
CS3202: Logic, Specification
and Verification

CS3202-LSV 2006–07

cs3202.lec@cs.st-andrews.ac.uk

Dr. James McKinna, RM 1.03
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Poor old Socrates

• Socrates is a man

• All men are mortal

• Socrates is mortal
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What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S
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Socrates, S

• predicates, to make statements about these objects:
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• substitution, to speak about a (more) particular instance:

“H(m) plus S equals H(S)”

Trickier than you think!
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Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.
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or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n,m as in

∀n, n = 0 ∨ (∃m,n = m + 1)
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Terms

• Which variables are allowed to appear in terms is relative to the current

context.
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Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop
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or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)
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Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

x is bound by the quantifier.

Its name is irrelevant: ∃n,¬(n = 0) means the same as ∃m,¬(m = 0)
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Substitution

• looks (usually) just what you think

• but beware!

• need to define what it is to be free and bound in an expression,

formula, etc.

• FV(∀x : A.M) = FV(M) \ {x}
• lots of room to make mistakes. . . so go to the machine for

assistance. . .

• Note: a variable can be substituted for a term which may refer to other

variables (possibly be a variable). Example:

∀m,¬(n = 0){n 7→ m + 1} becomes ∀m,¬(m + 1 = 0)
In other words n is not (yet) substituted for a “value”, i.e. a term

without (free) variables (all leaves are constants).
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Substitution

• on terms

x{x 7→ t} = t

y{x 7→ t} = y

f(u1, . . . , un){x 7→ t} = f(u1{x 7→ t}, . . . , un{x 7→ t})
on wff

(p(u1, . . . , un)){x 7→ t} = p(u1{x 7→ t}, . . . , un{x 7→ t})
(A ∧B){x 7→ t} = (A{x 7→ t}) ∧ (B{x 7→ t})
· · ·
(∀y,A){x 7→ t} = ∀y, (A{x 7→ t}) x 6= y, y 6∈ FV(t)

(∃y,A){x 7→ t} = ∃y, (A{x 7→ t}) x 6= y, y 6∈ FV(t)
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Inference rules for ∀
• We extend Natural Deduction with the following rules:
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Inference rules for ∃
• ∃-introduction:

A{x = t}
∃x,A

JHM+SL: CS3202 Lecture 5 Slide 11



Inference rules for ∃
• ∃-introduction:

A{x = t}
∃x,A

∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
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Intuition about ∃-elim: an alternative?

• Standard ∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C
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Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x)
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Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
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since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}
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Note that the step ? is correct because

z 6∈ FV(∀x, (p(x) ⇒ q(x))) ∪ FV(∀y, p(y))

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀x, (p(x) ⇒ q(x))

p(z) ⇒ q(z)

[∀y, p(y)]

p(z)

q(z)
?

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}
and p(z) is (p(y)){y 7→ z}
Note that the step ? is correct because

z 6∈ FV(∀x, (p(x) ⇒ q(x))) ∪ FV(∀y, p(y))

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))
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Questions?
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