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Semester 2 2007,

Tutorial 2
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March 4, 2007

Submission Submission should be via MMS in the form of a single COQ vernacular file,
named “CS3202tutorial2.v ”. An initial template version of this file has been prepared
for you. It should be added to, and regularly saved, during the course of your lab work, and
then uploaded to MMS.

Deadline Friday 9th March 2007, by MIDNIGHT.

Credit This tutorial contributes to the 10% of the overall coursework grade allocated for
tutorials.

Rubric You are reminded of the University’s rules governing Academic Fraud. You may of
course work with colleagues in discussing how to go about solving these problems, but any
work which you submit MUST be your own, except where you EXPLICITLY reference the
work of others.

1 Some concrete syntax

Let us start with a reminder of definition commands in COQ:

Let myfavoritename := myterm.
or
Definition myfavoritename := myterm.

Also, note that in COQ’s original concrete syntax,

• ⊥ is False (I defined bot as False in CS3202.v )

• ¬A can be written as either not A or ˜A

Here is now the concrete syntax for quantifiers. First, COQ extends predicate logic by allow-
ing different universes to be ranged over. We shall declare a universe (in fact, a set) iota with
the command:
Variable iota:Set.
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Quantifiers usually need the set over which they range, namely:
∀x,A is represented as forall x:iota,A and
∃x,A is represented as exists x:iota,A
if the quantification is over iota .

Today we stick to one universe only, and in that case the system often accepts the abbrevia-
tions forall x,A and exists x,A

If things do not work, try adding “ :iota ” where you left it implicit.

2 The proof-mode of COQ

In this tutorial, you discover the proof-mode of COQ.

It allows you to interactively build a proof-tree for a formula (as we did last week on a
whiteboard or on the slides), rather than explicitly entering the proof(-term) by hand and
then checking that it is typed with the right formula (Check myproofterm. ).

Like last week on the whiteboard or on the slides, the interactive creation of the proof-tree is
done bottom-up:

1. starting from the conclusion of the tree (labelled with the formula to be proved),

2. trying to guess which rule was applied last in the (at that point hypothetical) proof-tree
to be found,

3. and bearing in mind (or on a special display of COQ) the local assumptions that you
are allowed to use at each point of the proof.

In theory (at least, in the exercises you will do today), you do not have to enter a single
proof-construct by hand (such as a fun x:A => M , or introl , or intror , conj , match
M with ...end ).

The final proof-tree represented with these constructs will be the result/output of successfully
exiting the proof-mode.

• Point 1 above is done by entering the proof-mode with one of the following commands:
Theorem MyProofName : MyFormulaToProve .
or
Lemma MyProofName : MyFormulaToProve .

The goal that you have to prove is now displayed in the top-right window.

1 subgoal

===============
MyFormulaToProve
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• Point 2 above is done by invoking (basic proof-search) tactics, which try to apply the
inference rules bottom-up. If such a tactic succeeds, then it updates the goal to be
proved with the premisse(s) of the inference rule.

– If there are more than one premiss, it selects one of them to work on and records
the others as sub-goals to be proved later, once you have finished with your current
goal (these sub-goals correspond to other branches of the proof-tree).

– If the inference rule discharges some hypotheses, these become available for the
proof of the new goal, and are added above the double bar line, decorated with a
freshly generated variable such as H, H1, . . . , Hn,. . .

Hence, the general shape of the display is

p subgoals

H1 : MyLocalHypothesis1
...
Hn : MyLocalHypothesisn
===============
MyCurrentGoal (1/p)

MyNextGoal (2/P)
...
MyLastGoal (p/p)

In this tutorial, you will use the proof-search tactics unfold , exact , intro , split ,
exists , and Elim (the first five are primitive in COQ, the last one is programmed in
CS3202.v ).

– The tactic unfold MyDefinedName unfolds the definition of MyDefinedName
in the current goal. unfold MyDefinedName in H does it in the hypothesis
decorated by H

– The tactic intro executes the bottom-up application of the introduction rule for
⇒, ∀, or ¬, dictated by the main connective of the goal:

intro

[A]···
B

A ⇒ B

or
B

∀x,B
or

[A]···⊥
¬A

– For some reason, the tactic is called split to attempt ∧-intro:

split
A B

A ∧B
For instance, split starts building your proof-term with conj ? ? , with the
hope that solving the sub-goals will provide terms for the ? ’s.

– For ∨-intro the tactics are:

left
A

A ∨B
and right

B

A ∨B
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– For ∃-intro the tactic is:

exists MyTerm
A{x 7→ MyTerm}

∃x,A

– The tactic Elim tries an elimination rule, it usually takes as an argument the pre-
miss whose main connective is to be eliminated:

Elim (A\/B)
A ∨B

[A]···
C

[B]···
C

C

(this tactic always succeeds; why?)

Elim (exists x,A) ∃x,A

[A]···
C

C

(this tactic always succeeds; why?)

Elim False
⊥
A

(this tactic always succeeds; why?)

Elim (˜A)
A ¬A

⊥
Note that if the goal is anything else than False , the tactic will first apply⊥-elim
in order to turn the goal into False , and then apply ¬-elim. Hence, the tactic
always succeeds.

Elim (forall x, B)
∀x,B

B{x 7→ t}

Elim (A->B)
A ⇒ B A

B
Note that Elim (A->B) can be abbreviated as MP A(since B is known to be the
current goal), so MP Aalways succeeds.

Elim left B
A ∧B

A
(this tactic always succeeds; why?)

Note that B has to be given as argument of the tactic, since the system cannot
guess it (unlike A, which the system knows to be your current goal).

Elim right A
A ∧B

B
(this tactic always succeeds; why?)

Again, A has to be given while B is known as your goal.

Note that in ∀-intro (intro ) and ∃-elim (Elim (exists x,A) ), the side con-
dition that the variable bound in the quantified formula does not already appear
elsewhere is automatically satisfied by COQ, which picks a fresh variable (remem-
ber we are building the proof-terms bottom-up).

– Finally, you can use an hypothesis with the tactic exact :

exact Hn tries to apply “copy”
A

A
and succeeds if the hypothesis decorated by

Hn is equal (modulo α-equivalence) to your current goal. Such a success ends the
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construction of one branch of your proof-tree, and the next recorded sub-goal left
to prove becomes your current goal.

• When you have constructed all branches (i.e. there is no sub-goal left to be proved
after exact ), you have proved the result and the window displays:
Proof completed.

You can now save the proof-term that you have interactively built with the command
Defined.

This exits the proof-mode (the top-right window is cleared) and binds the proof-term
to the name t1 , as if you had defined it with the command
Let t1 := theproofterm.

Note however that by defining t1 with the proof-mode, you have never seen the proof-
term, which you can now do with the command (check the output in the bottom-right
window):
Print t1.

Note that sometimes the proof-term is not “fully evaluated” and you have to compute
it with the (rather ackward, agreed) command:
Eval compute in t1.

3 Exercises

First, download from studred the files CS3202tutorial2.v and CS3202.v
(yes, download the latter again, it is an upgrade of the one in week 2 - and your tutorial1.v
will still work with the upgrade)

Task 1: Predicate logic

We start by declaring a universe, called iota , as the (COQ-)type of the object we are talking
about / quantifying over.

Variable iota:Set.

We then declare two predicates P and Qof arity 1 on this universe.

Variables P Q:iota->Prop.

Now your job is to prove the theorems of predicate logic that you have seen in the lectures
(you have the proof-trees on the slides!)

• We start with (∀x, P (x) ⇒ Q(x)) ⇒ ((∀y, P (y)) ⇒ (∀z, Q(z)))

Theorem t1:(forall x, P x->Q x)->((forall y, P y)->(forall z, Q z)).

[...to be completed...]

Defined.
Print t1.
Eval compute in t1.
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• Now we prove (∃x, P (x) ∨Q(x)) ⇒ ((∃y, P (y)) ∨ (∃z, Q(z)))

Theorem t2: (exists x,P x \/ Q x)->(exists y, P y)\/(exists z, Q z).

[...to be completed...]

Defined.
Print t2.
Eval compute in t2.

• Now we prove ((∃y, P (y)) ∨ (∃z, Q(z))) ⇒ (∃x, P (x) ∨Q(x))

Theorem t3: ((exists y, P y)\/(exists z, Q z)) -> (exists x,P x \/ Q x).

[...to be completed...]

Defined.
Print t3.
Eval compute in t3.

Task 2: Classical Logic and Coq

This exercise answers someone’s question on integrating classical logic into COQ, and aims
at establishes the equivalence between the different ways to do it.

First, note that in COQ, negation is a defined notion: ˜A is in fact an abbreviation of A->False .

For instance, the elimination of double negation (˜˜C)->C is in fact ((˜C)->False)->C ,
i.e. reasoning by contradiction.

Now, it is up to you to prove the equivalences between Reasoning by Contradiction, the Law
of Excluded Middle, Peirce’s Law, and the Elimination of Double Negation.

Definition LEM (D:Prop) := D\/˜D.
Definition Peirce (A B: Prop) := ((A->B)->A)->A.
Definition EDN (C:Prop) := (˜˜C)->C.

• First, we prove that the Elimination of Double Negation implies Peirce’s Law.

Variables E F:Prop.

Theorem one : EDN E->Peirce E F.

• Second, we prove that Peirce’s Law implies the Law of Excluded Middle.

Theorem two : Peirce (E\/˜E) False ->LEM E.

• Third, we prove that the Law of Excluded Middle implies Elimination of Double Nega-
tion.

Theorem three : LEM E->EDN E.
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