[α]y)) M N1 . . . Nn

−→ [γ](µα.[α](M λy.µβ.[α]y)) N1 . . . Nn

−→ [γ](µα.[α](M λy.µβ.[α]y N1) N1) N2 . . . Nn

−→ . . .
−→ [γ]µα.[α](M λy.µβ.[α]y N1 . . . Nn) N1 . . . Nn

−→ [γ](M λy.µβ.[γ]y N1 . . . Nn) N1 . . . Nn

= E[M (λy.µβ.E[y])]
※

Notice that what is passed to M as an argument is not exactly λy.E[y], since E[] forms
a command and λy.E[y] is not correct syntax, but µβ.E[y] turns the command E[y] into a
term (of any type).

Remark 8 If given a top-level continuation variable top :⊥ (Ariola-Herbelin [AH03, AH08]),
then the λµ-calculus integrates Ex falso quodlibet and the elimination of double negation:

18 Chapter 1. Classical proofs as programs

We can build the following typing tree:

x :⊥ ` x :⊥;α :A
[top]x : (x :⊥ ` ;α :A)
x :⊥ ` µα.[top]x :A;
` λx.µα.[top]x :⊥→A;

and perform the following reduction:
E[(λx.µα.[top]x) M] = [γ](λx.µα.[top]x) M N1 . . . Nn

−→ [γ](µα.[top]M) N1 . . . Nn

−→ [γ](µα.[top]M) N2 . . . Nn

−→ . . .
−→ [γ](µα.[top]M)
−→ [top]M

And by defining
C := λx.µα.[top](x λy.µβ.[α]y)

we can build the following typing tree:

x :¬¬A ` x :¬¬A;α :A

x :¬¬A, y :A ` y :A;α :A, β :⊥
[α]y : (x :¬¬A, y :A ` ;α :A, β :⊥)
x :¬¬A, y :A ` µβ.[α]y :⊥;α :A
x :¬¬A ` λy.µβ.[α]y :¬A;α :A

x :¬¬A ` x λy.µβ.[α]y :⊥;α :A
[top](x λy.µβ.[α]y) : (x :¬¬A ` ;α :A)
x :¬¬A ` µα.[top](x λy.µβ.[α]y) :A;
` λx.µα.[top](x λy.µβ.[α]y) : (¬¬A)→A;

and we can perform the following reduction:
E[C M] = [γ](λx.µα.[top](x λy.µβ.[α]y)) M N1 . . . Nn

−→ [γ](µα.[top](M λy.µβ.[α]y)) N1 . . . Nn

−→ [γ](µα.[top](M λy.µβ.[α]y N1)) N2 . . . Nn

−→ . . .
−→ [γ]µα.[top]M λy.µβ.[α]y N1 . . . Nn

−→ [top]M λy.µβ.[γ]y N1 . . . Nn

= [top]M (λy.µβ.E[y])
※

Notice that what is eventually produced by the rewrites is not M and M (λy.µβ.E[y]),
respectively, but [top]M and [top]M (λy.µβ.E[y]), since reducing a command has to produce
a command. But since M is of type ⊥ (respectively produces a term of type ⊥), it can be
stored in the top-level continuation top.

Now, when thinking about classical logic, we often have in mind concepts of symmetry or
duality:

Inversing the order in a boolean algebra provides another boolean algebra where e.g. the

1.3. Contributions in the 90s 19

top and bottom elements have been swapped, the meet and join operations have been swapped.
Very related to this are De Morgan’s rules, which show a duality, via negation, between

∧ and ∨:
¬(A∧B) = ¬A∨¬B
¬(A∨B) = ¬A∧¬B

In terms of proof formalisms, the classical sequent calculus LK [Gen35] shows a symmetry be-
tween the left-hand side and the right-hand of sequents, of the form A1, . . . , An ` B1, . . . , Bm:
whatever can be done on the left-hand side can be done on the right-hand side, and vice versa.
For instance, the left-introduction rule for ∧ is symmetric to the right-introduction rule for
∨ and vice versa; left-contraction symmetric to right-contraction (and this is very different
from intuitionistic logic).

But so far, such symmetries and dualities are not explicitly reflected in our proof-term
approach to classical proofs.

However, before even Griffin made the connection between control operators and classical
logic, Filinski [Fil89] formalised a duality between
• functions as values
• functions as continuations
in the form of a “symmetric λ-calculus”, with explicit conversions from one view of functions
to the other. Yet there was no explicit connection with classical logic.

In [BB96], Barbanera and Berardi formalised their own symmetric λ-calculus, with a
typing system providing a Curry-Howard interpretation of classical proofs. The classical
proof system depicted by their calculus is a one-sided version of the classical sequent cal-
culus [Gen35], with a proof of normalisation for typed terms (we will see such a proof in
Chapter 2).

Since then, two calculi emerged to provide Curry-Howard interpretations of the two-sided
sequent calculus LK (or variants thereof), with the reduction rules describing the famous
proof-transformation procedure known as cut-elimination:
• Urban’s calculus [Urb00],
• Curien and Herbelin’s λµµ̃ [CH00] for ⇒,

later extended by Wadler [Wad03] for ∧ and ∨ (explicitly connecting the symmetries of
the calculus to De Morgan’s duality).
These two independent (sets of) contributions had different aims: Curien and Herbe-

lin’s was to expose, as the syntactic symmetry of the classical sequent calculus, a duality
in computation based on Filinski’s ideas about continuations and on the call-by-value and
call-by-name evaluation strategies; they gave semantics to their calculus, but with no proof
of normalisation. Urban’s aim was to have a typing system as close as possible to LK and
have a reduction system as close as possible to basic cut-elimination procedures; his Ph.D.
adapted Barbanera and Berardi’s proof of strong normalisation to his calculus, but gave no
(denotational) semantics.

Several papers formalise the links between the various proof calculi for classical logic: in
particular, [Len03] relates λµµ̃ and Urban’s calculus, [Roc05] relates λµµ̃ and λµ, and [Her05]
presents an extensive exploration of the relations between the various calculi.

In the rest of this chapter, we focus on Curien and Herbelin’s calculus to explore some
more semantical concepts, but many of them can be transposed to other calculi for classical
logic (in particular, Parigot’s λµ-calculus).

20 Chapter 1. Classical proofs as programs

1.4 System L

System L is the new name of Curien and Herbelin’s λµµ̃, extended with other connectives.
We start with its syntax:
Definition 11 (Syntax) The syntax of L is made of three syntactic categories:

terms t ::= x µβ.c λx.t (t1, t2) inji(t)
continuations e ::= α µx.c t ::e (e1, e2) inji(e)
commands c ::= 〈t | e〉

where i ranges over {1, 2}, x and α respectively range over term variables and continuation
variables,8 µβ.c binds β in c, µx.c binds x in c, and λx.t binds x in t. The scope of binders
extends as much as parentheses allow. ※

A (somewhat shallow) intuition of the syntax can be given as follows:
Term variables x, y, . . . denote inputs
Continuation variables α, β, . . . denote outputs
A term has one main output

some inputs (free term variables)
some “alternative” outputs (free continuation variables)

A continuation has one main input
some “additional” inputs (free term variables)
some possible outputs (free continuation variables)

A command is a term facing a continuation (the interaction is computation)

Definition 12 (Typing)
We consider the following grammar for types (extending that of simple types):

A,B, . . . ::= a A→B A ∧B A ∨B
where a ranges over a fixed set of elements called atomic types. The symbol→ is associative
to the right, i.e. A→(B→C) can be abbreviated as A→B→C.
The typing system for System L is given for three kinds of sequents corresponding to the
three syntactic categories of the syntax:

Γ ` t :A ; ∆ Γ ; e :A ` ∆ c : (Γ ` ∆)
where Γ is a typing context for term-variables and ∆ is a typing context for continuation-
variables.
The system is presented in Fig. 6. Derivability of sequents in this system is respectively
denoted Γ `L t :A ; ∆, Γ ; e :A `L ∆, and c : (Γ `L ∆). ※

As we can see, forgetting about variables and proof-terms does not give the sequent
calculus LK exactly as we know it from [Gen35] or as the popular variants described in [TS00]
(for this one can look at Urban’s Ph.D. [Urb00]), if only because there are three types of
sequents. However, it is a variant with a bit more structure, which defines the same notion of
provability as LK, and which will prove useful for the computational interpretation of classical
logic.

An intuition about this interpretation can be given as follows: similarly to the Curry-
Howard correspondence in intuitionistic logic, each connective in the syntax of formulae cor-
responds to a type construct in programming; term constructs offer basic ways in which such

8As in Parigot’s λµ-calculus [Par92].

1.4. System L 21

Γ, x :A ` x :A ; ∆ Γ ; α :A ` α :A,∆

Γ, x :A ` t :B ; ∆
Γ ` λx.t :A→B ; ∆

Γ ` t :A ; ∆ Γ ; e :B ` ∆
Γ ; t ::e :A→B ` ∆

Γ ` t1 :A1 ; ∆ Γ ` t2 :A2 ; ∆
Γ ` (t1, t2) :A1 ∧A2 ; ∆

Γ ; e :Ai ` ∆
Γ ; inji(e) :A1 ∧A2 ` ∆

Γ ` t :Ai ; ∆
Γ ` inji(t) :A1 ∨A2 ; ∆

Γ ; e1 :A1 ` ∆ Γ ; e2 :A2 ` ∆
Γ ; (e1, e2) :A1 ∨A2 ` ∆

c : (Γ ` α :A,∆)
Γ ` µα.c :A ; ∆

c : (Γ, x :A ` ∆)
Γ ; µx.c :A ` ∆

Γ ` t :A ; ∆ Γ ; e :A ` ∆
〈t | e〉 : (Γ ` ∆)

Figure 6: Typing system for L

types can be inhabited, while continuation constructs offer basic ways in which inhabitants
of such types are consumed:
• A conjunction A1∧A2 corresponds to a product type, so basic inhabitants are pairs (t1, t2)

of terms (with the first component inhabiting A1 and the second inhabiting A2); basic
continuations that consume such a pair start by extracting either the first or the second
component (in other words, they start with one of the two projections), which corresponds
to the continuation constructs inj1(e) and inj2(e).

• A disjunction A1 ∨ A2 corresponds to a sum type, so basic inhabitants are the injections
inj1(t) and inj2(t) (with t inhabiting A1 or inhabiting A2, respectively); basic continuations
that consume such an injection must handle both cases, so the case analysis leads to
providing a pair 〈e1, e2〉 of two continuations: the former can consume inhabitants of A1
and the latter can consume inhabitants of A2.

• An implication A1⇒A2 corresponds to a function type, with the basic inhabitants being
constructed with λ-abstractions just like in the λ-calculus; we do not have the construct
that directly applies a function to an argument, but a basic way in which a continuation
consumes a function is to offer an argument t as the input of the function, together with
a continuation e that can consume the output of the function; hence the continuation
construct t ::e (which is simply the usual stacking construct that can be found in abstract
machines to implement computation in the λ-calculus).

This intuition will be strengthened by the reduction rules for System L, but we first start
with an example.

The following story is borrowed from Phil Wadler [Wad03] (who might have borrowed it
from Peter Selinger), and illustrates the computational contents of classical proofs:

22 Chapter 1. Classical proofs as programs

Example 2 (The devil, the fool, and the $1,000,000)
The Devil meets a man and says:
“- I have an offer for you! I promise you that
either I offer you $1,000,000 or, if you give me $1,000,000, then I will grant you any wish.
Actually, I choose to offer you the latter.”
The man then goes back home and, motivated by the Devil’s promise, strives to gather
$1,000,000. Ten years later, he finally succeeds; he goes back to the Devil and, handing him
the money, says:
“- Here’s $1,000,000! I want immortality.”
The Devil takes the money and says:
“- Well done and thank you!
Actually, I’ve changed my mind. I’ve now decided to fulfil my promise by offering you
$1,000,000. Here is your money back!” ※

The reason why that short story illustrates the computational contents of classical logic
is that the Devil behaves as a proof of the Law of Excluded Middle: Imagine that
• the money ($1,000,000) can be seen as an atomic proposition a
• the part of the promise “If you give me $1,000,000, I’ll grant you any wish” can be seen

as the formula a⇒ ⊥, i.e. ¬a;
the Devil is then the proof of a ∨ ¬a shown in Fig. 7. Indeed, following the bottom-up

y :a ` y :a ; α :a∨¬a, β :⊥
y :a ` inj1(y) :a∨¬a ; α :a∨¬a, β :⊥ y :a ; α :a∨¬a ` α :a∨¬a, β :⊥

〈inj1(y) | α〉 : (y :a ` α :a∨¬a, β :⊥)
y :a ` µβ.〈inj1(y) | α〉 :⊥ ; α :a∨¬a
` λy.µβ.〈inj1(y) | α〉 :¬a ; α :a∨¬a

` inj2(λy.µβ.〈inj1(y) | α〉) :a∨¬a ; α :a∨¬a ; α :a∨¬a ` α :a∨¬a
〈inj2(λy.µβ.〈inj1(y) | α〉) | α〉 : (` α :a∨¬a)
` µα.〈inj2(λy.µβ.〈inj1(y) | α〉) | α〉 :a∨¬a ;

Figure 7: A proof of LEM

construction of the left-hand branch, we see that
• the proof (the Devil) starts by choosing to prove ¬a, as reflected by the inj2(_) construct;
• that requires an input of type a (the $1, 000, 000 earned by the fool), namely y, as reflected

by the λy._ construct;
• given the impossibility to prove ⊥ directly (the immortality wish, or for that matter, any

wish), the proof re-attacks the original formula to prove, namely a∨¬a (the Devil returns
to his original promise), but this time with the input y :A (the $1, 000, 000 that the fool
gave him);

• this time, the proof chooses to prove a, which is trivially done by returning y (the Devil
chooses to give $1, 000, 000, by returning the money that the man earned).
We see here that the proof works because of the possibility to construct an inhabitant of

1.4. System L 23

a∨¬a, twice along the same branch (we inhabit it the first time with the second injection, then
with the first one), which is technically allowed by the right-contraction implicitly featured
in the bottom two steps of the proof. While in intuitionistic logic it is possible to contract on
the left but not contract on the right, classical logic allows both symmetrically.

This allows to also build a proof-term of type PL and, allowing again (as in Parigot’s
λµ) a top-level continuation variable top of type ⊥, we can build proof-terms for Ex falso
quodlibet and the elimination of double negation.

In summary, we have seen that it is easy enough to introduce proof-terms to represent
classical proofs, such that the symmetry of classical logic reflects the symmetry between
programs and continuations.

The use of classical reasoning corresponds to the use of control features allowing programs
to capture their continuation, as we now see by looking at reductions:
Definition 13 (Reductions) The reductions are given by the following rewrite system:

(→) 〈λx.t1 | t2 ::e〉 −→ 〈t2 | µx.〈t1 | e〉〉
(∧) 〈(t1, t2) | inji(e)〉 −→ 〈ti | e〉
(∨) 〈inji(t) | (e1, e2)〉 −→ 〈t | ei〉
(
←
µ) 〈µβ.c | e〉 −→ {e�β} c

(
→
µ) 〈t | µx.c〉 −→

{
t�x
}
c

※

Now, while it was very clear that Parigot’s λµ forms an extension of λ-calculus, we should
emphasise the fact that the λ-calculus can be encoded in System L:
Definition 14 (Encoding of λ-calculus)
We encode λ-terms as terms of System L by first encoding values, then all terms:

xv := x

λx.M
v := λx.M

V M1 . . . Mn := µα.
〈
V

v |M1 :: . . .Mn ::α
〉

where V is not an application and n ≥ 0
※

Lemma 9 (Simulation of λ-calculus)

1. µα.
〈
M |M1 :: . . .Mn ::α

〉
−→ M M1 . . . Mn.

2.
{
N�x

}
M−→∗ {N�x}M .

3. If M −→β N then M−→∗ N .
※

Proof: The first point is a simple
←
µ-reduction, the second point is by induction on M , the

third point is by induction on the rewrite derivation. �

Lemma 10 (Preservation of simple types)
1. If Γ `stλ V :A then Γ `L M

v :A ;
2. If Γ `stλ M :A then Γ `L M :A ;

※

Since System L contains cuts, a proof of LEM, and it can encode simply-typed λ-terms, it
is clearly complete for classical logic (in the same sense as for the λµ-calculus: EDN and EFQ
require the presence of a top-level continuation variable top :⊥). Soundness can be trivially

24 Chapter 1. Classical proofs as programs

checked by checking that all the inference rules are sound when forgetting about variables
and proof-terms.

Substitution behaves well with respect to typing:

Theorem 11 (Substitution Lemma)
1. If c : (Γ, x :A `L ∆) and Γ `L t :A ; ∆ then

{
t�x
}
c : (Γ `L ∆).

2. If c : (Γ `L α :A,∆) and Γ ; e :A `L ∆ then {e�α} c : (Γ `L ∆).
※

Proof: By induction on c, simultaneously proving the two analogous properties for both
terms and continuations. �

And the reduction relation satisfies Subject Reduction:

Theorem 12 (Subject reduction for System L)
1. If c : (Γ `L ∆) and c −→ c′ then c′ : (Γ `L ∆).
2. If Γ `L t :A ; ∆ and t −→ t′ then Γ `L t

′ :A ; ∆.
3. If Γ ; e :A `L ∆ and e −→ e′ then Γ ; e′ :A `L ∆.

※

Proof: Straightforward induction on the rewrite derivations. �

Again, Subject Reduction allows the rewrite system to describe a proof transformation
procedure in the classical sequent calculus, and in this case it is cut-elimination [Gen35].

Let us see the other properties we mentioned when introducing the Curry-Howard method-
ology:

Progress depends of course on what we consider an “undesirable structure”. In the case of
sequent calculus, the natural concept of undesirable structure is the cut, which in the typing
system of L is (at least at first sight) represented as the bottom-most rule of Fig. 6. And
at this point we notice that some cuts cannot be reduced, as no rewrite rule applies to their
proof-terms, namely those of the form 〈x | e〉 and 〈t | α〉 when e is not of the form µx.c and
t is not of the form µα.c. We may think progress fails (in terms of cut-elimination), but we
should also notice that cuts of that form are very peculiar: they do nothing but respectively
implement a left-contraction or a right-contraction, two rules that the extra structure of the
system requires for completeness (compared to e.g. G3ii [TS00]):

Γ, x :A ` x :A ; ∆ Γ, x :A ; e :A ` ∆
〈x | e〉 : (Γ, x :A ` ∆)

Γ ` t :A ; α :A,∆ Γ ; α :A ` α :A,∆
〈t | α〉 : (Γ ` α :A,∆)

We actually used two of these special “cuts” in the proof of LEM showed in Fig. 7, and we
would not expect to eliminate them (unless we had specific constructs for contractions and
for the axiom represented as 〈x | α〉).

Concerning normalisation, it can be proved that typed commands (resp. terms, continua-
tions) are strongly normalising. This was inferred from Urban’s calculus in [Len03], but can
be more simply obtained as the direct application of Barbanera and Berardi’s technique, as
shown in [Pol04] for a variant of System L with explicit substitutions. This will be the topic
of Chapter 2.

Finally, we look at the confluence property.

1.5. Non-confluence of cut-elimination in classical logic 25

1.5 Non-confluence of cut-elimination in classical logic

As the reduction relation of System L specifies a cut-elimination procedure, we should note
that cut-elimination in classical logic, at a purely logical level, can easily be defined as a non-
confluent transformation procedure. A typical example of this is Lafont’s example, which
we first express in the original sequent calculus LK, with explicit rules for weakenings and
contractions and “context-splitting” rules (see e.g. [TS00]):

Example 3 (Lafont’s example for non-confluence)
Consider the following cut that we would like to eliminate

··· π
Γ ` ∆

Γ ` ∆, A

··· π
′

Γ′ ` ∆′

Γ′, A ` ∆′

Γ,Γ′ ` ∆,∆′

There are two ways to eliminate the cut:
··· π

Γ ` ∆
Γ,Γ′ ` ∆,∆′

or

··· π
′

Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
※

This obviously leads to non-confluence as soon as π and π′ are two distinct proofs (say,
cut-free). Note that we could, somewhat artificially, avoid the choice between π and π′ by
considering the following mix rule [FR94]:

Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′

which would allow the symmetric combination of π and π′ into a single proof (and what would
be the semantics of this combination?). The question is whether we accept this derivation as
a normal proof. Let us look at the same example in a sequent calculus (such as G3ii [TS00])
where rules are “context-sharing”:

Example 4 (Lafont’s example in a context-sharing sequent calculus)
The following cut:

··· π
Γ ` ∆

Γ ` ∆, A

··· π
′

Γ ` ∆
Γ, A ` ∆

Γ ` ∆
can be reduced to:

··· π
Γ ` ∆

or
··· π
′

Γ ` ∆
※

What is even more striking in this example is that π and π′ are two proofs of the same
sequent, which we probably do not want to consider denotationally equal and whose combi-
nation via the following rule

26 Chapter 1. Classical proofs as programs

Γ ` ∆ Γ ` ∆
Γ ` ∆

looks even more artificial than with the context-splitting mix. Again, do we want this deriva-
tion as a normal proof?

Unsatisfying though the mix may seem, it does technically solve Lafont’s non-confluence
problem based on two weakenings. Unfortunately, it cannot solve the even more problematic
example obtained with contractions instead of weakenings:

Example 5 (Example with contractions) The following cut
··· π

Γ ` ∆, A,A
Γ ` ∆, A

··· π
′

Γ, A,A ` ∆
Γ, A ` ∆

Γ ` ∆
can be reduced to

··· π
′

•
··· π
′

•··· π(')
Γ ` ∆

or

··· π•
··· π•··· π

′(')
Γ ` ∆

where π(') (resp. π′(')) denotes the proof π (resp. π′) modified by the propagation of π′
(resp. π) into its structure.
We can give a concrete instance of the above:

(A→ B)→ A ` A A,A→ C,A→ D ` C ∧D

(A→ B)→ A,A→ C,A→ D ` C ∧D
Peirce’s Law requires a right-contraction on the cut-formula A while the right-hand side
proof requires a left-contraction on the cut-formula A. ※

Coming back to the proof-term side, both examples would appear in System L as instances
of the following scheme:

c : (Γ ` α :A,∆)
Γ ` µα.c :A ; ∆

c′ : (Γ, x :A ` ∆)
Γ ; µx.c′ :A ` ∆〈

µα.c | µx.c′
〉
: (Γ ` ∆)

α (resp. x) could be used 0 (weakening), 1, or several (contraction) times in c (resp. c′).
That cut could be reduced to

c : (Γ ` α :A,∆)
c′ : (Γ, x :A ` ∆)
Γ ; µx.c′ :A ` ∆

· ·{
µx.c′�α

}
c : (Γ ` ∆)

or
c : (Γ ` α :A,∆)
Γ ` µα.c :A ; ∆ c′ : (Γ, x :A ` ∆)
· ·

{µα.c�x} c′ : (Γ ` ∆)
where dotted lines do not represent primitive inference rules, but inference rules that have
been shown admissible in the typing system (Lemma 11).

In the case of weakening, and reflecting Example 4, α /∈ FV(c) and x /∈ FV(c′) and we can
reduce 〈µα.c | µx.c′〉 to two arbitrary commands c and c′ with the same type.

This makes it hard to give a denotational semantics of classical proofs or of typed proof-
terms: if we require 〈µα.c | µx.c′〉,

{
µx.c′�α

}
c, and {µα.c�x} c′, to have the same denotation,

1.6. Continuations, Call-by-Name and Call-by-Value 27

Example 4 leads to giving the same denotation to every proof of the same sequent.
This of course relates to the fact that we have already mentioned: a CCC with initial

object where every object A naturally isomorphic to ¬¬A collapses to a boolean algebra. As
identified in [Str11], there are three natural ways to resolve this:
1. Break the symmetry between ∧ and ∨
2. Break the cartesian product (as studied for instance in [FP06, LS05, Lam07, Str11])
3. Break curryfication (as studied for instance in [DP04, CS09])

In these notes, we break the symmetry between ∧ and ∨, since out of the three solutions
it is the one for which the Curry-Howard correspondence with programs is best understood.

One way of breaking the non-confluence problem
··· π

Γ ` ∆, A

··· π
′

Γ, A ` ∆
Γ ` ∆

is simply to give systematic priority to
• the right (push π into π′)
• or to the left (push π′ into π)

Almost by definition, both solutions make the calculus confluent.
They also break the ∧∨ symmetry: Giving systematic priority to the right, say, makes a

term t of type A∧B have the same behaviour as (inj1(t), inj2(t)), whereas a continuation e of
type A∨B will not necessarily have the same behaviour as (inj1(e), inj2(e)).

More details on this will be given in Chapter 3, but we shall also see by semantical means
that the ∧∨ symmetry is broken. The two reduction strategies suggest to construct two
denotational semantics JcKN and JcKV with the hope that:
Jc0KN = Jc1KN iff “c0←→∗ c1 with systematic priority to the right”
Jc0KV = Jc1KV iff “c0←→∗ c1 with systematic priority to the left”

The use of the letters N and V reflects the fact that the strategies relate to the no-
tions of Call-by-name and Call-by-value, as investigated for instance by Plotkin [Plo75],
Moggi [Mog89], and others.

In conclusion of this section, we have seen that it is easy enough to give a rewrite sys-
tem on proof-terms to represent cut-elimination (and the system follows the intuitions of
continuations and control), but it gives a non-confluent calculus because cut-elimination is
non-confluent in classical logic (via the Curry-Howard correspondence, because programs and
continuations fight for the control of computation).

The rest of this chapter is devoted to the construction of the above CBN and CBV seman-
tics.

1.6 Continuations, Call-by-Name and Call-by-Value

Call-by-name and call-by-value are two strategies for evaluating programs. Imagine the defi-
nition of a function (in pseudo-code):

28 Chapter 1. Classical proofs as programs

MyFavoriteFunction(x){
... x ...

}
and later a call to that function with argument A:
MyFavoriteFunction(A)

The main question is whether A should be evaluated before entering the (code of the)
function (CBV) or when it is actually used (CBN)? This is a question of interpretation or
compilation of programs and, especially in presence of side-effects, knowing which of the two
the compiler implements, is vital for the determinism of evaluation.

In general, we call values what evaluation should produce (e.g. booleans true, false). In
functional programming, functions are particular values and can be passed as arguments. In
general, functions are therefore not reduced.

The λ-calculus is both a core functional language and a theory of functions.
As a core functional language, it is equipped with an operational semantics, close to

implementation, which can be expressed by an evaluation strategy that selects a unique β-
redex to reduce:
• Never reduce a λ-abstraction, as it is a “value” (this is called weak reduction)
• Always reduce M first in an application M N . Then:

– If M is an abstraction: reduce the β-redex first (CBN)
reduce N first (CBV)

– Otherwise, reduce N (never happens with closed terms)
We denote those strategies −→CBN and −→CBV .9

As a theory of functions, the λ-calculus is equipped with a denotational semantics close
to the mathematical notion of functions: in particular, equalities are congruences (e.g. if
M = N then λx.M = λx.N) and reductions are congruences (this is called strong reduction).
In [Plo75], Plotkin investigated the concepts of call-by-name and call-by-value by identifying
particular λ-terms as values:

Definition 15 (Value, βv, Call-by-Name and Call-by-Value)
λ-terms of the form λx.M and x are called values, and denoted V , V ′, etc, while λ-terms of
the form MN are not values.10

• “Call-by-name” evaluation is given by general β-reduction
(β) (λx.M) N −→

{
N�x

}
M

• “Call-by-value” evaluation is given by the restriction of β-reduction where the argument
is a value

(βv) (λx.M) V −→
{
V�x

}
M

※

Now, natural questions to raise are
CBN: whether there is a relation between −→CBN and −→β ;
CBV: whether there is a relation between −→CBV and −→βv ?

9For instance, Haskell implements CBN while OCaml implements CBV.
10The intuition is that, by evaluating MN , you may get a λ-term of a completely different shape.

1.6. Continuations, Call-by-Name and Call-by-Value 29

Clearly, −→CBN ⊆ −→β and −→CBV ⊆ −→βv , but what about the converse? A bridge
between weak and strong reductions was given by Plotkin [Plo75]:

Theorem 13 (CBN and CBV: weak and strong reductions)
CBN: −→∗β is the closure of −→∗CBN under the rules
M1−→∗CBN λx.M2 M2 −→ M ′2

M1 −→ λx.M ′2

M1−→∗CBN M2 M3 M2 −→ M ′2 M3 −→ M ′3

M1 −→ M ′2 M
′
3

CBV: −→∗βv is the closure of −→∗CBV under the rules
M1−→∗CBV λx.M2 M2 −→ M ′2

M1 −→ λx.M ′2

M1−→∗CBV M2 M3 M2 −→ M ′2 M3 −→ M ′3

M1 −→ M ′2 M
′
3

※

The point of this result is that we shall now call CBN and CBV, not some operational se-
mantics of some functional programming language, but some rewriting theories in λ-calculus.

As we have already mentioned compilation in reference to CBN/CBV, it is interesting to
see that λ-calculus can be compiled into (a fragment of) itself: this is based on the idea of the
program transformation presented in Section 1.2 using continuations. As continuations are
passed as an extra argument to every call, such transformations are known as Continuation
Passing Style (CPS)-translations.

Definition 16 (CPS-translations)
Two important CPS-translations were defined for CBN and CBV:

CBN-translation (Plotkin [Plo75])
x := λk.x k

λx.M := λk.k (λx.M)
M N := λk.M (λy.y N k)

CBV-translation (Reynolds [Rey72])
x := λk.k x

λx.M := λk.k (λx.λk′.M k′)
M N := λk.M (λy.N (λz.y z k))

where the variables k and k′ are always chosen to be fresh. ※

One main feature of these translations is their target fragment of the λ-calculus: in this
fragment, arguments are always values! This fragment is stable under −→β and −→βv , which
actually coincide. The evaluation of a CPS-translated term is strategy-indifferent. How this
evaluation relates to the evaluation of the original term is given by the following simulation
properties:

Theorem 14 (CPS-translations preserve reductions)
Soundness:

CBN If M −→β N then M−→∗β N

CBV If M −→βv N then M−→∗β N

Completeness:
CBN If M←→∗β N then M←→∗β N

CBV It is not the case for CBV, that if M←→∗β N then M←→∗βv N .
※

Proof: It is interesting to look at soundness to see how or why the CPS-translations make
sense; for complete proofs, see [Plo75].

30 Chapter 1. Classical proofs as programs

(λx.M) N = λk.(λk′.(k′ (λx.M))) (λy.y N k)
−→ λk.(λy.y N k) (λx.M)
−→ λk.(λx.M) N k

−→ λk.(
{
N�x

}
M) k

= λk.(
{
N�x

}
M) k

−→
{
N�x

}
M

The second equality of course relies on the property that the CPS-translation behaves well
with substitution: (

{
N�x

}
M =

{
N�x

}
M). The last rewrite is an instance of β-reduction

because
{
N�x

}
M necessarily starts with a λ-abstraction (i.e. we are not using η-reduction).

(λx.M) V = λk.(λk′.(k′ (λxk′′.M k′′))) (λy.V (λz.y z k))
−→ λk.(λy.V (λz.y z k)) (λxk′′.M k′′)
−→ λk.V (λz.(λxk′′.M k′′) z k)
−→ λk.V (λz.(λk′′. {z�x}M k′′) k)

= λk.V (λx.(λk′′.M k′′) k)
−→ λk.V (λx.M k)
−→ λk.(λx.M k) H where V = λk.k H

−→ λk.(
{
H�x

}
M) k

= λk.({V�x}M) k
−→ {V�x}M

The second equality is simply the renaming of z into x; the third one relies again on the
property that the CPS-translation behaves well with substitution by values (

{
H�x

}
M ={

V�x
}
M if V = λk.kH). The last rewrite is again an instance of β-reduction, not η-reduction.

The point here is to realise that if V had not been a value, then V would not be of the
form λk.kH, and the simulation of this specific β-reduction would be stuck. �

The above simulations give some intuition about the encodings: the translation of any
term M starts with a λ-abstract on a fresh variable k that is used exactly once. The variable
k stands for the current continuation (hence the expression continuation-passing style). In
the encoding of an abstraction λx.M (which is a value), the current continuation is applied
to the encoding of the body M under a λ-abstraction on x. In case of an application M N ,
the current continuation is not directly applied, but wrapped in a bigger continuation that
is passed as an argument to the encoding of M ; what this wrapping exactly is depends on
whether we do CBN or CBV and will determine whether we reflect the evaluation of N as a
value V before we reflect the reduction of M N .

Now, the fact that M←→∗β N does not imply M←→∗βv N is slightly disappointing: one
way to look at it is to consider that M←→∗βv N is too weak, or incomplete, for Call-by-Value.
Indeed, the inspiration from monads, and Moggi’s monadic λ-calculus [Mog89], has allowed
the extension of the Call-by-Value λ-calculus into a sound and complete calculus with respect
to the CBV CPS-translation (see for instance [Len06]).

We now turn to the behaviour of the CPS-translations with respect to typing: Assume
we have Γ ` M :A. Do we have: Γ′ ` M :A′ (for some Γ′, A′) and Γ′′ ` M :A′′ (for some Γ′′,
A′′)?

1.6. Continuations, Call-by-Name and Call-by-Value 31

The CPS-translations reveal two classes of terms in the target: values & continuations
(like k). The types of values and continuations in the translated terms depend on CBN or
CBV:
Definition 17 (CPS-translations of simple types)
We choose or we add a particular atomic type R, called the response type, then we define

CBN
a := a
A→ B := ((A→R)→R)→(B→R)→R

CBV
a := a
A→ B := A→(B→R)→R

※

Intuitively, a type A in the original calculus will give rise to a type A (resp. A) of “A-
values”; continuations are functions consuming those and returning something in the response
type R (which is abstract in the sense that we will never need to know what it is), so
continuations will therefore be of type A→R (resp. A→R).

The encoding M (resp. M) of a term M of type A will take the current continuation, of
type A→R (resp. A→R), and using that continuation, it will eventually output a response in
the response type (as we have seen, the encoding starts with λk. . . .). It will therefore be of
type (A→R)→R (resp. (A→R)→R).

This is formalised as the following theorem:
Theorem 15 (CPS-translations preserve types)
If Γ ` M :A then (Γ→R)→R ` M : (A→R)→R and Γ ` M : (A→R)→R,
where x1 :A1, . . . , xn :An stands for x1 :A1, . . . , xn :An
and ((x1 :A1, . . . , xn :An)→R)→R stands for x1 : (A1→R)→R, . . . , xn : (An→R)→R. ※

Proof: Straightforward induction on M . �

Variants of CPS-translations exist, of which we mention two that are related to CBN and
CBV:
Definition 18 (Variants)

• Fischer’s translation for CBV [Fis72]
x := λk.k x

λx.M := λk.(k (λk′.λx.M k′))
M N := λk.M (λy.N (λz.y k z))

a := a
A→ B := (B→R)→ A→R

• Hofmann & Streicher’s translation for CBN [HS97], using product types
x := λk.x k

λx.M := λ(x, k).M k
M N := λk.M (N, k)

a := a→R
A→ B := (A→R)×B

※

Fischer’s CBV-translation is very similar to Reynolds’s: they only differ in the order in
which arguments are passed in the encoding of λ-abstractions and applications (e.g. for the
abstraction, Reynolds’s translation binds x first, then binds the continuation variable k′,
whereas Fischer’s binds k′ first, then x). This is reflected in the encoding of the function type
A→B: the two arguments are swapped.

Hofmann & Streicher’s CBN-translation differs more importantly from Plotkin’s, as fewer
“continuation wrappings” are introduced, reflected in the number of · · ·→R in the encoding

32 Chapter 1. Classical proofs as programs

of types: that encoding works “negatively”, as A is directly the type of A-continuations which
are not necessarily functions consuming an A-value and returning in the response type.

Again, these translations allow the same simulations as Plotkin’s and Reynolds’s, and of
course preserve typing, with a slightly different formulation in the case of CBN:

Theorem 16 (Hofmann & Streicher’s CBN-translation preserves types)
If Γ ` M :A then Γ→R ` M :A→R
where (x1 :A1, . . . , xn :An)→R stands for x1 :A1→R, . . . , xn :An→R. ※

Let us now look at CPS-translations with respect to denotational semantics: Remember
that simply-typed λ-terms have a semantics in a Cartesian Closed Category. CPS-translations
compile the simply-typed λ-calculus into itself (preserving types in the sense of Theorem 15),
so we can now assign to a simply-typed λ-term M , the semantics (in a CCC) of M or M
(so that semantics now depends on CBN/CBV). By the simulation theorem (Theorem 14),
reductions are sound w.r.t. their corresponding semantics.

More interestingly, notice that we do not need the whole structure of a CCC to build
those two semantics, as M or M live in a fragment of the simply-typed λ-calculus (the CPS-
fragment), where in particular the types of M or M are functional types. More than this,
every functional type that we ever need for that fragment is of the form A→R.11 Therefore, in
order to build the categorical semantics of the CPS-fragment, we do not need as strong axioms
as those of a CCC: on top of asking for cartesian products we only require the existence of
exponentials objects of the form RA. This is called a response category.

Now given a response category, the sub-category made of the objects of the form RA

is called a continuation category, a.k.a. control category (Selinger [Sel01]). Such a category
turns out to have a rich structure that proves very useful for classical logic: not only it is a
CCC (with exponential objects (RA)(RB) defined as RA×(RB)) but objects of the form RA×B,
denoted RA &RB, will play an important role.

1.7 Classical logic and CBN/CBV

We now relate classical logic to the above notions. We first review known translations from
classical logic into intuitionistic logic: The intuition is that we can always turn P into P ′ by
adding (enough) double negations, to get the property that

If `c P then `i P ′.
where `c denotes classical provability and `i denotes intuitionistic provability. Obviously,
`c P ↔ P ′, since the two formulae only differ by some double negations.

A potential question is then: If it suffices to add double negations in a classically prov-
able formula to make it intuitionistically provable, are the two logics really different? Well,
they differ at least in the sense that double negations break some of the nice properties of
intuitionistic logic:

If `i A1 ∨A2 then either `i A1 or `i A2.
If `i ∃xA then there is t such that `i

{
t�x
}
A

11To be precise, we did use types such as A1→· · ·→An→R, but if we have products we can consider this to
be the type (A1 × · · · ×An)→R.

1.7. Classical logic and CBN/CBV 33

Getting t from the proof of `i ∃xA is called witness extraction. This can also be done in
some theories, like (Heyting) arithmetics:

If HA `i ∃xA then there is t such that HA `i
{
t�x
}
A.

But in the most general case we cannot have the same properties when `i ¬¬(A1∨A2) or
`i ¬¬∃xA. So what to do with a classical proof of ` ∃xA is unclear. However, it is known
that if A satisfies some specific property, a witness may be obtained from a classical proof of
` ∃xA; this is called classical witness extraction, and we will see this in Chapter 2.

The principle of inserting double negations gives rise to double negation translations (or
¬¬-translations), of which we present two, remembering that ¬A is A⇒⊥:

Definition 19 (Double negation translations)
a• := a
(A⇒B)• := ((A•⇒⊥)⇒⊥)⇒(B•⇒⊥)⇒⊥

a? := a
(A⇒B)? := A?⇒(B?⇒⊥)⇒⊥

※

We realise here that these translations, via the Curry-Howard correspondence, are exactly
the translations of types from Definition 17 that make Plotkin’s and Reynolds’s translations
“preserve types”: The response type previously denoted R corresponds to the formula ⊥, and
a continuation is a proof of negation.

1.7.1 Identifying CBN and CBV in System L

The fact that double negation translations allow the construction of an intuitionistic proof of
A• (resp. A?) from a classical proof of A, suggests that we can adapt the CPS-translations of
Definitions 16 and 18 to encode classical proof-terms, say of System L, into the simply-typed λ-
calculus. If this encoding not only preserves types but also reductions (as in e.g. Theorem 14),
then we could assign to a classical proof-term the categorical semantics of its CPS-encoding
(which, as a simply-typed λ-term, is well-understood).

It remains to identify which reductions of System L will be reflected in the CPS-encoding.
Inspired by Theorem 14, we remark that the β-reductions that can be reflected by the

CBV-encoding are of the form βv, i.e. those reductions where every substitution that is com-
puted substitute a variable by a value. In System L, we can impose similar restrictions:
a CBV-reduction should only allow a substitution

{
t�x
}
c to be computed if t is a “value”;

and by symmetry, we could expect CBN-reduction to only allow a substitution {e�α} c to
be computed if e is a “continuation value”. But we still need to identify what the notions
of values and continuation values are for System L. Considering the non-confluence situa-
tion 〈µα.c | µx.c′〉 described in Section 1.4 (which causes so much difficulty for building se-
mantics for System L), ruling out µα.c as value and ruling out µx.c′ as continuation value
solves the problem: CBN-reduction would allow the reduction 〈µα.c | µx.c′〉 −→ {µα.c�x} c′

and disallow 〈µα.c | µx.c′〉 −→
{
µx.c′�α

}
c, while CBV-reduction would allow the reduction

〈µα.c | µx.c′〉 −→
{
µx.c′�α

}
c and disallow 〈µα.c | µx.c′〉 −→ {µα.c�x} c′. In other words,

CBV-reduction gives priority to the right while CBV-reduction gives priority to the left.
We can formalise this as the following definition:

34 Chapter 1. Classical proofs as programs

Definition 20 (CBN and CBV for System L -first attempt)
We identify the following notions of term values and continuation values:

Term values V ::= x λx.t (t1, t2) inji(t)
Continuation values E ::= α t ::e (e1, e2) inji(e)

The reduction relations −→CBN and −→CBV are defined as the contextual closures of the
(groups of) rules in Fig. 9. ※

(→) 〈λx.t1 | t2 ::e〉 −→ 〈t2 | µx.〈t1 | e〉〉
(∧) 〈(t1, t2) | inji(e)〉 −→ 〈ti | e〉
(∨) 〈inji(t) | (e1, e2)〉 −→ 〈t | ei〉

(
←
µN) 〈µβ.c | E〉−→

{
E�β

}
c

(
→
µ) 〈t | µx.c〉 −→

{
t�x
}
c

CBN

(
←
µ) 〈µβ.c | e〉−→ {e�β} c

(
→
µV) 〈V | µx.c〉−→

{
V�x

}
c

CBV

Figure 8: CBN and CBV reduction in System L (first attempt)

The fact that CBV-reduction keeps (
←
µ) and restricts (

→
µ) into (

→
µV) (and vice versa for

CBN), is the formalisation of what we described before.

Doing this “works” in the sense that both CBN and CBV reductions are confluent systems
(as higher-order orthogonal rewrite systems).

Unfortunately, these restrictions are not sufficient to build the denotational semantics of
those systems according to methodology of CPS-translations, at least if we are to re-use the
CPS-translations of types that we have seen in Section 1.6: Indeed, the simulation property
that would be, for System L, the equivalent of Theorem 14, fails.

This was noticed in an erratum of [CH00], which also notices that the simulation does
work on two specific fragments of System L: Concentrating on the implicational fragment,
• CBN-reduction can be simulated in the λ-calculus (according to Hofmann and Streicher’s

translation of types [HS97]) when every continuation of the form t ::e is such that t is a
term value;

• CBV-reduction can be simulated in the λ-calculus (according to Reynold’s or Fischer’s
translation of types [Rey72, Fis72]) when every continuation of the form t ::e is such that
e is a continuation value.
Note that this makes sense because the former and the latter fragments are stable under

CBN and CBV reduction, respectively.

This also suggests how to refine the notions of term values and continuation values as
follows: instead of these notions concerning only the top-level construct of a term or a con-
tinuation, our new and more appropriate notions of values will be recursively defined.

This strong notion of value is taken primarily from [Wad03]:12

12Inspired by [MM09], we make a change about implication in the case of CBV, for which we also restrict
continuation values, since this will make CBV normal forms correspond to proofs in LKQ [DJS95, DJS97], as
we shall see in Chapter 3.

1.7. Classical logic and CBN/CBV 35

Definition 21 (CBN and CBV for System L)
In CBN, we identify the following notion of continuation values:

CBN continuation values E ::= α t ::E (E1, E2) inji(E)
In CBV, we identify the following notion of term values and continuation values:

CBV term values V ::= x λx.t (V1, V2) inji(V)
CBV continuation values F ::= α V ::F (F1, F2) inji(F) µx.c

The reduction relations −→CBN and −→CBV are the contextual closures of the rules in
Fig. 9. ※

(
←
µN) 〈µβ.c | E〉 −→

{
E�β

}
c

(
→
µ) 〈t | µx.c〉 −→

{
t�x
}
c

(ζN) R[e] −→ 〈µα.R[α] | e〉

(→N) 〈λx.t1 | t2 ::E〉 −→
〈{
t2�x

}
t1 | E

〉
(∧N) 〈(t1, t2) | inji(E)〉−→ 〈ti | E〉
(∨N) 〈inji(t) | (E1, E2)〉−→ 〈t | Ei〉

CBN

(
←
µ) 〈µβ.c | e〉 −→ {e�β} c

(
→
µV) 〈V | µx.c〉 −→

{
V�x

}
c

(ζV) S[t] −→ 〈t | µx.S[x]〉
(ζV) T [e] −→ T [µx.〈x | e〉]

(→V) 〈λx.t1 | V ::F 〉 −→
〈{

V�x
}
t1 | F

〉
(∧V) 〈(V1, V2) | inji(F)〉−→ 〈Vi | F 〉
(∨V) 〈inji(V) | (F1, F2)〉−→ 〈V | Fi〉

CBV
where R, S, and T range over contexts of the following grammar:
CBN continuation contexts R ::= 〈t | t′ ::[]〉 〈t | ([], e)〉 〈t | (E, [])〉 〈t | inji([])〉
CBV term contexts S ::= 〈V | [] ::e〉 〈([], t) | e〉 〈(V, []) | e〉 〈inji([]) | e〉
CBV continuation contexts T ::= 〈V | V ′ ::[]〉 〈V | ([], e)〉 〈V | (F, [])〉 〈V | inji([])〉
the (ζN) only applies under the condition that e is not a (CBN-) continuation value,
the (ζV)-rules only apply under the condition that t is not a (CBV-) term value and e is not
a (CBV-) continuation value.

Figure 9: CBN and CBV reduction in System L

In this version, we kept the CBV-rules (
←
µ) and (

→
µV), and the CBN-rules (

←
µN) and (

→
µ).

The (ζV)-rules (resp. the (ζN)-rule) are new: they were introduced in a slightly more
general version in [Wad03], while the version we take here more closely follows [MM09].
These rules are due to our strong restriction on term values (resp. continuation values): the
fact that a term is a value is not just the fact that it is not of the form µα.c, as term values
are recursively defined. Therefore if a term t is not of the form µα.c but one of its (say direct)
subterms is, then t is not a value and there is no CBV-rule to reduce 〈t | µx.c〉. Progress then
fails if we do not add the (ζV)-rules to pull the first subterm of t that is not a value to the
top-level.

These ζ rules also impact rules (→), (∧), and (∨), which now have to be restricted in
order to preserve confluence: for instance in CBV, the fact that (µα.c, t) is not a term value
means that, when facing a continuation e, µα.c will be extracted from the pair and will have
the control of computation

〈(µα.c, t) | e〉 −→ζV 〈µα.c | µx.〈(x, t) | e〉〉 −→←µ
{
µx.〈(x,t)|e〉�α

}
c

36 Chapter 1. Classical proofs as programs

and therefore it is clear that, should e be of the form inj2(e′), the original application of rule
(∧) would have a totally different semantics:

〈(µα.c, t) | e〉 −→∧ 〈t | e′〉
Hence the restriction of (→), (∧), and (∨) to (→N), (∧N), and (∨N) in the CBN case, and to
(→V), (∧V), and (∨V) in the CBV case.

Note that in CBN, we decided to make (→N) collapse the two reduction steps
〈λx.t1 | t2 ::E〉 −→→ 〈t2 | µx.〈t1 | E〉〉 −→→µ

〈{
t2�x

}
t1 | E

〉
into one step, because (

→
µ) has priority anyway.13 The rule (→V) is designed by symmetry,

collapsing the two steps
〈λx.t1 | V ::F 〉 −→→ 〈V | µx.〈t1 | F 〉〉 −→→µ

〈{
V�x

}
t1 | F

〉
and noticing that if t2 is not a term value, then the application of the original rule (→) is
recovered as follows:

〈λx.t1 | t2 ::F 〉 −→ζV 〈t2 | µy.〈λx.t1 | y ::F 〉〉 −→→V 〈t2 | µx.〈t1 | F 〉〉
Of course the extra rules satisfy Subject Reduction, so that we have:
Theorem 17 (Subject reduction for System L: CBN & CBV)
If c : (Γ ` ∆) and either c −→CBN c′ or c −→CBV c′ then c′ : (Γ ` ∆).
And similarly for terms and continuations. ※

Proof: Straightforward induction on the rewrite derivation. �

Theorem 18 (Confluence) −→CBN and −→CBV are confluent. ※

Proof: They are orthogonal higher-order rewrite systems.14 �

Finally, one could be puzzled by what seems like an asymmetry between CBN and CBV,
the latter having more rules and requiring a notion of continuation value while the former
does not need a notion of term value. This asymmetry is not due to CBN vs. CBV, but is
due to the implication: its main continuation construct t ::e has a term as a direct sub-term,
while no term contruct has a continuation as a direct sub-term. It would be the case if we
considered the De Morgan dual of implication, namely subtraction (see for instance [Cro04]),
which would make CBN completely symmetric to CBV.

1.7.2 Two stable fragments

Now it is easy to connect the −→CBN and −→CBV reduction relations of Definition 21 to
those of our first attempt in Definition 20, if we concentrate on the two fragments:15

Definition 22 (LKN and LKV) Let LKN and LKV be the fragments of System L consisting
of −→ζN -normal forms and −→ζV -normal forms, respectively. ※
13We shall see that it makes the µx._ construct superfluous (in the sense that the fragment without this

construct is logically complete, and stable under reduction).
14The rewrite system presented in Fig. 9 is a standard (higher-order) rewrite system: we did use a non-

standard formulation for the ζ rules based on a grammar for continuation contexts and term contexts as well
as on side-conditions (“t is not a term value and e is not a continuation value”), but we could equally have
formulated all the cases as standard (but numerous!) rewrite rules.

15Namely, those fragments where the reductions of Definition 20 are actually simulated by (the adaptation
to System L of) the CPS-translations.

1.7. Classical logic and CBN/CBV 37

Remark 19
1. Concerning implication only, LKN is the fragment where every continuation of the form
t ::e is such that e is a continuation value.

2. Concerning implication only, LKV is the fragment where every continuation of the form
t ::e is such that t is a term value;

3. Also, −→ζN and −→ζV are terminating reduction relations, so it is easy to normalise a
command into one of these fragments, using cuts.

4. Moreover, LKN and LKV are respectively stable under −→CBN and −→CBV , so the cuts
can be reduced while staying in the fragments.

5. Furthermore, in LKN and LKV, −→CBN and−→CBV of Definition 21 respectively coincide
with those of Definition 20.16

6. Notice that the encoding of λ-calculus in System L in Definition 14, actually only reaches
the fragment LKN, and the simulation lemma (Lemma 9) only involves CBN-reduction.

※

1.7.3 Denotational semantics of CBN and CBV

As anticipated, it is now possible to define CPS-translations of terms, continuations, and
commands, respectively denoted t, e, c for CBN, and t, e, c for CBV, in a way that preserves
reductions:

Theorem 20 (Preservation of reduction)
CBN: If c1 −→CBN c2 then c1−→∗β c2

CBV: If c1 −→CBV c2 then c1−→∗β c2
※

We do not give the details here, which are just technical, but they can be found in
e.g. [Wad03].

And these encodings also preserve typing, if Hofmann and Streicher’s encoding of types
for CBN, and Fischer’s encoding of types for CBV, are considered not just for → (i.e. ⇒) but
also × (i.e. ∧) and + (i.e. ∨):

Theorem 21 (Preservation of typing)
Assume

Γ ` t :A ; ∆
Γ ; e :A ` ∆
c : (Γ ` ∆)

16Almost, since in Definition 21 the rule (→N) (resp. (→V)) collapses the two steps−→→ ·−→→
µ

(resp.−→→ ·
−→→

µ V
) of −→CBN (resp. −→CBV) from Definition 20: but in LKN (resp. LKV), there is no other choice than

−→→
µ

(resp. −→→
µ V

) for a top-level reduction that can follow −→→ in CBN-reduction (resp. CBV-reduction).

38 Chapter 1. Classical proofs as programs

Then
Γ→R,∆ ` t :A→R
Γ→R,∆ ` e : (A→R)→R
Γ→R,∆ ` c :R

Using Hofmann & Streicher’s
translation of types [HS97]

Γ,∆→R ` t : (A→R)→R
Γ,∆→R ` e :A→R
Γ,∆→R ` c :R

Using Fischer’s
translation of types [Fis72]

※

As already mentioned, we can now use these CPS-translations to define categorical se-
mantics for classical proofs:

Definition 23 (Semantics of System L in a response category)
Assume c : (x1 :A1, . . . , xn :An ` α1 :B1, . . . , αm :Bm).
Define the semantics JcKrN := JcK and JcKrV := JcK, where JtK is the semantics, in a response
category, of a λ-term t in the CPS-fragment, as defined by the rules of Fig. 3.
Writing KA for the object corresponding to A, and CA for RKA , we have

JcKrN : (CA1 × . . .× CAn ×KB1 × . . .×KBm) −→ R

Writing VA for the object corresponding to A, KA and for RVA , we have
JcKrV : (VA1 × . . .× VAn ×KB1 × . . .×KBm) −→ R

※

Now, remember that a control category is the sub-category of a response category C whose
objects are in {RA|A ∈ C}, and that RA &RB denotes RA×B.

Definition 24 (Semantics of System L in control and co-control categories)
Assume c : (x1 :A1, . . . , xn :An ` α1 :B1, . . . , αm :Bm).

CBN The semantics JcKrN in a response category gives rise, by curryfication, to a morphism
JcKN : CA1 × . . .× CAn −→ CB1

&. . . &CBm
in a control category.

CBV The semantics JcKrV in a response category gives rise, by curryfication, to a morphism
JcKV : KB1 × . . .×KBm −→ KA1

&. . . &KAn

in a control category.
As the arrow looks “reversed”, from the original typing of c, it is more natural to interpret
c as the corresponding morphism

JcKV : KA1 ⊗ . . .⊗KAn −→ KB1 + . . .+KBm

in a co-control category, the dual of a control category where ⊗ denotes the dual of &

(and the co-product + denotes the dual of the product ×).
※

This formalises the idea that CBN-reduction corresponds to a denotational semantics in
control categories, while CBV-reduction corresponds to a denotational semantics in co-control
categories.

Indeed, from Theorem 20 we get that the semantics validate the reductions:

Conclusion 39

Theorem 22 (Soundness of CBN and CBV in control and co-control categories)
If c −→CBN c′ then JcKN = Jc′KN
If c −→CBV c′ then JcKV = Jc′KV ※

And we did this by breaking the symmetry between ∧ and ∨: Indeed in a control category,

&is not the dual of × (equivalently in a co-control category, + is not the dual of ⊗).

Conclusion

The work on control and co-control categories is due to Selinger [Sel01] for Parigot’s λµ-
calculus, showing a duality between CBN and CBV in the categorical sense of duality, and
even before a syntactic duality between CBN and CBV was displayed by System L and its
variants. It follows preliminary works by Hofmann, Streicher, Reus [HS97, SR98], etc, on the
semantics of continuations (where the question of duality between CBV and CBN -in λµ- is
conjectured).

In conclusion, many variants of classical proof calculi have been studied; in particular,
• the De Morgan dual of implication in classical logic, namely subtraction, can also be given

a computational interpretation, as shown for instance by [Cro04];
• variants of Parigot’s λµ have different properties with respect to observational equivalence,

separation and η-conversion, etc. . . [Sau05, Sau08, HZ09, Sau10c, Sau10b, Sau12];
• control delimiters can be used to limit the scope of the context that can be captured

by a term via control operators, allowing for instance the capture of the shift and reset
operators of [DF89, DF90]; these give rise to delimited continuations and can be given a
proof-theoretic interpretation [AHS09, HG08, Sau10a];

• other reduction strategies than CBV and CBN have been investigated under the light of
the duality of computation, such as Call-by-Need [AF97, AHS11, ADH+12].

Chapter 2

Orthogonality: models for
normalisation and witness
extraction

Contents
2.1 Revisiting Proofs of Strong Normalisation for System F 42

2.1.1 Orthogonality models and the Adequacy Lemma 43
2.1.2 Applicative orthogonality models and Strong Normalisation 44

2.2 Adapting the approach to classical calculi 45
2.2.1 The case of a confluent calculus . 46
2.2.2 The case of a non-confluent calculus 47

2.3 Orthogonality models for extracting witnesses from classical proofs 50
Conclusion . 54

In this chapter we present the concept of orthogonality and two applications of it that are
useful for classical proof-term calculi: strong normalisation and witness extraction.

Orthogonality was used by Girard in the context of linear logic [Gir87] to prove normal-
isation of cut-elimination and it lies at the heart of its proof semantics based on coherent
spaces.

The concept of orthogonality has also proved a key concept in the proof theory of classical
logic, as it features, just like linear logic does, a duality that is most immediately seen in the
form of De Morgan’s laws. Indeed, orthogonality is the basis of classical realisability [DK00,
Kri01], which can be seen as a semantical approach to the Curry-Howard correspondence for
classical logic. It also provided a new tool for models of classical proofs, and for proving
properties of programs [Par97, MV05, LM08], most notoriously the strong normalisation
property. Furthermore, orthogonality shed a new light on the theory of polarisation and
focussing for classical logic, as revealed for instance in [MM09] and explored in Chapter 3.

In this chapter we start by illustrating how proofs of strong normalisation relate to or-
thogonality. Summarising [BL11], Section 2.1 rephrases and modularises, with the notion
of orthogonality models, the well-known techniques by Tait [Tai67, Tai75], Reynolds [Rey72]
and Girard [Gir72] for proving the strong normalisation of the simply-typed λ-calculus and

41

42 Chapter 2. Orthogonality, normalisation and witness extraction

System F . Section 2.2 shows how such models allow the adaptation, to classical proof-term
calculi, of strong normalisation proofs, both in the case of a confluent calculus and non-
confluent calculus. Section 2.3 then shows how orthogonality models can be used for classical
witness extraction, using a technique due to Miquel [Miq09, Miq11].

2.1 Revisiting Proofs of Strong Normalisation for System F

This section presents concepts and a methodology developed in [BL11]: in particular, we ap-
proach the strong normalisation of System F with the notion of orthogonality model, adapting
the Tait-Girard methodology [Tai75, Gir72]. Although System F is an intuitionistic system,
this approach will form the starting point from which the adaptation to classical logic will be
explored.

Definition 25 (System F)
The types of System F are given by the following grammar:

A,B, . . . ::= α A→B ∀αA
where α ranges over a denumerable set of elements called type variables, and the construct
∀αA binds α in A.
Typing contexts are defined as in Definition 6, using System F types instead of simple types;
they will be denoted Γ, ∆, etc.
The free type variables of a type A (resp. a typing context Γ) will be denoted ftv(A)
(resp. ftv(Γ)).
The typing system of System F is given in Fig. 10. Derivability of a sequent in System F is
denoted Γ `F M :A. ※

Γ, x :A ` x :A

Γ, x :A ` M :B
Γ ` λx.M :A→B

Γ ` M :A→B Γ ` N :A
Γ ` M N :B

Γ ` M :A
α /∈ ftv(Γ)

Γ ` M :∀αA

Γ ` M :∀αA
Γ ` M :

{
B�α

}
A

Figure 10: System F

The method to prove strong normalisation is to build a model with
• an interpretation for terms as elements of a set E
• an interpretation for types as (interesting) subsets of E
• such that

– the interpretation of a term of type A is in the interpretation of A
– if the interpretation of a term is in there, the term is strongly normalising.

2.1. Revisiting Proofs of Strong Normalisation for System F 43

2.1.1 Orthogonality models and the Adequacy Lemma

Definition 26 (Orthogonality models)
An orthogonality model is a 4-tuple (D,⊥, E , J_K_) where
• D is a set of elements called values;
• ⊥ is a relation between values and lists of values called the orthogonality relation;
• E is a superset of D;
• J_K_ is a function mapping every λ-term M (typed or untyped) to an element JMKρ of
E , where ρ is a parameter called semantic context mapping term variables to values.

• the following axioms are satisfied:
(A1) For all ρ, ~v, x, if ρ(x) ⊥ ~v then JxKρ ⊥ ~v.
(A2) For all ρ, ~v, M1, M2, if JM1Kρ ⊥ (JM2Kρ ::~v) then JM1 M2Kρ ⊥ ~v.
(A3) For all ρ, ~v, x, M and for all values u, if JMKρ,x7→u ⊥ ~v then Jλx.MKρ ⊥ (u ::~v).

※

In fact, D and ⊥ are already sufficient to interpret any System F type A as a set JAK+

of values (see Definition 28 below): if types are seen as logical formulae, we can see this
construction as a way of building some of their realisability / set-theoretical models.

There is no notion of computation pertaining to values, but the interplay between the
interpretation of terms and the orthogonality relation is imposed by the axioms so that the
Adequacy Lemma (which relates typing to semantics) holds:

If `F M :A then JMK ∈ JAK+

We now assume that we are given an orthogonality model (D,⊥, E , J_K_).

Notation 27 By D∗ we denote the set of lists of values.
If X ⊆ D and Y ⊆ D∗ let

X ::Y := {u ::~v | u ∈ X,~v ∈ Y }
X⊥ := {~v ∈ D∗ | ∀u ∈ X,u ⊥ ~v}
Y ⊥ := {u ∈ D | ∀~v ∈ Y, u ⊥ ~v}

※
Remark 23 The usual properties of orthogonality hold:
X ⊆ X⊥⊥, X⊥⊥⊥ = X⊥, and if X ⊆ X ′ then X ′⊥ ⊆ X⊥ ※

We now define the interpretation of types. The intuition is the same as that of Krivine’s
classical realisability [DK00, Kri01]:
• we first interpret a formula A as a set of “counter-proofs”, with the basic constructs that

we expect to use in order to refute the formula: for instance the basic way to refute
A1→A2 is to provide a “proof” of A1 and a “counter-proof” of A2; similarly, the basic way
to refute ∀αA1 is to find a suitable interpretation of α and produce a “counter-proof” of A1
under this interpretation; the set of counter-proofs for atomic formulae is then naturally
given by a valuation;

• we then define the “proofs” (“realisers” would be a better term) of a formula A as any value
that is able to “face all counter-proofs”, this latter concept being what the orthogonality
relation is precisely there to specify.

44 Chapter 2. Orthogonality, normalisation and witness extraction

Definition 28 (Interpretation of types)
A valuation is a function, denoted σ, σ′,. . . , from type variables to subsets of D∗.
Two interpretation of types are defined by simultaneous induction of types, a positive inter-
pretation and a negative interpretation:

JAK+
σ := [A]−σ

⊥
[α]−σ := σ(α)
[A→B]−σ := JAK+

σ ::[B]−σ
[∀αA]−σ :=

⋃
Y⊆D∗ [A]−σ,α 7→Y

We then define the interpretation of typing contexts:
JΓKσ := {ρ | ∀(x :A) ∈ Γ, ρ(x) ∈ JAK+

σ } ※

This approach begs the question: why is it the case that counter-proofs are defined more
primitively than proofs? As described for instance in [MM09] (and in the rest of this thesis),
this is simply a coincidence about the two type constructs we use in System F : they both have
a “negative polarity”, if we see them in the more general context of polarised logic, as we shall
discuss in Chapter 3. Second-order quantification is often used in the field of realisability (and
elsewhere) to encode other logical connectives, which made the negative approach prevalent
in that field, with counter-proofs being defined first and proofs being defined by orthogonality.
With primitive connectives that have a “positive polarity”, such as intuitionistic disjunction,
proofs would be defined first and counter-proofs would be defined by orthogonality. We shall
come back to that discussion in the next chapters.
Remark 24 We have the usual properties of substitutions:[{

B�α
}
A
]−
σ

= [A]−
σ,α7→[B]−σ

and
r{

B�α
}
A

z+

σ
= JAK+

σ,α7→[B]−σ
Also notice that the for all quantifier is interpreted as an intersection:

J∀αAK+
σ =

⋂
Y⊆D∗ JAK+

σ,α7→Y
※

With these definitions we can prove the Adequacy Lemma:
Lemma 25 (Adequacy Lemma)
If Γ `F M :A, then for all valuations σ and for all mappings ρ ∈ JΓKσ we have JMKρ ∈ JAK+

σ .
※

Proof: By induction on the derivation of Γ ` M :A, using axioms (A1), (A2) and (A3).
See [BL11]. �

2.1.2 Applicative orthogonality models and Strong Normalisation
Definition 29 (Applicative orthogonality model)
An applicative orthogonality model is a 4-tuple (D, E ,@, J_K_) where:
• D is a set, E is a superset of D, @ is a (total) function from E × E to E , and J_K_ is a

function (parameterised by a semantic context) from λ-terms to E .
• (E ,D,⊥, J_K_) is an orthogonality model,

where the relation u ⊥ ~v is defined as (u@~v) ∈ D
(writing u@~v for (. . . (u@v1)@ . . .@vn) if ~v = v1 :: . . . vn ::[]).

※

2.2. Adapting the approach to classical calculi 45

Remark 26 Axioms (A1) and (A2) are ensured provided that JM NKρ = JMKρ@JNKρ and
JxKρ = ρ(x). These conditions can hold by definition (as in the following example), or can
be proved. ※

We now give an applicative orthogonality model to conclude strong normalisation of Sys-
tem F ; this will capture, in essence, the Tait-Girard proof methodology [Tai75, Gir72]. The
model is here a term model, in that E is the set of all λ-terms and a λ-term is interpreted as
itself.

Example 6 (A term-model for Strong Normalisation)
Let D be the set of strongly-normalising λ-terms, and let E be set of all λ-terms. We define
u ⊥ ~v as (u@~v) ∈ SN, and the interpretation of terms as follows:

JxKρ := ρ(x)
JM1 M2Kρ := JM1Kρ JM2Kρ
Jλx.MKρ := λx.JMKρ,x 7→x

Requirement 3 is a consequence of anti-reduction:
If
{
P�x

}
M ~N ∈ SN and P ∈ SN then (λx.M) P ~N ∈ SN.

Note that for all ~N ∈ SN∗ and all term variables x, x ⊥ ~N .
Hence, for all valuations σ and all types A, x ∈ JAK+

σ .
We apply the Adequacy Lemma (Lemma 25):
If Γ ` M :A, then for all valuation σ and all mapping ρ ∈ JΓKσ we have JMKρ ∈ SN.
Hence, M ∈ SN. ※

In summary, we have defined a family of models for the (polymorphically) typed λ-calculus,
and presented one instance with which strong normalisation could be inferred. In [BL11] we
presented other instances of orthogonality models, based for instance on intersection types.
Unlike usual models (e.g. CCC), orthogonality models do not necessarily equate terms up to
β-reduction (if M −→β N , we do not necessarily have JMK = JNK). This allows us to build
a model where JMK = M , from which we can infer strong normalisation of typed terms (an
instance of CCC would be useless for this).

2.2 Adapting the approach to classical calculi

Orthogonality was used by Parigot to prove strong normalisation of CBN λµ-calculus [Par97].
For their non-confluent calculus, Barbanera & Berardi [BB96] adapted the Tait-Girard re-
ducibility technique with “symmetric reducibility candidates”. The key idea in both cases is
still that a type A is interpreted as a pair of two orthogonal sets:1

• a set JAK+ of proof(-terms)
• a set JAK− of counter-proof(-terms)
. . . satisfying some saturation property (like reducibility candidates do).

In the proof of strong normalisation of System F that we presented in the previous section,
the notion of saturation that holds for JAK+ is that it is closed under bi-orthogonal (JAK+⊥⊥ =
JAK+). In particular, in an applicative term model, the fact that JAK+ is closed under bi-
orthogonal allows to derive, from axiom (A3) of the orthogonality relation, the property that

1Two sets U and V are orthogonal if ∀t ∈ U , ∀u ∈ V, t ⊥ u.

46 Chapter 2. Orthogonality, normalisation and witness extraction

if (
{
N�x

}
M) N1 . . . Nn ∈ JAK+ and N,N1, . . . , Nn ∈ D, then (λx.M)N N1 . . . Nn ∈ JAK+.

Although not explicitly used in our proof of strong normalisation (Example 6), this property
lies in the background and is often explicitly used in more traditional presentations of the
reducibility technique [Tai75, Gir72]. In brief, the technique works because the interpretation
of a type is closed under “head-anti-reduction”.

This is also the approach for classical proof-term calculi, in particular for a confluent
calculus such as the Parigot’s λµ [Par97].

2.2.1 The case of a confluent calculus

In this section we take the example of the LKN fragment of System L (Definition 22), with ⇒
as the only connective, and considering the reduction relation CBN. We can also prove strong
normalisation by building a term model based on orthogonality:

Three rewrite rules apply:
(→) 〈λx.t1 | t2 ::E〉 −→

〈{
t2�x

}
t1 | E

〉
(
←
µN) 〈µβ.c | E〉 −→

{
E�β

}
c

(
→
µ) 〈t | µx.c〉 −→

{
t�x
}
c

Therefore we can adapt the axiom (A3) of Definition 26 as follows:

Definition 30 (Orthogonality model for System LKN)
An orthogonality model for System LKN is given by (Dt,De,⊥) where Dt is a set of terms,
De is a set of continuations, and ⊥ is a relation between Dt and De, which can be seen as a
set of commands, and satisfying the following saturation requirements:
If 〈t1 | e〉 (ρ, x 7→ t2) ∈ ⊥ and t2 ∈ Dt then 〈λx.t1 | t2 ::e〉 ρ ∈ ⊥
If c(ρ, β 7→ E) ∈ ⊥ and E ∈ De then 〈µβ.c | E〉 ρ ∈ ⊥
If c(ρ, x 7→ t) ∈ ⊥ and t ∈ Dt then 〈t | µx.c〉 ρ ∈ ⊥

where ρ is a semantic context, i.e. a substitution mapping term variables to terms in Dt
and continuation variables to continuations in De, and cρ denotes the capture-avoiding
application, to c, of the substitution ρ. ※

Definition 31 (Interpretation of types for System LKN)
A valuation is a function, denoted σ, σ′,. . . , from type variables to subsets of De that only
contain value continuations.
Two interpretation of types are defined by simultaneous induction of types, a positive inter-
pretation and a negative interpretation:

[α]−σ := σ(α)
[A→B]−σ := JAK+

σ ::JBK−σ
JAK+

σ := [A]−σ
⊥ JAK−σ := [A]−σ

⊥⊥

where X ::Y denotes {t ::E | t ∈ X,E ∈ Y } for any X ⊆ Dt and Y ⊆ De.
We then define the interpretation of a typing context (i.e. a pair of a typing context for term
variables and a typing context for continuation variables):

JΓ,∆Kσ := {ρ | ∀(x :A) ∈ Γ, ρ(x) ∈ JAK+
σ , and ∀(α :A) ∈ ∆, ρ(α) ∈ JAK−σ } ※

2.2. Adapting the approach to classical calculi 47

Lemma 27 (Adequacy Lemma for System LKN)
1. If Γ `L t :A ; ∆, then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have tρ ∈ JAK+

σ .
2. If Γ ; e :A `L ∆, then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have eρ ∈ JAK−σ .
3. If c : (Γ `L ∆), then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have cρ ∈ ⊥.
where tρ, eρ, and cρ denotes the capture-avoiding application of ρ, seen as a substitution,
to t, e, and c, respectively. ※

Proof: By simultaneous induction on the typing derivations, using the axioms about ⊥. �

Example 7 (Strong Normalisation of System LKN)
We define Dt to be the set of strongly normalising terms and De to be the set of strongly
normalising continuations. We define the orthogonality relation ⊥ between Dt and De as
those commands that are strongly normalising.2

We can check that the saturation requirements are met by purely syntactical/rewriting rea-
soning, but it only works because there is at most one way to reduce the top-level command.
Take σ to map every type variable to De. Notice that term variables are in every JAK+

σ and
continuation variables are in every JAK−σ , and that the identity substitution ρ is in every
JΓ,∆Kσ.
We then apply the Adequacy Lemma with σ and ρ, and get that every typed term, contin-
uation, and command is strongly normalising for −→CBN . ※

In this section, we have proved the strong normalisation of the confluent calculus LKN for
classical logic, a CBN-fragment of System L. We could have done it along the same lines for
the full syntax of System L (but still with the confluent reduction −→CBN), but dealing with
the extra constructs and extra reductions (ζN) would have meant a heavier machinery (along
the lines of [MM09, CMM10, MM13]). We aimed instead at simplicity, which emphasises the
connection with the orthogonality models for System F , and those that we present in the
next section.

In summary, in a confluent calculus such as the LKN, building the positive and negative
interpretations of a type A can be described as follows:

Sets of terms Sets of continuations
Stage 1 Y0 := [A]−
Stage 2 X1 := Y ⊥0 Y1 := Y ⊥⊥0
Finished JAK+ := X1 JAK− := Y1

The construction is finished in 2 steps, because the sets X1 and Y1, which are orthogonal,
already have all of the saturation properties required to contain all the terms and continuations
of type A, which is checked when proving the Adequacy Lemma.

In other words, closure under bi-orthogonality provides adequate saturation properties.

2.2.2 The case of a non-confluent calculus

Let us now consider the situation of a non-confluent calculus such as System L with its original
reduction system

2The notion of strong normalisation in the definition of Dt, De and ⊥ is of course considered for −→CBN .

48 Chapter 2. Orthogonality, normalisation and witness extraction

(→) 〈λx.t1 | t2 ::e〉 −→ 〈t2 | µx.〈t1 | e〉〉
(
←
µ) 〈µβ.c | e〉 −→ {e�β} c

(
→
µ) 〈t | µx.c〉 −→

{
t�x
}
c

The Adequacy Lemma might still work if we had the saturation requirements:
If 〈t2 | µx.〈t1 | e〉〉 ρ ∈ ⊥ then 〈λx.t1 | t2 ::e〉 ρ ∈ ⊥
If c(ρ, β 7→ e) ∈ ⊥ and e ∈ De then 〈µβ.c | e〉 ρ ∈ ⊥
If c(ρ, x 7→ t) ∈ ⊥ and t ∈ Dt then 〈t | µx.c〉 ρ ∈ ⊥

But in any case, because of non-confluence, these requirements are not met if we define Dt
to be the set of strongly normalising terms and De to be the set of strongly normalising
continuations, and ⊥ the set of strongly normalising commands.3

This means that because of non-confluence, we need to change our notion of saturation, so
that JAK+ and JAK− respectively contain enough terms and continuations for the Adequacy
Lemma to hold, and because of that change, the pair (JAK+, JAK−) will not be constructed in
2 steps as in the confluent case, but in infinitely many steps:

Sets of terms Sets of continuations
Stage 1 X0 ⊥ Y0 not saturated
Stage 2 X1 ⊥ Y1 not saturated
Stage 3 X2 ⊥ Y2 not saturated

. . . ⊥
Stage ∞ X∞ ⊥ Y∞ saturated
Finished JAK+ ⊥ JAK− saturated

We get a saturated pair of sets in infinitely many steps (via a fixpoint construct). In [LM08],
we showed that the fixpoint construct could not be captured by a bi-orthogonal completion
step.

We now see the details of the technique. In the rest of this section, we fix ⊥ to be the set
of strongly normalising commands.

Definition 32 (Orthogonality and saturation)
Let Labt denote the set of term variables and Labe denote the set of continuation variables.
Given a set U of terms and a set V of continuations, the pair (U ,V) is
• orthogonal if ∀t ∈ U ,∀u ∈ V, t ⊥ u
• saturated if the following two conditions hold

1. Labt ⊆ U and Labe ⊆ V
2. {µα.c ∀e ∈ V, {v�x} c ∈ ⊥} ⊆ U and
{µx.c ∀t ∈ U , {v�x} t ∈ ⊥} ⊆ V.

A set of terms (resp. continuations) is said to be simple if it is non-empty and it contains
no term of the form µα.c (resp. µx.c).
For every set X of terms (set Y of continuations), we define a function

ΦX(W) := X ∪ Labt ∪ {µα.c ∀e ∈ W, {e�α} c ∈ ⊥}
resp.

ΦY (W) := Y ∪ Labe ∪ {µx.c ∀t ∈ W,
{
t�x
}
c ∈ ⊥}

※
3The notion of strong normalisation in the definition of Dt, De and ⊥ is now considered for the full reduction

relation −→ .

2.2. Adapting the approach to classical calculi 49

Lemma 28 Given a set of terms X0 and a set of continuations Y0,
1. ΦX0 and ΦY0 are anti-monotonic.4

2. Hence, ΦX0◦ΦY0 is monotonic and admits a fixpoint X∞, with ΦX0(ΦY0(X∞)) = X∞.
3. Writing Y∞ for ΦY0(X∞), we clearly have

X∞ = X ∪ Labt ∪ {µα.c ∀e ∈ Y∞, {e�α} c ∈ ⊥}
Y∞ = Y ∪ Labe ∪ {µx.c ∀t ∈ X∞,

{
t�x
}
c ∈ ⊥}

4. So (X∞, Y∞) is saturated, and a quick case analysis shows that it is orthogonal if X0
and Y0 are simple and orthogonal to each other.

5. Finally, X0 ⊆ X∞ and Y0 ⊆ Y∞.
We finally define satur(X0, Y0) as (X∞, Y∞). ※

Definition 33 (Interpretation of types for System L)
A valuation is a function, denoted σ, σ′,. . . , from type variables to orthogonal pairs of simple
sets.
Two interpretation of types are defined by simultaneous induction of types, a positive inter-
pretation and a negative interpretation:

([a]+σ , [a]−σ) := σ(α)
([A→B]+σ , [A→B]−σ) := ({t ∈ (JAK+

σ ::JBK−σ)⊥ | t not of the form µα.c}, JAK+
σ ::JBK−σ)

where X ::Y denotes {t ::e | t ∈ X, e ∈ Y }
(JAK+

σ , JAK−σ) := satur([A]+σ , [A]−σ)

Again, we define
JΓ,∆Kσ := {ρ | ∀(x :A) ∈ Γ, ρ(x) ∈ JAK+

σ , and ∀(α :A) ∈ ∆, ρ(x) ∈ JAK−σ } ※

Now notice the difference with Definition 31: the definition of [A→B]−σ is the same but
if we just took JA→BK+

σ to be its orthogonal, the pair (JA→BK+
σ , [A→B]−σ) would not be

saturated, as we have already seen; so instead we restrict [A→B]−σ
⊥ to those terms that

are not of the form µα.c, and thus form an orthogonal (but not saturated) pair of simple
sets ([A→B]+σ , [A→B]−σ). Then we saturate that pair into (JA→BK+

σ , JA→BK−σ), which is
orthogonal and saturated:

Lemma 29 (Interpretations of types are orthogonal and saturated)
For all valuations σ and all types A, (JAK+

σ , JAK−σ) is orthogonal and saturated. ※

The rest is now just as in the CBN case:

Lemma 30 (Adequacy Lemma for System L)
1. If Γ `L t :A ; ∆, then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have tρ ∈ JAK+

σ .
2. If Γ ; e :A `L ∆, then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have eρ ∈ JAK−σ .
3. If c : (Γ `L ∆), then for all valuations σ and for all ρ ∈ JΓ,∆Kσ we have cρ ∈ ⊥.
where tρ, eρ, and cρ denotes the capture-avoiding application of ρ, seen as a substitution,
to t, e, and c, respectively. ※

Proof: By simultaneous induction on the typing derivations, using the Lemma 29. �

4In other words for ΦX0 , if W ⊆W ′ then ΦX0 (W) ⊇ ΦX0 (W ′). And similarly for ΦY0 .

50 Chapter 2. Orthogonality, normalisation and witness extraction

Theorem 31 (Strong Normalisation of System L)
Take σ to map every type variable to the orthogonal pair (Labt, Labe) of simple sets. Notice
again that the identity substitution ρ is in every JΓ,∆Kσ.
We then apply the Adequacy Lemma with σ and ρ, and get that every typed term, contin-
uation, and command is strongly normalising for −→ . ※

The points to remember are
• As for System F , we have proved strong normalisation by building a term model

– which does not equate terms up to reduction (non-confluence would make that very
problematic)

– where axiom (A3) is replaced by a saturation property.
• Because of non-confluence,

– saturation has to be a property of pairs (JAK+
σ , JAK−σ), not a property of each component

separately;
– saturating is difficult (adding terms in one component of the pair affects the other

component), and obtained by a fixpoint construction.
As shown in [LM08], the saturation process is not just a bi-orthogonality completion:
if (U ,V) is orthogonal, then (U⊥⊥,V⊥⊥) is orthogonal but not necessarily saturated.

2.3 Orthogonality models for extracting witnesses from clas-
sical proofs

We now show how to extract a witness from a classical proof of a Σ0
1-formula, i.e. a closed

formula of the form ∃aA(a) where A(a) is a quantifier-free formula of arithmetics.
The technique is due to Miquel [Miq09, Miq11], we simply adapted it to our proof-term

calculus for classical logic, and somewhat simplified it using the concepts and notations of
the previous sections.

We work in a particular setting where such a formula is expressed in the shape of
¬∀a¬isnull(e(a)), the grammar of formulae being defined as follows:

Definition 34 (Expressions and Formulae)
Expressions u, u′, . . . ::= a 0 s(u) u+ u′ u× u′ u ≤ u′
Formulae A,B, . . . ::= isnull(u) A→B ∀aA

We represent integers as expressions: let 0 := 0 and, for all integers n, let n+ 1 := s(n).
We define ¬A := A→isnull(1). ※

This shape for a Σ0
1-formula brings no loss of generality. Moreover, such an expression as

u(a), with one free variable a, expresses a primitive recursive function from N to N.
We will now build an orthogonality model that we will use for witness extraction. As in

the previous sections, each formula A will be interpreted as a set JAK+
σ of terms and a set

JAK−σ of continuations, terms and continuations being those of LKN.

2.3. Orthogonality models for witness extraction 51

The extraction mechanism itself will be given by the reductions of LKN, and more precisely
by root CBN-reduction, which we denote −→CBNr .5

In other words, from a proof of ¬∀a¬isnull(u(a)) in (the extension to arithmetic of) Sys-
tem L, we will perform −→CBNr -reduction until we reach (in a provably finite number of
steps) a command where we can directly read a witness.

For this we need to express numerals as proof-terms. We simply use Church’s numerals
in λ-calculus (see e.g. [Bar84]) and encode them in LKN with Definition 14:
Definition 35 (Church’s numerals as terms)

c0 := 〈x | α〉
cn+1 := 〈f | (µα.cn) ::α〉
n := λx.λf .µα.cn

※
Remark 32 Doing the same thing with the λ-terms for the successor function and the
recursion function, we get two LKN terms s and rec such that, for all t, u0, u1, for all
continuation values E, and all integer n,

〈s | n ::t ::E〉 −→∗CBNr 〈t | n+ 1::E〉
〈rec | u0 ::u1 ::0 ::E〉 −→∗CBNr 〈u0 | E〉
〈rec | u0 ::u1 ::n+ 1::E〉 −→∗CBNr 〈u1 | n ::(µα.〈rec | u0 ::u1 ::n ::α〉) ::E〉

using the simulation of β-reduction by −→CBN .6

Let ifz := λnx0x1 .µα.〈rec | x0 ::(λy0y1 .x1) ::n ::α〉, so that
〈ifz | 0::u0 ::u1 ::E〉 −→∗CBNr 〈u0 | E〉
〈ifz | n+ 1::u0 ::u1 ::E〉 −→∗CBNr 〈u1 | E〉

※
Definition 36 (Orthogonality semantics)
Let ⊥ be an arbitrary set of commands, stable under anti-reduction (if c −→CBNr c′ and
c′ ∈ ⊥ then c ∈ ⊥).
A valuation σ is a mapping from expression variables (a, etc) to integers.
Given a valuation σ, Fig. 11 defines the interpretation of an expression u as an integer JuKσ
and a formula A as a set JAK+

σ of terms and a set JAK−σ of continuations. ※

Remark 33
1. Clearly, JnKσ = n for all n and σ.

2. By induction on u we get
r{

n�a
}
u
z

σ
= JuKσ,a7→n, and by induction on A we get[{

n�a
}
A
]−
σ

= [A]−σ,a7→n and
r{

n�a
}
A

z+

σ
= JAK+

σ,a7→n.
※

Now, for simplicity we do not specify the exact proof system for arithmetic, nor do we give
a typing system corresponding to it through the Curry-Howard correspondence. We assume
that it could be built as an extension of Fig. 6, and that the Adequacy Lemma can be proved
(along the lines of Lemma 27 for LKN):

5The fact that we use CBN-reduction is important to make sure that reduction can produce a witness; the
fact that we only use root reduction is not, but in order to implement the extraction mechanism deterministi-
cally, it is convenient to never have to choose the next redex to reduce.

6And the fact that we can do this with root-reduction only is rather clear.

52 Chapter 2. Orthogonality, normalisation and witness extraction

JaKσ := σ(a)
J0Kσ := 0
Js(u)Kσ := JuKσ + 1
Ju1 + u2Kσ := Ju1Kσ + Ju2Kσ
Ju1 × u2Kσ := Ju1Kσ × Ju2Kσ
Ju1 ≤ u2Kσ := 1 if Ju1Kσ ≤ Ju2Kσ
Ju1 ≤ u2Kσ := 0 if Ju1Kσ > Ju2Kσ

[isnull(u)]−σ := E if JuKσ 6= 0
[isnull(u)]−σ := ∅ if JuKσ = 0
[A→B]−σ := JAK+

σ ::JBK−σ
[∀aA]−σ :=

⋃
n∈N({n} ::JAK−σ,a7→n)

JAK+
σ := [A]−σ

⊥ JAK−σ := [A]−σ
⊥⊥

where E is the set of all continuation values and X ::Y denotes {t ::E | t ∈ X,E ∈ Y }.

Figure 11: Semantics of expressions and formulae

A closed proof t0 of a formula ¬∀a¬isnull(u(a)) is such that,
for all possible ⊥ closed under “anti-reduction” (the inverse of −→CBNr),

t0 ∈ J¬∀a¬isnull(u(a))K.

We thus start with such a term t0.

We now define a term that can check whether an integer is a witness of the property and,
depending on this check, continue with one term or another:

Definition 37 (Witness checker)
Let f be the primitive recursive function defined by: for any integer n, f(n) := Ju(a)Ka7→n.
Let f be a term representing f in the sense that, for any integer n, and term t and any
continuation value E, 〈

f | n ::t ::E
〉
−→∗CBNr

〈
t | f(n) ::E

〉
Such a term can be constructed from s and rec, as the projections, composition, etc are all
available in System L.
We define the witness checker as follows:

df := λnxy.µα.
〈
f | n ::(λp.µα1.〈ifz | p ::x ::y ::α1〉) ::α

〉
※

Lemma 34 (Witness checker property)
For any integer n, any u0 and u1 and E, we have
〈df | n ::u0 ::u1 ::E〉−→∗CBNr 〈u0 | E〉 if f(n) = 0
〈df | n ::u0 ::u1 ::E〉−→∗CBNr 〈u1 | E〉 if f(n) 6= 0 ※

Proof:

2.3. Orthogonality models for witness extraction 53

〈df | n ::u0 ::u1 ::E〉 −→∗CBNr

〈
µα.
〈
f | n ::(λp.µα1.〈ifz | p ::u0 ::u1 ::α1〉) ::α

〉
| E
〉

−→∗CBNr

〈
f | n ::(λp.µα1.〈ifz | p ::u0 ::u1 ::α1〉) ::E

〉
−→∗CBNr

〈
λp.µα1.〈ifz | p ::u0 ::u1 ::α1〉 | f(n) ::E

〉
−→∗CBNr

〈
µα1.

〈
ifz | f(n) ::u0 ::u1 ::α1

〉
| E
〉

−→∗CBNr

〈
ifz | f(n) ::u0 ::u1 ::E

〉
If f(n) = 0, this reduces to 〈u0 | E〉. Otherwise, this reduces to 〈u1 | E〉. �

Definition 38 (Orthogonality and contradicter)
Let stop be an arbitrary term and go be an arbitrary continuation.
We now take a particular orthogonality set defined by

⊥ := {c there exists n such that f(n) = 0 and c−→∗CBNr 〈stop | n ::go〉}
It is closed under anti-CBNr-reduction.
We now define a “contradicter”:7 Let t1 := λnx.µα.〈df | n ::(µα0.〈stop | n ::go〉) ::x ::α〉. ※

Lemma 35 (Behaviour of the contradicter)
For all integers n, and all continuation values E in J¬isnull(u(n))K−, we have t1 ⊥ n ::E. ※

Proof: We have
〈t1 | n ::E〉−→∗CBNr 〈λx.µα.〈df | n ::(µα0.〈stop | n ::go〉) ::x ::α〉 | E〉

To prove that this is an orthogonal command, we only have to show, as E ∈ [¬isnull(u(n))]−⊥⊥,
that the left-hand side term is orthogonal to every continuation in [¬isnull(u(n))]−.

Consider such a continuation; it is of the form t ::E′ with t ∈ Jisnull(u(n))K+.
If f(n) 6= 0 then [u(n)] 6= 0, so [isnull(u(n))]− = E and t is orthogonal to every continua-

tion, in particular E′. So we have
〈λx.µα.〈df | n ::(µα0.〈stop | n ::go〉) ::x ::α〉 | t ::E′〉

−→∗CBNr 〈df | n ::(µα0.〈stop | n ::go〉) ::t ::E′〉
−→∗CBNr 〈t | E′〉

which is in ⊥.
If f(n) = 0 then we have

〈λx.µα.〈df | n ::(µα0.〈stop | n ::go〉) ::x ::α〉 | t ::E′〉
−→∗CBNr 〈df | n ::(µα0.〈stop | n ::go〉) ::t ::E′〉
−→∗CBNr 〈µα0.〈stop | n ::go〉 | E′〉
−→∗CBNr 〈stop | n ::go〉

�

Corollary 36 (Classical witness extraction)
〈t0 | t1 ::go〉−→∗CBNr 〈stop | n ::go〉 for some integer n such that f(n) = 0. ※

Proof:
From Lemma 35 we get that t1 ∈ J∀a¬isnull(u(a))K+ and therefore t1 ::go ∈ [¬∀a¬isnull(u(a))]−.
Since we have assumed t0 ∈ J¬∀a¬isnull(u(a))K+, we have t0 ⊥ t1 ::go, from which we

conclude. �

7In the sense that it will contradict what the proof t0 claims.

54 Chapter 2. Orthogonality, normalisation and witness extraction

In other words, once given a classical proof, we match it against the continuation t1 ::go
and we are certain that CBNr will produce 〈stop | n ::go〉 in a finite number of steps, with n
being a witness.

For a comparison with other techniques of classical witness extraction, see [Miq09, Miq11].

Conclusion

In summary, we have seen in this chapter a fundamental concept for model construction,
namely orthogonality. We built several orthogonality models for various purposes: rephrase
strong normalisation proofs for System F , prove the strong normalisation of a confluent
proof-term calculus for classical logic as well as a non-confluent calculus (thereby proving
cut-elimination), and finally extract witnesses from classical proofs of Σ0

1-formulae.
In each of those model constructions, we have interpreted formulae first with basic inhab-

itants (terms or continuations), and then closed their interpretation by a completion process
that could simply be taking the bi-orthogonal, in the case of confluent calculi, or a more
complex fixpoint, in the case of a non-confluent calculus.

Whether in those constructions we first define the negative interpretation of a formula (as
a set of “counter-proofs”) or its positive interpretation (as a set of “proofs”), is a question
that depends on the formula’s polarity. This is the topic of the next chapter.

Chapter 3

Polarisation and focussing

Contents
3.1 Recovering confluence by polarisation 56

3.1.1 Symmetry, asymmetry, and η-expansions 56
3.1.2 Towards polarised System L . 58
3.1.3 Focussing . 61
3.1.4 Weak η-conversion . 62
3.1.5 Related works . 63

3.2 Computational interpretation of a focussed calculus 64
3.2.1 Informal relation to System L . 66
3.2.2 Identifying phases as atomic steps 67
3.2.3 Functional interpretation as pattern-matching 72

Conclusion . 74

In the previous chapters, we have seen that
• A proof-term syntax, together with a typing system, can be used to represent classical

proofs (e.g. System L), such that the symmetry of classical logic is reflected by the sym-
metry between programs and continuations. The use of classical reasoning corresponds to
letting a program capture its continuation.

• A rewrite system on proof-terms can be given to represent cut-elimination, following
the intuitions of continuations and control. This gives a non-confluent calculus because
(unrestricted) cut-elimination is non-confluent in classical logic, reflected by the fact that
programs and continuations compete for the control of computation.

• Still, the rewrite system is strongly normalising on typed proof-terms (i.e. those repre-
senting real proofs), showing that cuts are admissible. The proof of strong normalisation
was the occasion to introduce orthogonality techniques, although non-confluence requires
more, namely specific saturation properties.

• The semantics of classical proofs, or typed proof-terms, is problematic until confluence is
recovered in some way.

Back to the main issue, a CCC with ¬¬A ' A collapses, and out of the 3 natural ways to
avoid the collapse, namely
1. break the symmetry between ∧ and ∨,

55

56 Chapter 3. Polarisation and focussing

2. break the cartesian product,
3. break the curryfication,
we investigate the breaking of symmetry between ∧ and ∨.

In Chapter 1 we saw how to break the ∧∨-symmetry by the CBV/CBN approach. In this
chapter, we break the ∧∨ symmetry by polarisation.

3.1 Recovering confluence by polarisation

3.1.1 Symmetry, asymmetry, and η-expansions

We start this section by coming back to a fundamental question: What is symmetrical about
Classical Logic? There is definitely a symmetry based on the duality of negation / De Mor-
gan’s duality. It can be seen in the truth semantics of formulae, in e.g. truth tables or more
generally in a boolean algebra: meet / join and top / bottom are swapped when flipping the
order upside-down, and all the axioms of a boolean algebra are preserved.

At the level of proofs, there is also a symmetry that can be seen for instance in the
two-sided sequent calculus: the left-introduction rule of a connective is symmetric to the
right-introduction rule of its dual connective (in other words, the rules are preserved under
duality flipping).

Cut-elimination is symmetrical (e.g. the rewrite system of Fig. 6), but to make semantical
sense of it, one breaks the symmetry by making a choice between CBN and CBV that is
completely arbitrary.

More interestingly, the following example reveals something asymmetric between the left-
introduction of ∨ and the right-introduction of ∨:

Γ, A ` ∆ Γ, B ` ∆
Γ, A∨B ` ∆

Γ ` A,∆
Γ ` A∨B,∆

Γ ` B,∆
Γ ` A∨B,∆

Of course, we have never claimed that there is a symmetry between the left-introduction
of ∨ and the right-introduction of ∨, but an interesting question is raised by the following
situation: it is known (see e.g. [TS00]) that in the sequent calculus, the axiom rule

A ` A
(say in a context-splitting setting) can be restricted, without losing logical completeness, to
the atomic axiom rule

a ` a
Every instance of the general instance can be replaced by a small proof only using atomic ax-
ioms, which is proved by induction on A: in particular, transforming the axiom A∨B ` A∨B
into a proof with atomic axioms, we produce

. . .

A ` A

A ` A∨B

. . .

B ` B

B ` A∨B

A∨B ` A∨B
and then recursively transform A ` A and B ` B (until all of the used axioms are atomic).

3.1. Recovering confluence by polarisation 57

So the interesting question is whether there is a fundamental reason why ∨ is decomposed
on the left before being decomposed on the right (looking at the bottom-up construction of
the proof). Starting the decomposition on the right would have failed.

A related situation occurs with η-expansion in λ-calculus:
In λ-calculus, the use of an axiom corresponds to a variable in the proof-term. Typing

the term
λzA→B.z

(where we indicate the types of variables as superscripts) uses an axiom on A→B. Typing
its η-expansion

λzA→B.λyA.z y

uses, strictly speaking, an axiom on A→B and an axiom on A, but as z is immediately applied
and its type A→B immediately destructed, the η-expansion only uses, “morally” speaking,
axioms on the smaller formulae A and B. Turning this moral intuition into something formal
can be done by taking a proof-term calculus for sequent calculus (rather than natural deduc-
tion), as we shall see below, but still: we first have the λ-abstraction, and underneath it the
application. Why again do they have to appear in that order?

Indeed, in a classical calculus such a System L, the axiom on A→B is represented as

z :A→B ` z :A→B ;
The η-expansion of z is:

z :A→B, y :A ` z :A→B ; α :B
z :A→B,y :A ` y :A ; α :B z :A→B, y :A ; α :B ` α :B

z :A→B,y :A ; (y ::α) :A→B ` α :B
〈z | y ::α〉 : (z :A→B, y :A ` α :B)
z :A→B, y :A ` µα.〈z | y ::α〉 :B ;
z :A→B ` λy.µα.〈z | y ::α〉 :A→B ;

and then we can recursively transform the axioms on y :A and α :B (until axioms are atomic).
Of course, this η-expansion still features the use of z :A→B, but only to implement a con-
traction (or even more precisely to implement the placing of the formula A→B where it can
be decomposed), not to implement a proper axiom.

Now the η-expansion we used in the λ-calculus to illustrate our point is only one particular
instance of η-expansion: the general form

M −→η λyA.M y y /∈ FV(M)
can be recovered, by the capture avoiding substitution of M for z, from the axiomatic η-
expansion on axiom z:

z −→η λyA.z y

And in λ-calculus, no matter M (where y is not free), M and λy.M y have the same compu-
tational behaviour (with respect to β-reduction). In technical terms, M and λy.M y cannot
be separated (even using untyped terms) [Bar84].

In System L, the η-expansion on axiom z

z −→η λy.µα.〈z | y ::α〉
also provides, after instantiation of z by t (where y and α are not free), a general form of
η-expansion:

58 Chapter 3. Polarisation and focussing

t −→η λy.µα.〈t | y ::α〉
which transforms

Γ ` t :A→B ; ∆
into

Γ ` t :A→B ; ∆
Γ,y :A ` y :A ; α :B,∆ Γ, y :A ; α :B ` α :B,∆

Γ,y :A ; (y ::α) :A→B ` α :B,∆
〈t | y ::α〉 : (Γ, y : A ` α :B,∆)
Γ, y :A ` µα.〈t | y ::α〉 :B ; ∆

Γ ` λy.µα.〈t | y ::α〉 :A→B ; ∆
3.1.2 Towards polarised System L

Now the above general η-expansion can be instantiated with t = µβ.c:
µβ.c −→η λy.µα.〈µβ.c | y ::α〉

If we put those two terms in context, e.g. facing a continuation µx.c′, we get that
• 〈µβ.c | µx.c′〉 rewrites to {

µβ.c�x
}
c′ or

{
µx.c′�β

}
c

• but 〈λy.µα.〈µβ.c | y ::α〉 | µx.c′〉 rewrites only to{
λy.µα.〈µβ.c|y ::α〉�x

}
c′

If η-convertible terms should have undistinguishable computational behaviour, we must
forbid

〈
µβA1→A2.c | µxA1→A2.c′

〉
−→

{
µxA1→A2.c′�β

}
c

The grounds for breaking the symmetry in such a way is that µβA1→A2.c can be η-
expanded, but µxA1→A2.c′ cannot, which reflects the fact that the right-introduction rule
for A1 → A2 is invertible while its left-introduction rule is not.

In short, when encountering
c : (Γ ` β :A1→A2,∆)
Γ ` µβ.c :A1→A2 ; ∆

c′ : (Γ, x :A1→A2 ` ∆)
Γ ; µx.c′ :A1→A2 ` ∆〈

µβ.c | µx.c′
〉

: (Γ ` ∆)
we could consider that the term µβ.c is a “cheater” in the sense that its type A1→A2 could be
proved or inhabited in another way (e.g. with the η-expansion of µβ.c), avoiding the critical
pair, and solving the non-confluence problem.

In particular, if β is used 0 times in c, or more than once, we can understand the typing
tree

c : (Γ ` β :A1→A2,∆)
Γ ` µβ.c :A1→A2 ; ∆

as finishing with a weakening or a contraction. What η-expansion proves is that the proof
can be transformed into a proof that finishes with a proper introduction of the implication.

In our earlier example about the connective ∨, it is the contrary: its left-introduction rule
is invertible while its right-introduction rules are not.

This leads to considering a notion that arose from linear logic [Gir87]: polarities.

3.1. Recovering confluence by polarisation 59

The intuition for positive connectives is that we expect no particular property of their
right-introduction rules. These rules are called synchronous. In particular for goal-directed
proof-search, applying such a rule bottom-up is a priori a choice which we may have to
backtrack to if we fail to finish the proof. For logical completeness, (right-)weakenings or
(right-)contractions may be necessary on a formula with a positive connective at its root.

The intuition for negative connectives is that their right-introduction rules are invertible.
These rules are called asynchronous. In goal-directed proof-search we may apply such rules
without loss of generality and therefore without creating backtrack points. Also, (right-
)weakenings and (right-)contractions (on formulae that have a negative connective at their
roots) are superfluous as far as logical completeness is concerned. On the other hand, the
right-introduction rules “must interact well with the left-introduction rules” (or the right-
introduction rules of the dual connective), in cut-elimination as well as in the expansion of
axioms that we described in this section.

Just as in λ-calculus you can always inhabit a (non-empty) function type with a λ-
abstraction, you can always η-expand an inhabitant of a type whose main connective is
negative. Considering the η-expansion rules that we can apply in System L, we can derive
the polarities of the three connectives we considered:

negative A→B t −→ λy.µα.〈t | y ::α〉
negative A ∧B t −→ (µα.〈t | inj1(α)〉, µγ.〈t | inj2(γ)〉)
positive A ∨B e −→ (µx.〈inj1(x) | e〉, µz.〈inj2(z) | e〉)

Now in order to solve the confluence problem, we also need to determine how to reduce
〈µβ.c | µx.c′〉 when the cut-formula is atomic. This leads to splitting the set of the atomic
formulae into positives and negatives as well. Unlike non-atomic formulae, the choice of
polarity for each atom is arbitrary, and sometimes called the bias [LM09].

Now we can use these ideas to layer System L with polarities:
Definition 39 (Polarised System L) The polarised syntax of formulae is defined as

P, P ′, . . . ::= a+ A∨B
N,N ′, . . . ::= a− A∧B A→B
A,B, . . . ::= P N

The syntax for proof-terms, together with their associated forms of typing judgements, is
given below:

−terms t− ::= x− λx.t (t1, t2) inji(t) µβ−.c Γ ` t− :N ; ∆
+terms t+ ::= x+ λx.t (t1, t2) inji(t) µβ+.c Γ ` t+ :P ; ∆
terms t ::= t+ t− Γ ` t :A ; ∆

−continuations e− ::= α− t ::e (e1, e2) inji(e) µx−.c Γ ; e− :N ` ∆
+continuations e+ ::= α+ t ::e (e1, e2) inji(e) µx+.c Γ ; e+ :P ` ∆
continuations t ::= e+ e− Γ ; e :A ` ∆

commands c ::=
〈
t+ | e+〉 〈t− | e−〉 c : (Γ ` ∆)

writing x for either x+ or x−. ※

Now that polarities explicitly appear in the syntax of proof-terms, it is easy to reduce
〈µα.c | µx.c′〉:〈

µα+.c | µx+.c′
〉
−→

{
µx+.c′�α+

}
c and 〈µα−.c | µx−.c′〉 −→

{
µα−.c�x−

}
c′

60 Chapter 3. Polarisation and focussing

This turns into the following rewrite system:

Definition 40 (Reductions in the polarised System L) Again, we define values:
term values V ::= x inji(V) t−

continuation values E ::= α V ::E inji(E) e+

The reduction relation −→F is defined as the contextual closure of the rules in Fig. 12. ※

(→) 〈λx.t | V ::E〉 −→
〈{

V�x
}
t | E

〉
(∧) 〈(t1, t2) | inji(E)〉 −→ 〈ti | E〉
(∨) 〈inji(V) | (e1, e2)〉 −→ 〈V | ei〉

(
←
µ−) 〈µβ−.c | E〉 −→

{
E�β+

}
c

(
→
µ) 〈t− | µx−.c〉 −→

{
t−�x−

}
c

(
←
µ)

〈
µβ+.c | e+〉 −→

{
e+�β+

}
c

(
→
µ+)

〈
V | µx+.c

〉
−→

{
V�x+

}
c

(ζF)
〈
t− | t+ ::e

〉
−→

〈
t+ | µx+.

〈
t− | x+ ::e

〉〉
(ζF) 〈t− | V ::e−〉 −→ 〈µα.〈t− | V ::α〉 | e−〉
(ζF) 〈t− | inji(e−)〉 −→ 〈µα.〈t− | inji(α)〉 | e−〉
(ζF)

〈
inji(t+) | e+〉 −→

〈
µx+.

〈
inji(x+) | e+〉 | t+〉

where the (ζF)-rules apply only under the condition that t+ and e− are not values.

Figure 12: Rewrite system for polarised System L

As in the CBN and CBV cases, we have:

Theorem 37 (Confluence and Subject Reduction)
−→F is confluent and satisfies Subject Reduction. ※

Notice that the notion of value is slightly different from that of Definition 21: Indeed, if ∧
is to be taken to be negative, as the dual of (the obviously positive) ∨, we can take every pair
to be a value (in Definition 21 we stuck to Wadler’s presentation [Wad03]); this also removes
the need for ζ-rules for pairs. On the other hand, for a continuation t ::e to be a value, we
require it to be of the form V ::E, as we no longer recover confluence by opposing left vs. right
(terms vs. continuations) but by opposing positives vs. negatives.

Precisely because we now no longer make any distinction based on the left vs. right
opposition (terms vs. continuations opposition), this system could equally be given as a one-
sided system, merging the syntaxes of terms and continuations, but keeping of course the
distinction between positive terms and negative terms.1 At the level of formulae, we would
get 4 connectives ∨+ and ∧+ of positive polarity, and ∨− and ∧− of negative polarity:

A ∨B becomes A∨+B
A ∧B becomes A∧−B

A→B becomes A⊥∨−B
(A→B)⊥ becomes A∧+B⊥

where (A→B)⊥ represents the dual of implication: subtraction (see e.g. [Cro04]).
1Otherwise we would get back to Barbanera and Berardi’s symmetric (and non-confluent) λ-calculus, with

unclear denotational semantics.

3.1. Recovering confluence by polarisation 61

This is what we will do in Section 3.2.

3.1.3 Focussing

Now, the polarised System L presented above, which has been studied at length by Munch-
Maccagnoni [MM09, CMM10, MM13], solves non-confluence, not by giving systematic priority
to the left (CBV) or to the right (CBN), but by giving priority to the non-invertible side
(depending on the connective).

So the system takes advantage of the invertibility properties of the asynchronous rules
(right-introduction of negative connectives, left-introduction of positive connectives). Invert-
ibility entails that, in terms of proof-search, you can chain the decomposition of every formula
of the sequent that has an asynchronous introduction rule, before doing anything else, without
loss of generality (i.e. without losing logical completeness).

Now in [AP89, And92], Andreoli proved a more surprising result: focussing, that says that,
once you have chosen to decompose by a synchronous rule a particular formula in the sequent,2
you can also chain without loss of generality (i.e. without losing logical completeness) the
recursive decomposition of its subformulae by synchronous rules until you reveal a subformula
of the opposite polarity (whose decomposition can then be done by asynchronous rules again).

This was in the context of linear logic, whence polarities have come, but it is now un-
derstood in other polarised logics (classical or intuitionistic). This result can be expressed
as the completeness of a sequent calculus with a focus device, which syntactically highlights
a formula in the sequent and forces the next proof-search step to decompose it with a syn-
chronous rule, keeping the focus on its newly revealed subformulae. In terms of proof-search,
focussing considerably reduces the search space, otherwise heavily redundant when Gentzen-
style inference rules are used.

Focussed proofs are proofs that implement such a chaining of synchronous decomposi-
tions. The main idea is that focussed proofs are those whose proof-terms systematically
use term values and continuation values, in other words, the normal forms for ζ-rules. Of
course, such normal forms may feature cuts (ζ-rules introduce cuts), but one should notice
the following properties:

Remark 38
Just like −→ζN and −→ζV (from Definition 21), the relation −→ζF is terminating. ※

Definition 41 (LKF)
Let LKF be the fragment of System L consisting of −→ζF -normal forms. ※

Remark 39 Just like LKN and LKV are stable under −→CBN and −→CBV , the fragment
LKF is stable under −→F . ※
Remark 40 These normal form fragments relate to calculi of the literature:
1. LKN is exactly the calculus called LKT [DJS95, DJS97];
2. LKV is exactly the calculus called LKQ [DJS95, DJS97];
3. LKF relates to Liang and Miller’s LKF [LM09], and this will be the object of Section 3.2.

※
2Positive formula on the right-hand side of a sequent, or a negative formula on its left-hand side

62 Chapter 3. Polarisation and focussing

We therefore have 3 versions of the focussing result in classical logic, an unfocussed proof
c can be turned into a focussed proof c′ (in the sense of LKN, LKV, or LKF) by normalising
it with respectively −→ζN , −→ζV , or −→ζF , and normalising it by respectively −→CBN ,
−→CBV , or −→F to eliminate cuts and finally obtain a cut-free focussed proof.

3.1.4 Weak η-conversion

Now, the notion of η-conversion that we used as an introduction to polarities in Section 3.1.2,
is a strong notion of η-conversion:

Inspired by the way we can reduce an axiom on a non-atomic formula into a proof using
axioms on smaller formulae, we considered the η-expansion of variables x and α:

x −→ λy.µα.〈x | y ::α〉
x −→ (µα.〈x | inj1(α)〉, µγ.〈x | inj2(γ)〉)
α −→ (µx.〈inj1(x) | α〉, µz.〈inj2(z) | α〉)

which we sought to generalise to
t −→ λy.µα.〈t | y ::α〉
t −→ (µα.〈t | inj1(α)〉, µγ.〈t | inj2(γ)〉)
e −→ (µx.〈inj1(x) | e〉, µz.〈inj2(z) | e〉)

for any term t and any continuation e.

This led to a polarity-based reduction relation that contrasts with the CBN and CBV
reduction relations from Chapter 1. But that does not mean that CBN and CBV are incom-
patible with the concept of η-conversion: they just require weaker notions of η-conversion
than that discussed above.

The notion of η-conversion that is suitable for CBN are
t −→ λy.µα.〈t | y ::α〉
t −→ (µα.〈t | inj1(α)〉, µγ.〈t | inj2(γ)〉)
E −→ (µx.〈inj1(x) | E〉, µz.〈inj2(z) | E〉)

where α has not been substituted by any continuation e but only by a continuation value E.

The notion of η-conversion that is suitable for CBV are
V −→ λy.µα.〈V | y ::α〉
V −→ (µα.〈V | inj1(α)〉, µγ.〈V | inj2(γ)〉)
e −→ (µx.〈inj1(x) | e〉, µz.〈inj2(z) | e〉)

where x has not been substituted by any term t but only by a term value V .

Including these notions of CBN-η-conversion and CBV-η-conversion in the CBN and CBV
notions of reduction, is actually necessary if these are to capture the semantics of classical
proofs in control and co-control categories, respectively: just like in Theorem 4 we needed
η-conversion to make the simply-typed λ-calculus sound and complete with respect to the
semantics given by CCC, here we would need the above notions of CBN-η-conversion and CBV-
η-conversion in order to turn the implications of Theorem 22 (soundness) into equivalences
(soundness and completeness). This is actually what Selinger proved [Sel01] in the context of
the λµ-calculus.

3.1. Recovering confluence by polarisation 63

3.1.5 Related works

The role of polarities and focussing in classical proof theory has been investigated by a sub-
stantial literature, inspired by Girard’s linear logic [Gir87]. Following this work and Andreoli’s
on focussing [AP89, And92], Girard developed in [Gir91] a sequent calculus LC for classical
logic with more structure than Gentzen’s LK [Gen35], based on an assignment of polarities to
classical formulae. Danos, Joinet and Schellinx [DJS95, DJS97] studied semantically mean-
ingful ways to make cut-elimination confluent in the classical sequent calculus, introducing
• the calculi LKT and LKQ mentioned above
• a version of the sequent calculus called LKtq where a colour t or q on each formula indicates

whether a cut on that formula should be pushed to the right or to the left,
• more restricted versions thereof,
all inspired by the various translations of classical logic into linear and intuitionistic logics.
Out of that field, which includes the duality betweenn CBN and CBV,3 polarised classical
logic emerged, developed as such by Laurent et al. [Lau02, LQdF05]. It develops and enriches
Girard’s work on LC, in particular by explaining the proof theory of classical formulae as
given by LC as a combination of
• an encoding from classical formulae to polarised classical formulae
• a proof theory for polarised classical logic.

Closer to Andreoli’s original line of research, which was motivated by logic programming,
Liang and Miller then formalised LKF as a more strongly focussed calculus than that called
LKF above; we will study it in the next section.

A useful introduction to that literature can be found in Chapter 2 of Farooque’s the-
sis [Far13].

More recently, Munch-Maccagnoni approached the concept of focussing via orthogonality
models [MM09]. He built for the polarised version of System L the same kind of orthogonality
model as the one we presented in Section 2.2.1 for the LKN-case, with an interpretation JAK+

of a formula A built as the orthogonal or bi-orthogonal of a more basic set of (counter-)proof-
terms. He essentially shows that the interpretation JAK+ of a formula is generated from its
values, in the sense that JAK+ = (JAK+ ∩ V)⊥⊥ where V denotes the set of term values (and
symmetrically JAK− = (JAK− ∩ E)⊥⊥ where E denotes the set of continuation values).

This sheds an interesting light on our definition of
[A→B]−σ := JAK+

σ ::JBK−σ
in our orthogonality models of LKN (Definitions 31 and 36): While in LKN the above construct
only considers those inhabitants of JBK−σ that are continuation values anyway, there is in the
general case of System L a question of whether we want continuations of the form t ::µx.c,4
which are not focussed (in the sense of LKN or LKF), in the interpretation [A→B]−σ . The result
that JA→BK− = (JA→BK− ∩E)⊥⊥ means that an “unfocussed” counter-proof such as t ::µx.c
would be accepted after the bi-orthogonal completion (i.e. in JA→BK−σ = ([A→B]−σ)⊥⊥).

So far we have taken advantage of focussing, i.e. the chaining of synchronous rules, to
identify complete fragments LKN, LKV, and LKF of classical sequent calculus proofs.

3As revealed by Curien and Herbelin’s System L [CH00] and Selinger’s control categories [Sel01].
4(with t ∈ JAK+

σ and µx.c ∈ JBK−σ)

64 Chapter 3. Polarisation and focussing

Although we have discussed invertibility of asynchronous rules, in order to introduce the
notion of polarity, we have not forced our proofs to apply asynchronous rules eagerly, before
applying other rules (in LKF, µα−.c is still an accepted proof of a negative formula such as
A→B).

This is the main difference with the focussed proof systems in the style of e.g. Liang and
Miller [LM09], where e.g. all proofs of A→B finish with the right-introduction of→. In terms
of proof-terms, it means that all proof-terms are in η-long normal forms (we can transform
every proof-term into a proof-term in that form by a series of η-expansions, but it is always
tricky to control the termination of η-expansion without having the types explicitly in the
terms).

Coming back to the purely logical level, focussed proofs in the tradition of Miller et al. can
be described in terms of “big-step focussing”: going up a branch of the proof is an alternation
of sychronous and asynchronous phases, which we may consider to be atomic. The next section
shows a computational interpretation of that strongly focussed formalism.

3.2 Computational interpretation of a focussed calculus

The starting point of this section is Liang and Miller’s LKF [LM09], a variant of the system
LKF described in the previous section that forces the asynchronous decomposition of formulae.
It is described in purely logical terms and we will see how, by formalising the concept of big-
step focussing, a Curry-Howard interpretation can be given to LKF, following Zeilberger’s
work [Zei08a, Zei08b].

We start with the formulae of polarised classical logic.

Definition 42 (Polarised formulae)
The syntax of formulae is given by the following grammar

Positive formulae P ::= a A1∧+A2 A1∨+A2
Negative formulae N ::= a⊥ A1∧−A2 A1∨−A2
Formulae A ::= P N

where a ranges over a fixed set of elements called positive atoms, and a⊥ ranges over a
bijective copy of that set (a 7→ a⊥ is the bijection), whose elements are called negative
atoms.
We extend the bijection between positive and negative atoms into an involutive bijection,
called negation, between positive and negative formulae:

(a)⊥ := a⊥ (a⊥)⊥ := a

(A1∧+A2)⊥ := A⊥1 ∨−A⊥2 (A1∧−A2)⊥ := A⊥1 ∨+A⊥2
(A1∨+A2)⊥ := A⊥1 ∧−A⊥2 (A1∨−A2)⊥ := A⊥1 ∧+A⊥2

※

Following the suggestion made in the previous section, we fold LKF into a 1-sided sequent
calculus (hence our interest for the involutive negation), as it is traditional in the field arising
from linear logic [Gir87].

Example 8 For instance, Peirce’s, law, which in the previous chapters and sections we
wrote as ((a→b)→a)→a, is now ((a⊥∨−b)∧+a⊥)∨−a. ※

3.2. Computational interpretation of a focussed calculus 65

Definition 43 (Liang-Miller’s LKF)
The rules of LKF are given in Fig. 13 for two kinds of sequents:
` Θ ⇓ A focussed sequent
` Θ ⇑ Γ unfocussed sequent

where A is an arbitrary formula, Θ is a multiset of either negative atoms or positive formulae
and Γ is a multiset of arbitrary formulae.
Derivability in LKF of the sequents ` Θ ⇓ A and ` Θ ⇑ Γ is respectively denoted `LKF Θ ⇓
A and `LKF Θ ⇑ Γ. ※

Synchronous phase
` Θ ⇓ A1 ` Θ ⇓ A2

` Θ ⇓ A1∧+A2

` Θ ⇓ Ai
` Θ ⇓ A1∨+A2

End of synchronous phase
` Θ ⇑ N
` Θ ⇓ N

a⊥ ∈ Θ
` Θ ⇓ a

Asynchronous phase
` Θ ⇑ A1,Γ ` Θ ⇑ A2,Γ

` Θ ⇑ A1∧−A2,Γ
` Θ ⇑ A1, A2,Γ
` Θ ⇑ A1∨−A2,Γ

End of asynchronous phase
` Θ, P ⇑ Γ
` Θ ⇑ P,Γ

` Θ, p⊥ ⇑ Γ
` Θ ⇑ p⊥,Γ

` Θ, P ⇓ P
` Θ, P ⇑

Figure 13: LKF

Liang and Miller showed in [LM09] that
• various cut-rules are admissible;
• the polarities of atoms and connectives do not change the provability of an unfocussed

sequent, but they change the shape of its proofs;
• with the admissibility of cut-rules, the system is complete for classical logic, no matter

which polarities are placed on connectives and literals.
To prove cut-admissibility, they do not explicitly formalise a cut-elimination procedure,

but it could probably be inferred from the proof.
Note that soundness of the system with respect to classical logic is trivially checked, rule

by rule, forgetting about polarities and the structure of sequents.
Polarities in classical logic raise interesting questions: A∧+B and A∧−B are equiprovable,

and so are A∨+B and A∨−B. But, while the difference between the (direct) proofs of A∨+B
and (direct) proofs of A∨−B is clear,5 one may wonder what the real difference is between
(direct) proofs of A∧+B and (direct) proofs of A∧−B, given that the two rules look very
much alike.

The difference lies not in their structure, but in the way they will behave in cut-elimination:
• from a proof of A∧−B (facing a proof of A⊥∨+B⊥), only one sub-proof is used while the

other is thrown away,
• from a proof of A∧+B (facing a proof of A⊥∨−B⊥), both sub-proofs are used.

5Direct proofs of A∨+B choose one side and throw away the other, while direct proofs of A∨−B keep the
two sides.

66 Chapter 3. Polarisation and focussing

Metaphorically, proving either conjunction is like picking 1 boy name and 1 girl name, when
your couple is pregnant: proving a negative conjunction is picking the two names when you
are expecting one baby (not knowing whether it is a boy or a girl), while proving the positive
conjunction is picking the two names when expecting twins (a boy and a girl). On the paper,
you have the same job to do, but you will probably approach the problem very differently.

3.2.1 Informal relation to System L

It may not be obvious, but system LKF roughly expresses, without proof-terms, some deriva-
tions of System L in a 1-sided format.6

Indeed, think of
• a focussed sequent ` Θ ⇓ A as a typing judgement for a term value V : ` V :A ; Θ.
• an unfocussed sequent ` Θ ⇑ Γ as a typing judgement for a command c: c : (` ; Θ,Γ).
with Γ being the part of the typing context for negative continuation variables α− with non-
atomic types (which can be asynchronously decomposed), and Θ the rest of it (typing negative
continuation variables α− with atomic types, and typing positive continuation variables α+).

To derive a focussed sequent ` Θ ⇓ A:
• the two rules of the group ‘Synchronous phase’ correspond to the typing rules for V ::V ′

and for inji(V ′);
• the first rule of the group ‘End of synchronous phase’ does not correspond to a rule of

System L but simply the realisation that the value V is a negative term t−;
• the second rule of that group is when V is a variable.
To derive an unfocussed sequent ` Θ ⇑ Γ:
• the two rules of the group ‘Asynchronous phase’ correspond to the typing of (t1, t2) and
λα.t;

• the first two rules of the group ‘End of asynchronous phase’ are not reflected in System L
(they just move formulae that cannot be asynchronously decomposed from Γ to Θ)

• the third rule of that phase corresponds to the typing of
〈
V | α+〉.

Roughly speaking, we should think of LKF as typing those proof-terms of (a 1-sided
version of) System L that are η-long −→F -normal forms. These are described by the following
grammar:

V, V ′ ::= α+ V ::V ′ inji(V) t− µα−.c
t−, . . . ::= (t1, t2) λα.t
t, . . . ::= µα+.c t− µα−.c
c, . . . ::=

〈
V | α+〉 〈t− | α−〉

where the type of every µα−.c is atomic.
It is only “roughly speaking”, because in Liang-Miller’s LKF:

1. when a formula is asynchronously decomposed, no copy of the formula is kept in the
sequent (which means in the above grammar that in every command 〈t− | α−〉 we impose
α− 6∈ FV(t−)),

6A 1-sided version of System L would merge terms and continuations into terms, so that V ::V ′ is a term
value, and merge term variables and continuation variables into continuation variables.

3.2. Computational interpretation of a focussed calculus 67

2. when the focus is placed on a formula, all the formulae that could be asynchronously
decomposed have already been asynchronously decomposed (which means in the above
grammar that in every command

〈
V | α+〉, V has no free variable of the form α+).

3. finally, the order in which formulae are decomposed in the asynchronous phase, is less
deterministic than that imposed by the above grammar.
This is because, in Liang and Miller’s view of focussing, and more generally in the tradition

of linear logic, “what happens in the asynchronous phase stays in the asynchronous phase”,
in the sense that the details of the asynchronous phase (e.g. the order in which formulae are
decomposed) are meaningless and should not impact the semantics of the proof.

This is difficult to reflect at the level of System L’s proof-terms.
Therefore, we will now develop a Curry-Howard interpretation for that particular view

of focussing, along the lines of Zeilberger’s work [Zei08a, Zei08b, Zei10]: in order to forget
about the inner details of the asynchronous phase, we formalise the idea of compacting each
phase (asynchronous and even synchronous) into one atomic inference. This is called big-step
focussing.

3.2.2 Identifying phases as atomic steps

We start by showing an example of how positive connectives are decomposed.
Example 9 Trying to prove ` Θ ⇓ N1∧+(a∨+N2) we can build:
either

End of synch phase
` Θ ⇑ N1

` Θ ⇓ N1

End of synch phase
a⊥ ∈ Θ
` Θ ⇓ a

` Θ ⇓ a∨+N2

` Θ ⇓ N1∧+(a∨+N2)
or

End of synch phase
` Θ ⇑ N1

` Θ ⇓ N1

End of synch phase
` Θ ⇑ N2

` Θ ⇓ N2

` Θ ⇓ a∨+N2

` Θ ⇓ N1∧+(a∨+N2)
The whole synchronous phase can be expressed in just one step:

` Θ ⇑ N1 a⊥ ∈ Θ
` Θ ⇓ N1∧+(a∨+N2)

or
` Θ ⇑ N1 ` Θ ⇑ N2

` Θ ⇓ N1∧+(a∨+N2)

In other words:
∀N ∈ Γ, ` Θ ⇑ N ∀a ∈ Γ, a⊥ ∈ Θ

` Θ ⇓ N1∧+(a∨+N2)
with Γ = N1, a or Γ = N1, N2

In either case, we say that Γ “is a positive decomposition of” N1∧+(a∨+N2), which we
denote: N1, a
+ N1∧+(a∨+N2) and N1, N2
+ N1∧+(a∨+N2). ※

68 Chapter 3. Polarisation and focussing

Now we generalise this example into a formal definition:

Definition 44 (Decomposition of positive connectives)
The positive decomposition relation is the binary relation, defined by the rules of Fig. 14,
where Γ,Γ1,Γ2 are sets of positive atoms or negative formulae.
The one-step synchronous phase is the rule:

Γ
+ A ∀N ∈ Γ, ` Θ ⇑ N ∀a ∈ Γ, a⊥ ∈ Θ
synch

` Θ ⇓ A
※

N
+ N a
+ a

Γ1
+ A1 Γ2
+ A2

Γ1,Γ2
+ A1∧+A2

Γ
+ Ai

Γ
+ A1∨+A2

Figure 14: Positive decomposition relation

Notice the syntax we use for the synch rule: the symbols ∀ and ∈ are meta-level symbols:
the number of premisses is the cardinal of Γ (plus one if you count Γ
+ A).

We now show an example of how negative connectives are decomposed.

Example 10

End of asynch phase
` Θ, P1, a

⊥ ⇑

End of asynch phase
` Θ, P1, P2 ⇑

` Θ ⇑ P1, P2

` Θ ⇑ P1, a
⊥

` Θ ⇑ P1, (a⊥∧−P2)
` Θ ⇑ P1∨−(a⊥∧−P2)

The whole asynchronous phase can be expressed in just one step:
` Θ, P1, a

⊥ ⇑ ` Θ, P1, P2 ⇑
asynch

` Θ ⇑ P1∨−(a⊥∧−P2)
In other words

∀∆, ` Θ,∆ ⇑
` Θ ⇑ P1∨−(a⊥∧−P2)

where ∆ ranges over { {P1, a
⊥} , {P1, P2} }

In either case, we say that ∆ “is a negative decomposition of” P1∨−(a⊥∧−P2), which we
denote P1, a

⊥
− P1∨−(a⊥∧−P2) and P1, P2
− P1∨−(a⊥∧−P2). ※

Now we generalise this example into a formal definition:

Definition 45 (Decomposition of negative connectives)
The negative decomposition relation is the binary relation, defined by the rules of Fig. 15,
where where ∆,∆1,∆2 are sets of negative atoms or positive formulae.

3.2. Computational interpretation of a focussed calculus 69

The one-step asynchronous phase is the rule:
∀∆, (∆
− A)⇒ (` Θ,∆ ⇑)

` Θ ⇑ A
※

P
− P a⊥
− a⊥

∆
− Ai

∆
− A1∧−A2

∆1
− A1 ∆2
− A2

∆1,∆2
− A1∨−A2

Figure 15: Negative decomposition relation

Again, notice that the syntax we use for the asynch rule uses the meta-level symbols ∀
and ⇒: the number of premisses is the number of ∆ satisfying ∆
− A for the given A.

We now put everything together in the style of Zeilberger [Zei08a, Zei08b, Zei10].

Definition 46 (Big-step LKF, v1)
The big-step LKF system is given in Fig. 16, where Θ,∆ are sets of negative atoms or positive
formulae and Γ is a set of positive atoms or negative formulae. ※

Γ
+ A ∀N ∈ Γ, ` Θ ⇑ N ∀a ∈ Γ, a⊥ ∈ Θ
synch

` Θ ⇓ A

` Θ, P ⇓ P
focus

` Θ, P ⇑
∀∆, (∆
− A)⇒ (` Θ,∆ ⇑)

asynch
` Θ ⇑ A

Figure 16: Big-step LKF, v1

Remark 41
Sequents of the form ` Θ ⇓ N and sequents of the form ` Θ ⇑ P are never present in
the premisses of the rules. Such sequents can only appear as the very conclusion of a whole
proof-tree.
Hence, we can equivalently present the big-step LKF system as the system of Fig. 17, and
declare ` Θ ⇑ P as syntactic sugar for ` Θ, P ⇑, and ` Θ ⇓ N as syntactic sugar for
` Θ ⇑ N . ※

Γ
+ P ∀N ∈ Γ, ` Θ ⇑ N ∀a ∈ Γ, a⊥ ∈ Θ
` Θ ⇓ P

` Θ, P ⇓ P
` Θ, P ⇑

∀∆, (∆
− N)⇒ (` Θ,∆ ⇑)
` Θ ⇑ N

Figure 17: Big-step LKF, v2

Now we should notice a complete symmetry, and therefore some redundancy, in the two
decomposition relations that we have defined:

70 Chapter 3. Polarisation and focussing

Remark 42 Γ
+ P if and only if Γ⊥
− P⊥. ※

Hence, we can define in Fig. 18 a simplified version of big-step LKF, where this redundancy
is eliminated.

Γ
 P ∀N ∈ Γ, ` Θ ⇑ N ∀a ∈ Γ, a⊥ ∈ Θ
` Θ ⇓ P

` Θ, P ⇓ P
` Θ, P ⇑

∀Γ, (Γ
 N⊥)⇒ (` Θ,Γ⊥ ⇑)
` Θ ⇑ N

where Γ
 P is Γ
+ P .

Figure 18: Big-step LKF, v3

Now notice that the rules for negative connectives are never used in the system! Due to the
duality in the syntax, given by the involutive negation, we should be able to remove negative
connectives altogether. We just need to introduce a marker in the syntax of a formula, to
denote every change of polarity.

Let us write ¬ for this marker.

Definition 47 (Syntax with positive connectives only)
Formulae are now defined by the following syntax:

P ::= a A1∧+A2 A1∨+A2
A ::= P ¬P

with the following involutive negation:
P⊥ := ¬P
(¬P)⊥ := P

※

Remark 43 The previous grammar can be encoded into that one:
a := a

A∧+B := A∧+B

A∨+B := A∨+B

N := ¬(N⊥)

※

In Fig. 19 we reformulate big-step LKF with this syntax for formulae.

Γ
 P ∀¬P ′ ∈ Γ, ` Θ ⇑ ¬P ′ ∀a ∈ Γ,¬a ∈ Θ
` Θ ⇓ P

` Θ, P ⇓ P
` Θ, P ⇑

∀Γ, (Γ
 P)⇒ (` Θ,Γ⊥ ⇑)
` Θ ⇑ ¬P

where Γ
 P is Γ
+ P .

Figure 19: Big-step LKF, v4

Finally, we notice that it is more natural to write Γ on the left-hand side of a sequent:

3.2. Computational interpretation of a focussed calculus 71

Definition 48 (Big-step LKF, v5)
The big-step LKF system v5 is given in Fig. 20, where Γ is a set of atoms a or formulae of
the form ¬P and Θ is a set of negated atoms ¬a or formulae of the form P . ※

Γ
 P ∀¬P ′ ∈ Γ, Γ0 ` ⇑ ¬P ′ ∀a ∈ Γ, a ∈ Γ0

Γ0 ` ⇓ P

Γ0,¬P ` ⇓ P

Γ0,¬P ` ⇑
∀Γ, (Γ
 P)⇒ (Γ0,Γ ` ⇑)

Γ0 ` ⇑ ¬P
where Γ
 P is Γ
+ P .

Figure 20: Big-step LKF, v5

The lesson to be remembered from this formulation of big-step LKF, is that (the big-
step version of) asynchronous rules happens to coincide with a rule inferred from (the big-
step version of) synchronous rules. This will make cut-elimination work, and it formalises
(at least in classical logic) the concept known in philosophical logic as harmony [Ten78,
Rea00, Rea10] (expressed originally between the introduction rules and elimination rules of
Natural Deduction, or between left-introduction rules and right-introduction rules of Sequent
Calculus).

Now we can consider that both synchronous and asynchronous rules are defined primi-
tively, and notice the somewhat “miraculous” coincidence, or we can adopt the view that only
synchronous rules are defined primitively; asynchronous phases then work by duality from the
way synchronous phases work.

In other words,
• positive connectives are “defined” by their introduction rules;
• negative connectives are “defined” by duality, from the introduction rules of their positive

duals.
We may not even need to bother representing their rules.

In this view, and via the Curry-Howard correspondence, we should define how to inhabit
a type A→B with (proof-)terms, from the way we inhabit A with terms and B with continu-
ations (with → being a negative connective). Writing λx.M with a variable x :A and a body
M :B, would then only be a mere representation for (or a mere even implementation of) an
inhabitant of A→B that pre-exists the syntactical notation.

This is of course expressed semantically in orthogonality models (say in Definitions 28, 31
and 36) by the fact that we first define an interpretation for positive formulae (mentioning the
syntax of their basic inhabitants, such as the construct t ::e), and in a second step we define
the interpretation of negative formulae simply as the orthogonal of the interpretation of their
dual formula. The defininition for negative formulae does not even mention the syntax of
their inhabitants (such as λx.M), but if we have a syntax for them, they “happen to live”
(somewhat miraculously) in the interpretation.

We now formalise a way to express this syntactically, as a proof-term calculus for big-step
LKF.

72 Chapter 3. Polarisation and focussing

3.2.3 Functional interpretation as pattern-matching

Earlier we wrote that “the proofs of negatives must interact well with the proofs of the positive
dual”. The intuition we formalise is that
• the proofs of a positive connective (i.e. of some Γ0 ` ⇓ P) are some data that can be

pattern-matched;
• the proofs of a negative connective (i.e. of some Γ0 ` ⇑ ¬P) are functions that consume

data by pattern-matching.
The fact that the proofs of a negative are determined by duality from the proofs of the

positive dual, is reflected by the fact that the shape of a pattern-matching function is indeed
completely determined by the data-type of its argument.

So the Curry-Howard interpretation of big-step LKF is an abstract system of pattern-
matching.

The “proof-terms” for the decomposition of (positive) connectives are patterns. For in-
stance for the connectives ∧+,∨+:

Definition 49 (Patterns for ∧+,∨+) Patterns are defined by the following syntax:
p ::= x+ x− (p1, p2) inji(p)

Their typing rules are presented in Fig. 21. ※

x− :¬P
 x− :¬P x+ :a
 x+ :a

Γ1
 p1 :A1 Γ2
 p2 :A2

Γ1,Γ2
 (p1, p2) :A1∧+A2

Γ
 p :Ai
Γ
 inji(p) :A1∨+A2

Figure 21: Decomposition with patterns

We now give the proof-terms for big-step LKF:

Definition 50 (Pattern-matching calculus)
Let Pat be a set of elements called patterns, and denoted p, p′, . . .
The syntax of proof-terms is given by the following grammar:

Positive terms t+ ::= p.σ
Negative terms t− ::= f
Commands c ::=

〈
x− | t+

〉 〈
f | t+

〉
where
• σ is a substitution from negative variables such as x− to negative terms, and from positive

variables such as x+ to positive terms;
• f is a function from patterns to commands.
Let A and M be two sets of elements called atoms and molecules and denoted p and P ,
respectively.
Let typing contexts be functions mapping negative variables to molecules (written x− :¬P)
and positive variables to atoms (written x+ :a).
Let Γ
 p :P be a typing relation where p is a pattern, P is a molecule, and Γ is a typing
context.

3.2. Computational interpretation of a focussed calculus 73

The typing rules for proof-terms are presented in Fig. 22.
There is just one cut-elimination rule:

(pat-match) 〈f | p.σ〉 −→ (f(p))σ
where cσ denotes the application of substitution σ to the command c. ※

Γ
 p :P ∀(x− :¬P) ∈ Γ, Γ0 ` ⇑ σ(x−) :¬P ∀(x+ :a) ∈ Γ, (σ(x+) :a) ∈ Γ0

Γ0 ` ⇓ p.σ :P

∀Γ, (Γ
 p :P)⇒ f(p) : (Γ0,Γ ` ⇑)
Γ0 ` ⇑ f :¬P

Γ0, x
− :¬P ` ⇓ p.σ :P〈

x− | p.σ
〉
: (Γ0, x

− :¬P ` ⇑)

Γ0 ` ⇑ f :¬P Γ0 ` ⇓ t+ :P〈
f | t+

〉
: (Γ0 ` ⇑)

where Γ0, Γ, . . . are typing contexts.

Figure 22: Typing for the pattern-matching calculus

The one cut-elimination rule is the very standard mechanism of pattern-matching, with
the command

〈
f | t+

〉
representing what we could informally write as:

“match t+ with . . . 7→ . . .︸ ︷︷ ︸
f

”

Remark 44
1. Notice how negative terms are not really terms, but functions of the meta-level (or meta-

level functions that are reified in the term syntax); this is a higher-order definition, and
we do not give any concret syntax for such functions.
Strictly speaking, our definition depends on the notion of function space that we take
for the definition of negative terms (We could for instance restrict it to computable
functions, but so far we do not specify such things).
Also, with such a definition, it may not be clear exactly what the contextual closure of
the rule (pat-match) is. By −→(pat−match) we therefore denote the reduction relation
where (pat-match) is applied at the top-level of a given command (no contextual closure).

2. Also notice how we emphasised that the definition of the proof-term calculus is indepen-
dent from the syntax of patterns and the typing system for them.
Definition 49 and Fig. 21 give one example (where atoms are positive atomic formulae
and molecules are positive formulae).
But the construction of the Curry-Howard interpretation for big-step focussing is mod-
ular in those notions.
This is a gain of genericity / abstraction that we will further develop in the next Chapters.

※

Theorem 45 (Subject Reduction)
If c : (Γ ` ⇑) and c −→(pat−match) c′ then c′ : (Γ ` ⇑). ※

74 Chapter 3. Polarisation and focussing

Reviewing the various properties that are desirable for an instance of the Curry-Howard
correspondence, we find that Progress (in this case, cut-elimination), depends on how we may
reduce functions (so far, −→(pat−match) only applies at the root); Confluence does not make
sense here because, until we define how to reduce functions, there is at most one redex to
reduce; and for Normalisation, we need to explore models (e.g. orthogonality models) of such
a calculus.

Conclusion

The study of orthogonality models for the pattern-matching calculus should be particularly
interesting:

In [MM09], Munch-Maccagnoni already explored the construction of orthogonality models
for polarised System L with an emphasis on focussing properties. Big-step LKF and its
underlying pattern-matching calculus seems to be an even more appropriate framework to
look at the connection between focussing and orthogonality models, since this framework
reflects at the syntactical level what orthogonality models describe at the semantical level,
namely the fact that we first declare what the “inhabitants of positive formulae” are, and
then we define the “inhabitants of negative formulae” by duality as those inhabitants that
“interact well with” the inhabitants of the dual (positive) formula. In case of an orthogonality
model, to “interact well with” means to “be orthogonal to”; in the case of pattern-matching,
it means to “be able to consume”. To be more precise:
• Inhabitants of positive types have structure: in an orthogonality model we need an al-

gebraic structure to interpret positive constructs such as _::_ or inj_(_); in big-step
LKF, these inhabitants come as the combination of a pattern (e.g. _::_ or inj_(_)) and
a substitution that fills its holes.

• Inhabitants of negative formulae may lack any structure, but they come with a behaviour :
in an orthogonality model, they can range over any abstract set for which the orthogonality
relation with positive inhabitants is defined; in big-step LKF, they range over any abstract
set of functions (we do not specify which) that can consume patterns.
So, in order to formalise the connections that are informally described above, the second

part of this dissertation explores orthogonality models for big-step focussing systems. We
shall strip anything that is not essential off the constructions we make, systematically seeking
the greatest generality, and aiming at the cores of orthogonality models and focussing systems.
Doing so reveals the essential difference between realisability and typing:
• in realisability, checking whether a given negative inhabitant “interacts well with” an

arbitrary inhabitant of a positive formula, requires the computation of an interaction that
explores the positive inhabitant’s structure to an arbitrary depth (as nothing restricts
the criterion given by orthogonality);

• in typing, checking whether a given negative inhabitant “interacts well with” an arbi-
trary inhabitant of a positive formula, only requires the computation of an interaction
that explores the positive inhabitant’s structure to a bounded depth (as the negative
inhabitant is a function that performs a case analysis on the positive inhabitant’s top-level
pattern and the interaction has to uniformly treat the rest of the inhabitant’s structure).

In case each positive formula comes with a finite number of patterns for it, the above distinc-
tion is what makes typing decidable and realisability undecidable (in general).

Bibliography

[ADH+12] Z. M. Ariola, P. Downen, H. Herbelin, K. Nakata, and A. Saurin. Classical call-by-
need sequent calculi: The unity of semantic artifacts. In T. Schrijvers and P. Thie-
mann, editors, Proc. of the 11th Int. Symp. Functional and Logic Programming
(FLOPS’12), volume 7294 of LNCS, pages 32–46. Springer-Verlag, 2012. 39

[AF97] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Funct. Pro-
gramming, 7(3):265–301, 1997 39

[AH03] Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In
J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proc.
of the 30th Intern. Col. on Automata, Languages and Programming (ICALP),
volume 2719 of LNCS, pages 871–885. Springer-Verlag, 2003. 12, 17

[AH08] Z. M. Ariola and H. Herbelin. Control reduction theories: the benefit of structural
substitution. J. Funct. Programming, 18(3):373–419, 2008. 17

[AHS09] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation of delim-
ited continuations. Higher-Order and Symbolic Computation, 22(3):233–273, 2009.
online from 2007. 39

[AHS11] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and duality. In
C. L. Ong, editor, Proc. of the 10th Int. Conf. on Typed Lambda Calculus and
Applications (TLCA’11), volume 6690 of LNCS, pages 27–44. Springer-Verlag,
2011. 39

[And92] J. M. Andreoli. Logic programming with focusing proofs in linear logic. J. Logic
Comput., 2(3):297–347, 1992. 61, 63

[AP89] J.-M. Andreoli and R. Pareschi. Logic programming with sequent systems, a
linear logic approach. In P. Schroeder-Heister, editor, Proc. of the Int. Work.
on Extensions of Logic Programming, LNCS, pages 1–30. Springer-Verlag, 1989.

61, 63

[Bar84] H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Stud-
ies in Logic and the Foundation of Mathematics. Elsevier, 1984. Second edi-
tion. 6, 7, 10, 51, 57

[BB96] F. Barbanera and S. Berardi. A symmetric lambda-calculus for classical program
extraction. Inform. and Comput., 125(2):103–117, 1996. 19, 45

75

76 BIBLIOGRAPHY

[BL11] A. Bernadet and S. Lengrand. Filter models: non-idempotent intersection types,
orthogonality and polymorphism. In M. Bezem, editor, Proc. of the 20th Annual
Conf. of the European Association for Computer Science Logic (CSL’11), LIPIcs.
Schloss Dagstuhl LCI, 2011. 41, 42, 44, 45

[CF58] H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958.3, 4, 8

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. In Proc. of the 5th
ACM SIGPLAN Int. Conf. on Functional Programming (ICFP’00), pages 233–
243. ACM Press, 2000. 19, 34, 63

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.6

[CMM10] P.-L. Curien and G. Munch-Maccagnoni. The duality of computation under focus.
In C. S. Calude and V. Sassone, editors, Theoretical Computer Science, volume 323
of IFIP Advances in Information and Communication Technology, pages 165–181.
Springer-Verlag, 2010. 47, 61

[Cro04] T. Crolard. A formulae-as-types interpretation of subtractive logic. J. Logic
Comput., 14(4):529–570, 2004. 36, 39, 60

[CS09] J. R. B. Cockett and L. Santocanale. On the word problem for ΣΠ-categories, and
the properties of two-way communication. In E. Grädel and R. Kahle, editors,
Proc. of the 18th Annual Conf. of the European Association for Computer Science
Logic (CSL’09), volume 5771 of LNCS, pages 194–208. Springer-Verlag, 2009. 27

[DF89] O. Danvy and A. Filinski. A functional abstraction of typed contexts. Technical
Report 89/12, DIKU, University of Cophenhagen, 1989. 39

[DF90] O. Danvy and A. Filinski. Abstracting control. In Proc. of the 1990 ACM Conf.
on LISP and functional programming, pages 151–160. ACM Press, 1990. 39

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: sequent calculi for second
order logic based upon dual linear decompositions of classical implication. In J.-
Y. Girard, Y. Lafont, and L. Regnier, editors, Proc. of the Work. on Advances in
Linear Logic, volume 222 of London Math. Soc. Lecture Note Ser., pages 211–224.
Cambridge University Press, 1995. 34, 61, 63

[DJS97] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic.
J. of Symbolic Logic, 62(3):755–807, 1997. 34, 61, 63

[DK00] V. Danos and J.-L. Krivine. Disjunctive tautologies as synchronisation schemes.
In P. Clote and H. Schwichtenberg, editors, Proc. of the 9th Annual Conf. of
the European Association for Computer Science Logic (CSL’00), volume 1862 of
LNCS, pages 292–301. Springer-Verlag, 2000. 41, 43

[DP04] K. Došen and Z. Petrić. Proof-theoretical Coherence. King’s College Publications,
2004. 27

[Far13] M. Farooque. Automated reasoning techniques as proof-search in sequent calculus.
PhD thesis, Ecole Polytechnique, 2013. 63

BIBLIOGRAPHY 77

[Fel87] M. Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control
and State in Imperative Higher-Order Programming Languages. PhD thesis, De-
partment of Computer Science, Indiana University, Bloomington, Indiana, 1987.14

[Fil89] A. Filinski. Declarative continuations and categorical duality. Master’s thesis,
DIKU, Computer Science Department, University of Copenhagen, 1989. DIKU
Rapport 89/11. 19

[Fis72] M. J. Fischer. Lambda calculus schemata. In Proc. of the ACM Conf. on Proving
Assertions about Programs, pages 104–109. SIGPLAN Notices, Vol. 7, No 1 and
SIGACT News, No 14, 1972. 31, 34, 38

[FP06] C. Fürmann and D. Pym. Order-enriched categorical models of the classical se-
quent calculus. J. Pure Appl. Algebra, 204(1):21–78, 2006. 27

[FR94] A. Fleury and C. Retoré. The mix rule. Math. Structures in Comput. Sci.,
4(2):273–285, 1994. 25

[Fre79] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. Verlag von Louis Nebert, 1879 5

[Gen35] G. Gentzen. Investigations into logical deduction. In Gentzen collected works,
pages 68–131. Ed M. E. Szabo, North Holland, (1969), 1935. 6, 12, 19, 20, 24, 63

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. Thèse d’état, Université Paris 7,
1972. 41, 42, 45, 46

[Gir87] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101, 1987. 41, 58, 63, 64

[Gir91] J.-Y. Girard. A new constructive logic: Classical logic. Math. Structures in
Comput. Sci., 1(3):255–296, 1991. 63

[Gri90] T. G. Griffin. A formulae-as-type notion of control. In P. Hudak, editor, 17th
Annual ACM Symp. on Principles of Programming Languages (POPL’90), pages
47–58. ACM Press, 1990. 3, 14

[GTL89] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types, volume 7 of Cambridge
Tracts in Theoret. Comput. Sci. Cambridge University Press, 1989. 12

[Her05] H. Herbelin. C’est maintenant qu’on calcule: au coeur de la dualité. Thèse
d’habilitation à diriger des recherches, Université Paris 11, 2005. 19

[HG08] H. Herbelin and S. Ghilezan. An approach to call-by-name delimited continu-
ations. In G. C. Necula and P. Wadler, editors, Proc. of the 35th Annual ACM
Symp. on Principles of Programming Languages (POPL’08), pages 383–394. ACM
Press, 2008. 39

[Hil28] D. Hilbert. Die Grundlagen der Mathematik. Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, 6(1):65–85, 1928. 5

78 BIBLIOGRAPHY

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, pages 479–490. Academic Press, 1980. Reprint of a
manuscript written 1969. 3, 6, 8

[HS97] M. Hofmann and T. Streicher. Continuation models are universal for λµ-calculus.
In Proc. of the 12th Annual IEEE Symp. on Logic in Computer Science, pages
387–397. IEEE Computer Society Press, 1997. 31, 34, 38, 39

[HZ09] H. Herbelin and S. Zimmermann. An operational account of call-by-value minimal
and classical λ-calculus in “natural deduction” form. In P. Curien, editor, Proc.
of the 9th Int. Conf. on Typed Lambda Calculus and Applications (TLCA’09),
volume 5608 of LNCS, pages 142–156. Springer-Verlag, 2009. 39

[Joh36] I. Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus.
Compositio Math., 4:119–136, 1936. 5

[Kri71] J.-L. Krivine. Introduction to axiomatic set theory. Dordrecht, Reidel, 1971. 1

[Kri01] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Frænkel set theory.
Arch. Math. Log., 40(3):189–205, 2001. 41, 43

[Lam07] F. Lamarche. Exploring the Gap between Linear and Classical Logic. Theory and
Applications of Categories, 18(17):473–535, 2007 27

[Lau02] O. Laurent. Etude de la polarisation en logique. Thèse de doctorat, Université
Aix-Marseille II, 2002. 63

[Len03] S. Lengrand. Call-by-value, call-by-name, and strong normalization for the
classical sequent calculus. volume 86(4) of ENTCS. Elsevier, 2003. Revision
from the 3rd Int. Work. on Reduction Strategies in Rewriting and Programming
(WRS’03). 19, 24

[Len06] S. Lengrand. Normalisation & Equivalence in Proof Theory & Type Theory. PhD
thesis, Université Paris 7 & University of St Andrews, 2006. 1, 30

[LM08] S. Lengrand and A. Miquel. Classical Fω, orthogonality and symmetric candidates.
Ann. Pure Appl. Logic, 153:3–20, 2008. 41, 48, 50

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoret. Comput. Sci., 410(46):4747–4768, 2009. 59, 61, 64, 65

[LQdF05] O. Laurent, M. Quatrini, and L. T. de Falco. Polarized and focalized linear and
classical proofs. Ann. Pure Appl. Logic, 134(2-3):217–264, 2005. 63

[LS86] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cam-
bridge University Press, 1986. 12

[LS05] F. Lamarche and L. Straßburger. Constructing free boolean categories. In
P. Panangaden, editor, Proc. of the 20th Annual IEEE Symp. on Logic in Com-
puter Science, pages 209–218. IEEE Computer Society Press, 2005. 27

BIBLIOGRAPHY 79

[Miq09] A. Miquel. Relating classical realizability and negative translation for existential
witness extraction. In P. Curien, editor, Proc. of the 9th Int. Conf. on Typed
Lambda Calculus and Applications (TLCA’09), volume 5608 of LNCS, pages 188–
202. Springer-Verlag, 2009. 42, 50, 54

[Miq11] A. Miquel. Existential witness extraction in classical realizability and via a nega-
tive translation. Logic. Methods Comput. Science, 7(2), 2011. 42, 50, 54

[ML82] P. Martin-Löf. Constructive mathematics and computer programming. In Proc. of
the Sixth Int. Congress for Logic, Methodology, and Philosophy of Science, pages
153–175. North-Holland, 1982. 3

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Number 1 in Studies in Proof Theory,
Lecture Notes. Bibliopolis, 1984. 3

[MM09] G. Munch-Maccagnoni. Focalisation and classical realisability. In E. Grädel and
R. Kahle, editors, Proc. of the 18th Annual Conf. of the European Association
for Computer Science Logic (CSL’09), volume 5771 of LNCS, pages 409–423.
Springer-Verlag, 2009. 34, 35, 41, 44, 47, 61, 63, 74

[MM13] G. Munch-Maccagnoni. Syntax and Models of a Non-Associative Composition of
Programs and Proofs. PhD thesis, Université Paris Diderot – Paris 7, 2013.47, 61

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proc. of the 4th Annual
IEEE Symp. on Logic in Computer Science, pages 14–23. IEEE Computer Society
Press, 1989. 27, 30

[MV05] P.-A. Melliès and J. Vouillon. Recursive polymorphic types and parametricity in
an operational framework. In P. Panangaden, editor, Proc. of the 20th Annual
IEEE Symp. on Logic in Computer Science, pages 82–91. IEEE Computer Society
Press, 2005. 41

[Par92] M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural deduc-
tion. In A. Voronkov, editor, Proc. of the Int. Conf. on Logic Programming and
Automated Reasoning (LPAR’92), volume 624 of LNCS, pages 190–201. Springer-
Verlag, 1992. 15, 20

[Par97] M. Parigot. Proofs of strong normalisation for second order classical natural
deduction. J. of Symbolic Logic, 62(4):1461–1479, 1997. 41, 45, 46

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoret.
Comput. Sci., 1:125–159, 1975. 27, 28, 29

[Pol04] E. Polonovski. Strong normalization of λµµ̃-calculus with explicit substitutions.
In I. Walukiewicz, editor, Proc. of the 7th Int. Conf. on Foundations of Software
Science and Computation Structures (FOSSACS’04), volume 2987 of LNCS, pages
423–437. Springer-Verlag, 2004. 24

[Rea00] S. Read. Harmony and autonomy in classical logic. J. of Philosophical Logic,
29(2):123–154, 2000. 71

80 BIBLIOGRAPHY

[Rea10] S. Read. General-elimination harmony and the meaning of the logical constants.
J. of Philosophical Logic, 39(5):557–576, 2010. 71

[Rey72] J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proc. of the ACM annual Conf. , pages 717–740, 1972. 14, 29, 34, 41

[Roc05] J. Rocheteau. lambda-µ-calculus and duality: Call-by-name and call-by-value.
In J. Giesl, editor, Proc. of the 16th Int. Conf. on Rewriting Techniques and
Applications (RTA’05), volume 3467 of LNCS, pages 204–218. Springer-Verlag,
2005. 19

[Sau05] A. Saurin. Separation with streams in the lambdaµ-calculus. In P. Panangaden,
editor, Proc. of the 20th Annual IEEE Symp. on Logic in Computer Science, pages
356–365. IEEE Computer Society Press, 2005. 39

[Sau08] A. Saurin. On the relations between the syntactic theories of lambda-mu-calculi. In
Proc. of the 17th Annual Conf. of the European Association for Computer Science
Logic (CSL’08), volume 5213 of LNCS, pages 154–168. Springer-Verlag, 2008. 39

[Sau10a] A. Saurin. A hierarchy for delimited continuations in call-by-name. In C. L.
Ong, editor, Proc. of the 13th Int. Conf. on Foundations of Software Science and
Computation Structures (FOSSACS’10), volume 6014 of LNCS, pages 374–388.
Springer-Verlag, 2010. 39

[Sau10b] A. Saurin. Standardization and böhm trees for lambdaµ-calculus. In M. Blume,
N. Kobayashi, and G. Vidal, editors, Proc. of the 10th Int. Symp. Functional and
Logic Programming (FLOPS’10), volume 6009 of LNCS, pages 134–149. Springer-
Verlag, 2010. 39

[Sau10c] A. Saurin. Typing streams in the lambdaµ-calculus. ACM Trans. on Comput.
Logic, 11(4), 2010. 39

[Sau12] A. Saurin. Böhm theorem and böhm trees for the λµ-calculus. Theoret. Comput.
Sci., 435:106–138, 2012. 39

[Sel01] P. Selinger. Control categories and duality: on the categorical semantics of the
λµ-calculus. Math. Structures in Comput. Sci., 11(2):207–260, 2001.32, 39, 62, 63

[SR98] T. Streicher and B. Reus. Classical logic, continuation semantics and abstract
machines. J. Funct. Programming, 8(6):543–572, 1998 39

[Str11] L. Straßburger. Towards a Theory of Proofs of Classical Logic. Habilitation thesis,
Université Denis Diderot – Paris 7, 2011. 12, 27

[SU06] M. H. B. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Studies in Logic and the Foundations of Mathematics. Elsevier, 2006. 4

[SW00] C. Strachey and C. P. Wadsworth. Continuations: A mathematical semantics for
handling fulljumps. Higher-Order and Symbolic Computation, 13:135–152, 2000.

14

BIBLIOGRAPHY 81

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type I. J. of
Symbolic Logic, 32:198–212, 1967. 41

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In Logic Col-
loquium, volume 453 of LNM, pages 240–251. Springer-Verlag, 1975.41, 42, 45, 46

[Ten78] N. Tennant. Natural logic. Edinburgh University Press, 1978 71

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoret.
Comput. Sci. Cambridge University Press, 2003. 1

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 2000. 2, 20, 24, 25, 56

[Urb00] C. Urban. Classical Logic and Computation. PhD thesis, University of Cambridge,
2000. 19, 20

[Wad03] P. Wadler. Call-by-value is dual to call-by-name. In Proc. of the 8th ACM SIG-
PLAN Int. Conf. on Functional programming (ICFP’03), volume 38(9), pages
189–201. ACM Press, 2003. 19, 21, 34, 35, 37, 60

[Zei08a] N. Zeilberger. Focusing and higher-order abstract syntax. In G. C. Necula and
P. Wadler, editors, Proc. of the 35th Annual ACM Symp. on Principles of Pro-
gramming Languages (POPL’08), pages 359–369. ACM Press, 2008. 64, 67, 69

[Zei08b] N. Zeilberger. On the unity of duality. Ann. Pure Appl. Logic, 153(1-3):66–96,
2008. 64, 67, 69

[Zei10] N. Zeilberger. Polarity and the logic of delimited continuations. In J.-P. Jouan-
naud, editor, Proc. of the 25th Annual IEEE Symp. on Logic in Computer Science,
pages 219–227. IEEE Computer Society Press, 2010. 67, 69

List of Figures

1 Simply-typed λ-calculus . 7
2 Natural Deduction for minimal logic - NJ⇒ 7
3 Semantics of the simply-typed λ-calculus in a CCC 9
4 (I, K, S)-combinators as λ-terms . 10
5 The proof system corresponding to the simply-typed λµ-calculus 16
6 Typing system for L . 21
7 A proof of LEM . 22
8 CBN and CBV reduction in System L (first attempt) 34
9 CBN and CBV reduction in System L . 35

10 System F . 42
11 Semantics of expressions and formulae . 52

12 Rewrite system for polarised System L . 60
13 LKF . 65
14 Positive decomposition relation . 68
15 Negative decomposition relation . 69
16 Big-step LKF, v1 . 69
17 Big-step LKF, v2 . 69
18 Big-step LKF, v3 . 70
19 Big-step LKF, v4 . 70
20 Big-step LKF, v5 . 71
21 Decomposition with patterns . 72
22 Typing for the pattern-matching calculus . 73

83

Appendix A

Basic definitions for categories

Definition 51 (Category) A category is the combination of
• a class of elements called objects, denoted A, B,. . .
• for every pair of objects A and B, a class hom(A,B) of elements called morphisms from
A to B; the expression f : A −→ B denotes that f is a morphism from A to B;

• for every object A, a morphism IdA called identity;
• for every objectsA, B, C, a binary operation called composition mapping every f : A −→ B

and g : B −→ C to a morphism f · g : A −→ C

such that the following properties holds
• composition is associative ((f · g) · h = f · (g · h))
• identities are units for composition (IdA · f = f · IdA = f).
Given a category, we often use diagrams to represent a collection of objects -represented as
vertices- and morphisms -represented as labelled arrows between vertices. Using morphism
composition, each path between any two given vertices unambiguously represents a mor-
phism. A diagram commutes when for each pair of vertices A and B, all paths from A to B
represent equal morphisms.
Two objects A and B are isomorphic when there are two morphisms f : A −→ B and
g : B −→ A such that f · g = IdA and g · f = IdB. ※

Standard examples of categories are: the categories of sets and functions (objects are sets
and morphisms from A to B are functions from A to B), the category of sets and relations
(objects are sets and morphisms from A to B are relations from A to B), etc. Groups form
a particular kind of categories (where there is only one object, and elements of the group are
the morphisms from that object to itself). Partially ordered sets form another particular kind
of categories (where there is at most one morphism between any two objects), etc.

85

86 Appendix A. Basic definitions for categories

Definition 52 (Cartesian Closed Category)
A Cartesian Closed Category (CCC), is a category such that
• there is an object, denoted 1 and called terminal object, such that, for each object A,

there is a unique morphism 1A : A −→ 1;
• for every two objects A and B, there is an object, denoted A×B and called the product

of A and B, together with two morphisms π1 : A×B −→ A and π2 : A×B −→ B, called
the first and second projections, satisfying the following property:
for every object C and morphisms f1 : C −→ A and f2 : C −→ B, there is a unique
f : C −→ A×B, denoted 〈f1, f2〉, such that the following diagram commutes

C

f
��

f1

{{

f2

##
A A×Bπ1oo π2 // B

• for every two objects A and B, there is an object, denoted BA and called the exponen-
tial of A and B, together with a morphism eval : BA ×A −→ B, satisfying the following
property:
for every object X and morphism g : X ×A −→ B there is a unique f : X −→ BA, de-
noted Λg, such that the following diagram commutes

X ×A

〈Λg,IdA〉
��

g

##
BA ×A

eval
// B

We choose the convention that products are associative to the left, i.e. (A×B)×C can be
abbreviated as A×B×C. A family of morphisms πi/n : A1 × · · · ×An −→ Ai, for 1 ≤ i ≤ n,
can be defined by composing the two projections in the obvious way:

π1/1 := IdA1

πn/n := π2 when 1 < n

πp/n := π1 · πp/n−1 when p < n
※

Remark 46 One can quickly check that the terminal object, products and exponentials are
unique up to isomorphism (i.e. two objects satisfying the property of the terminal object, or
the product / exponential object for a given A and B, are isomorphic); hence the notations
1, A×B, BA. ※

	Notations and prerequisites
	Classical proofs as programs
	Curry-Howard correspondence: concepts and instances
	Simply-typed combinators
	Simply-typed -calculus
	The categorical aspect
	Applying the methodology to other systems

	Continuations and control
	Contributions in the 90s
	System L
	Non-confluence of cut-elimination in classical logic
	Continuations, Call-by-Name and Call-by-Value
	Classical logic and CBN/CBV
	Identifying CBN and CBV in System L
	Two stable fragments
	Denotational semantics of CBN and CBV

	Conclusion

	Orthogonality, normalisation and witness extraction
	Revisiting Proofs of Strong Normalisation for System F
	Orthogonality models and the Adequacy Lemma
	Applicative orthogonality models and Strong Normalisation

	Adapting the approach to classical calculi
	The case of a confluent calculus
	The case of a non-confluent calculus

	Orthogonality models for extracting witnesses from classical proofs
	Conclusion

	Polarisation and focussing
	Recovering confluence by polarisation
	Symmetry, asymmetry, and -expansions
	Towards polarised System L
	Focussing
	Weak -conversion
	Related works

	Computational interpretation of a focussed calculus
	Informal relation to System L
	Identifying phases as atomic steps
	Functional interpretation as pattern-matching

	Conclusion

	Bibliography
	Index
	Basic definitions for categories

