
CS3202, LSV
Semester 2 2007,

Tutorial 3

James McKinna& Stéphane Lengrand

April 26, 2007

Submission Submission should be via MMS in the form of a single COQ vernacular file,
named “CS3202tutorial3.v ”. It should be added to, and regularly saved, during the
course of your lab work, and then uploaded to MMS.

Deadline REVISED: Monday 23rd April 2007, by MIDNIGHT.

Credit This tutorial contributes to the 10% of the overall coursework grade allocated for
tutorials.

Rubric You are reminded of the University’s rules governing Academic Fraud. You may of
course work with colleagues in discussing how to go about solving these problems, but any
work which you submit MUST be your own, except where you EXPLICITLY reference the
work of others.

1 Proof-term constructs and tactics for equality and induction

This completes the brief presentation of COQ’s proof-term constructs and tactics from tuto-
rials 1 and 2.

• Inference rule:
t = t

Proof-term construct: refl equal t.
Tactic: reflexivity .

It closes the branch of the proof-tree.

• Inference rule:
A{x 7→ t} t = u

A{x 7→ u}
Proof-term construct: eq ind t (fun x => A) p1 u p2,
where p1 and p2 are respectively the proof-terms for the premisses of the rule.

Tactic: Elim works, with the syntax: Elim (t=u) (fun x => A)
but it can be abbreviated as Rew (fun x => A) t (the system can find u), both de-
fined in CS3202.v. You have also used two primitive tactics of COQ:

1



rewrite p (a.k.a. rewrite -> p)
A{t 7→ u}

A
where p is a proof of t = u

which rewrites every occurence of t in A into u, and its alter ego:

rewrite <- p
A{u 7→ t}

A
where p is a proof of t = u

These tactics are less flexible than Elim or Rew, but shorter to write. Also, they can
perform the rewrite in an hypothesis H:A with the syntax
rewrite p in H and rewrite <- p in H .

• Induction

Inference rule for integers:
A{x 7→ 0}

[m : nat ] [A{x 7→ m}]···
A{x 7→ S(m)}

∀n, A

Proof-term construct:

fix MyProofByInduction (n:nat) {struct n}:=
match n with
0 => p_1
| S m => p_2
end

where p 1 and p 2 are respectively the proof-terms for the premisses of the rule, and
p 2 can mention MyProofByInduction (this is the label of the induction hypothesis).
Note that
Definition MyFunctionName :=

fix MyProofByInduction (n:nat) {struct n } := [...]
can be abbreviated as
Fixpoint MyFunctionName (n:nat) {struct n } := [...]
referring to MyFunctionName instead of MyProofByInduction in p 2.

Tactic: induction n .

Careful: This tactic re-uses the variable n instead of a fresh min the second branch of
the proof.

• We have two tactics specific to Inductive Types, both about the injectivity of type con-
structors:

Inference rule
0 = S(n)

A
Tactic: discriminate p , where p is a proof-term for 0 = S(n).

Inference rule
(n = m) ⇒ A S(n) = S(m)

A
Tactic: injection p , where p is a proof-term of type S(n) = S(m).

In most cases, p will be a variable of your environment. Also, you do not want to know
the proof-terms constructs for these inference rules. . .

2



Composed tactics:

• Swap (defined in CS3202.v)
u = t

t = u
This is an instance of elimination of equality together with the use of an axiom (Can
you give me the axiom and the predicate A?)
However, it’s handy to have a short tactic name to make the swap.

• simpl (primitive): unfolds and folds every defined notion in the current goal (and
probably performs some simplification steps I can’t think of yet). It also works in an
hypothesis H:A with the syntax simpl in H .

Final remarks:

• The inference rules for induction and injectivity are given above for the case of natural
numbers, but are very easy to adapt, case by case, to other inductive types, such as that
of lists.

• Remember that COQ’s tactics will probably do more than what I’ve described (e.g.
reflexivity will work with quantified equalities), but their behaviour is quite un-
clear beyond the basic specification we expect them to have.

• I won’t get into apply .

• The main reason for having defined (in CS3202.v) specific proof-term constructs and
tactics is to match the inference rules of Natural Deduction that you have in the lec-
tures. COQ is based on a system slightly more complex than Predicate Logic with
Equality and Inductive Types, hence the non-perfect adequation between COQ’s prim-
itive tactics and the inference systems from the lectures.

3



2 Exercises

First, download from studres the file CS3202.v
(yes, download the latter again, it is an upgrade of the one in week 2 and 6 - and your
tutorial1.v and tutorial2.v will still work with the upgrade)

Task 1: Lists

• Define the inductive type of lists of natural numbers: List:Set
with Nil as the constructor for the empty list.

• Define the function that appends two lists: append:List->List->List
You will do this by induction on the first argument (the list that comes first). Such a
definition is implemented in COQ with

Fixpoint append (l l’:List) {struct l}: List :=
[...]
.

• Define the function that reverses a list: reverse:List->List
You will do this by induction on the argument, using the function append . Such a
definition is implemented in COQ with

Fixpoint reverse (l:List) {struct l} : List :=
[...]
.

where the body of the function will contain a call to append .

• Define the function that reverses a list faster:

Definition fast_reverse (l:List) : List :=
fast_reverse_aux l Nil
.

where fast reverse aux:List->List->List is an auxiliary function taking two
lists as arguments, defined by induction on the first one with a code starting with:

Fixpoint fast_reverse_aux (l l’:List) {struct l} : List :=
[...]
.

The first argument is the list to reverse, the second is a “buffer” where the current
result is stored, and given as output in the case where the first argument is finally the
empty list. Neither fast reverse nor fast reverse aux will mention append .

4



• Prove the following properties of append:

– Nil is an identity for append :
Theorem append Nil:forall l:List, append l Nil = l.

– append is associative:
Theorem append assoc:forall l m n:List, append (append l m) n
= append l (append m n).

• Prove the theorem: Theorem t:forall l:List, reverse l=fast reverse l.
Hint. fast reverse instantiates one argument of fast reverse aux with Nil
. . . so a reasonable strategy for proofs about fast reverse , is to derive results from
corresponding proofs about fast reverse aux .

In this instance, the intended meaning of fast reverse aux l m is to compute
append (reverse l) m . Accordingly, prove the theorem

Theorem t aux:forall l m:List, append (reverse l) m=fast reverse aux
l m.

You may find this requires associativity of append as above.

Then conclude by instantiating m with Nil . . . which will require the above lemma
about append and Nil .

5


