
CS3202, LSV
Semester 2 2007,

Tutorial 1

James McKinna& Stéphane Lengrand

February 13, 2007

Submission Submission should be via MMS in the form of a single COQ vernacular file,
named “CS3202tutorial1.v ”. An initial template version of this file has been prepared
for you. It should be added to, and regularly saved, during the course of your lab work, and
then uploaded to MMS.

Deadline Friday 16th February 2007, by MIDNIGHT.

Credit This tutorial contributes to the 10% of the overall coursework grade allocated for
tutorials.

Rubric You are reminded of the University’s rules governing Academic Fraud. You may of
course work with colleagues in discussing how to go about solving these problems, but any
work which you submit MUST be your own, except where you EXPLICITLY reference the
work of others.

Task 1: Using Coq

1. (a) login to a JH lab machine

(b) fire up WWW browser (otherwise the built-in WWW help subsystem of coqide
will not work. . . )

(c) get a terminal window

(d) type coqide at the prompt

(e) check browser-based help is working, check the online tutorial and the reference
manual.

2. (a) download CS3202tutorial1.v and CS3202.v from Studres/Tutorials

(b) open CS3202tutorial1.v in coqide

(c) check the effects of the compilation buttons and observe coqide ’s answers in the
bottom-right window.

(d) What is the role of the dot . ?

1



The concrete syntax for the connectives is
/\ for ∧ (e.g. A/\B ), \/ for ∧ (e.g. A\/B ), -> for ⇒ (e.g. A->B ),
and, in these tutorials, bot for ⊥ and not for ¬ (e.g. not A ).

The constructors for proof-trees are, in these tutorials,

∧-introduction:
A B

A ∧B
and_i A B

∧-elimination:
A ∧B

A
and_el A B

A ∧B

B
and_er A B

∨-introduction:
A

A ∨B
or_il A B

B

A ∨B
or_ir A B

∨-elimination:
A ∨B

[A]···
C

[B]···
C

C

or_e A B C

⇒-introduction:

[A]···
B

A ⇒ B

imp_i A B ⇒-elimination:
A ⇒ B A

B
imp_e A B

⊥-elimination:
⊥
A

bot_e A

¬-introduction:

[A]···⊥
¬A

not_i A ¬-elimination:
A ¬A

⊥
not_e A

copy:
A

A
copy A

Discharging the leaves called x and labelled with A in a proof t is written

fun x:A => t

Task 2: Proving

• Check (and understand) the proof of A ` A.

I assume the hypotheses of the syntactic entailment relation by giving them names (aka
variables). Here, there is just the assumption A, which I name H.

Hypothesis H:A.

Now I give a proof-term for the tree concluding A from these assumptions. It can thus
use the variables declared for the assumptions, and guess what it is in this case...

Check H.

• Check (and understand) the proof of A ∧B ` B ∧A

Here, there is just the assumption A/\B , which I name H_AB.

Hypothesis H_AB : A /\ B.

2



Now I give a proof-term for the tree concluding B/\A from the assumption. It can thus
use H_AB. Let’s start with a proof-term for a tree concluding A:

Check and_el A B H_AB.

Let’s continue with a proof-term for a tree concluding B:

Check and_er A B H_AB.

Here is my proof-term for a tree concluding B/\A :

Check and_i B A (and_er A B H_AB) (and_el A B H_AB) .

• Check (and understand) the proof of A ∨B ` B ∨A

Here, there is just the assumption A\/B , which I name H0.

Hypothesis H0:A\/B.

Now I give a proof-term for the tree concluding B\/A from the assumption. It can
thus use H0. Let’s start with a proof-term for a tree concluding B\/A under the local
assumption of A (called H1) that I discharge:

Check fun H1:A => or_ir B A H1.

Note that H1 is not visible after the discharge. Check H1. fails! Let’s continue with a
proof-term for a tree concluding B\/A under the local assumption of B (called H2) that
I discharge:

Check fun H2:B => or_il B A H2.

Again, the variable H2 is not visible (and in fact I could have called it H1without clash.)
Now here is my proof-term for a tree concluding B\/A :

Check
or_e A B (B\/A)

H0 (fun H1:A => or_ir B A H1) (fun H2:B => or_il B A H2).

• Prove (A ∧B) ∧ C ` A ∧ (B ∧ C)

Assume (A\wedge B)\wedge C\vdash A by giving it the name H1:

Hypothesis H1:(A/\B)/\C.

Now it’s your job to find a proof-term for A/\(B/\C) using H1!

• Prove A, (A ⇒ B), (B ⇒ C) ` C

• Prove (A ⇒ B), (B ⇒ C) ` A ⇒ C

• Prove (A ∨B) ∨ C ` A ∨ (B ∨ C)

• Prove A ⇒ ⊥ ` (¬A)

• Prove (¬A) ` A ⇒ ⊥
• Prove? ` (((A ⇒ B) ⇒ B) ⇒ A

• Check whether it is a tautology. Conclusion?

3


