
CS3202: Logic, Specification
and Verification

CS3202-LSV 2006–07

cs3202.lec@cs.st-andrews.ac.uk

Dr. James McKinna, RM 1.03

Dr. Stéphane Lengrand, Rm. 1.02



Lecture 5 (26-27/02/2007):
Predicate Logic

JHM+SL: CS3202 Lecture 5 Slide 0



Poor old Socrates

• Socrates is a man

• All men are mortal

• Socrates is mortal

JHM+SL: CS3202 Lecture 5 Slide 1



Poor old Socrates

• Socrates is a man: H(S)

• All men are mortal: ∀m.H(m) ⇒ M(m)

• Socrates is mortal: M(S)

JHM+SL: CS3202 Lecture 5 Slide 1



Poor old Socrates

• Socrates is a man: H(S)

• All men are mortal: ∀m.H(m) ⇒ M(m)

• Socrates is mortal: M(S)

JHM+SL: CS3202 Lecture 5 Slide 1



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

• predicates, to make statements about these objects:

mis a man: H(m)
Formally, these are functions, turning individual things into propositions

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

• predicates, to make statements about these objects:

mis a man: H(m)
Formally, these are functions, turning individual things into propositions

• substitution, to speak about a (more) particular instance:

“H(m) plus S equals H(S)”

Trickier than you think!

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

• predicates, to make statements about these objects:

mis a man: H(m)
Formally, these are functions, turning individual things into propositions

• substitution, to speak about a (more) particular instance:

“H(m) plus S equals H(S)”

Trickier than you think!

• quantifiers: “for all” ∀ and “there exists” ∃

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

• predicates, to make statements about these objects:

mis a man: H(m)
Formally, these are functions, turning individual things into propositions

• substitution, to speak about a (more) particular instance:

“H(m) plus S equals H(S)”

Trickier than you think!

• quantifiers: “for all” ∀ and “there exists” ∃
This extends the notion of wff.

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the language:

• terms, to denote objects of an (often implicit) universe of speech:

Socrates, S

• predicates, to make statements about these objects:

mis a man: H(m)
Formally, these are functions, turning individual things into propositions

• substitution, to speak about a (more) particular instance:

“H(m) plus S equals H(S)”

Trickier than you think!

• quantifiers: “for all” ∀ and “there exists” ∃
This extends the notion of wff.

JHM+SL: CS3202 Lecture 5 Slide 2



What do we need? In the reasoning:

• introduction and elimination rules for ∀ and ∃

JHM+SL: CS3202 Lecture 5 Slide 3



What do we need? In the reasoning:

• introduction and elimination rules for ∀ and ∃
to prove or use wff of the form ∀x, P (x) or ∃x, P (x)

JHM+SL: CS3202 Lecture 5 Slide 3



What do we need? In the reasoning:

• introduction and elimination rules for ∀ and ∃
to prove or use wff of the form ∀x, P (x) or ∃x, P (x)

• . . . lots of examples. . .

JHM+SL: CS3202 Lecture 5 Slide 3



What do we need? In the reasoning:

• introduction and elimination rules for ∀ and ∃
to prove or use wff of the form ∀x, P (x) or ∃x, P (x)

• . . . lots of examples. . .

JHM+SL: CS3202 Lecture 5 Slide 3



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n,m as in

∀n, n = 0 ∨ (∃m,n = m + 1)

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n,m as in

∀n, n = 0 ∨ (∃m,n = m + 1)

• Internal nodes: (labelled with) function symbols

which define the syntax of a grammar of terms. Example: + above

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n,m as in

∀n, n = 0 ∨ (∃m,n = m + 1)

• Internal nodes: (labelled with) function symbols

which define the syntax of a grammar of terms. Example: + above

As functions, they expect a certain number of arguments

(=number of sub-trees), a.k.a. arity . Example: + has arity 2

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Well-bracketed expressions / trees,

denoting “things in the current context” that we are allowed to talk about.

• Leaves: (labelled with) constants

or (free) variables, “things we don’t know about yet”

Example: Natural numbers, constants: 0, 1, variables n,m as in

∀n, n = 0 ∨ (∃m,n = m + 1)

• Internal nodes: (labelled with) function symbols

which define the syntax of a grammar of terms. Example: + above

As functions, they expect a certain number of arguments

(=number of sub-trees), a.k.a. arity . Example: + has arity 2

JHM+SL: CS3202 Lecture 5 Slide 4



Terms

• Which variables are allowed to appear in terms is relative to the current

context.

JHM+SL: CS3202 Lecture 5 Slide 5



Terms

• Which variables are allowed to appear in terms is relative to the current

context.

Example: in m + 1 above, m was introduced in the current context by the

quantifier ∃m

JHM+SL: CS3202 Lecture 5 Slide 5



Terms

• Which variables are allowed to appear in terms is relative to the current

context.

Example: in m + 1 above, m was introduced in the current context by the

quantifier ∃m

• As usual, we represent term-trees as well-bracketed strings (a.k.a.

expressions). Example: (n + m) + n′

JHM+SL: CS3202 Lecture 5 Slide 5



Terms

• Which variables are allowed to appear in terms is relative to the current

context.

Example: in m + 1 above, m was introduced in the current context by the

quantifier ∃m

• As usual, we represent term-trees as well-bracketed strings (a.k.a.

expressions). Example: (n + m) + n′

• In general, we use x, y, z for variables, t, u, v for terms, f, g for function

symbols

JHM+SL: CS3202 Lecture 5 Slide 5



Terms

• Which variables are allowed to appear in terms is relative to the current

context.

Example: in m + 1 above, m was introduced in the current context by the

quantifier ∃m

• As usual, we represent term-trees as well-bracketed strings (a.k.a.

expressions). Example: (n + m) + n′

• In general, we use x, y, z for variables, t, u, v for terms, f, g for function

symbols

JHM+SL: CS3202 Lecture 5 Slide 5



Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop

JHM+SL: CS3202 Lecture 5 Slide 6



Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop

• Given a priori as a set of predicate symbols p, q, r, . . .

(similar to constants and function symbols for terms)

JHM+SL: CS3202 Lecture 5 Slide 6



Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop

• Given a priori as a set of predicate symbols p, q, r, . . .

(similar to constants and function symbols for terms)

• Again, arity = number of arguments (potentially 0!)

JHM+SL: CS3202 Lecture 5 Slide 6



Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop

• Given a priori as a set of predicate symbols p, q, r, . . .

(similar to constants and function symbols for terms)

• Again, arity = number of arguments (potentially 0!)

• Examples: from the one above, = (arity 2), or in maths ∈ (arity 2),

with infix notation.

When applied: t = u and t ∈ u

JHM+SL: CS3202 Lecture 5 Slide 6



Predicates

• . . . are just what you think (in COQ):

• functions from one type (the universe of speech) to Prop (the type of

propositions)

MyUniverse -> · · · -> MyUniverse -> Prop

• Given a priori as a set of predicate symbols p, q, r, . . .

(similar to constants and function symbols for terms)

• Again, arity = number of arguments (potentially 0!)

• Examples: from the one above, = (arity 2), or in maths ∈ (arity 2),

with infix notation.

When applied: t = u and t ∈ u

JHM+SL: CS3202 Lecture 5 Slide 6



Extended WFF

• Well-bracketed expressions / trees,

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

x is bound by the quantifier.

Its name is irrelevant: ∃n,¬(n = 0) means the same as ∃m,¬(m = 0)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

x is bound by the quantifier.

Its name is irrelevant: ∃n,¬(n = 0) means the same as ∃m,¬(m = 0)

• We consider wff up to / modulo sound renaming of bound variables (a.k.a.

α-equivalence)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

x is bound by the quantifier.

Its name is irrelevant: ∃n,¬(n = 0) means the same as ∃m,¬(m = 0)

• We consider wff up to / modulo sound renaming of bound variables (a.k.a.

α-equivalence)

Tricky. We want to avoid name clashes.

Example: ∀m, ∃n,¬(n = m) is not the same as ∀m,∃m,¬(m = m)

JHM+SL: CS3202 Lecture 5 Slide 7



Extended WFF

• Well-bracketed expressions / trees,

• Leaves: predicates applied to their arguments. Example: n = 0

• Internal nodes: logical connectives (as in propositional logic) ∧,∨,¬,⊥
or quantifiers+variable, ∀x (arity 1), ∃x (arity 1)

x is bound by the quantifier.

Its name is irrelevant: ∃n,¬(n = 0) means the same as ∃m,¬(m = 0)

• We consider wff up to / modulo sound renaming of bound variables (a.k.a.

α-equivalence)

Tricky. We want to avoid name clashes.

Example: ∀m, ∃n,¬(n = m) is not the same as ∀m,∃m,¬(m = m)

JHM+SL: CS3202 Lecture 5 Slide 7



Substitution

• looks (usually) just what you think

• but beware!

• need to define what it is to be free and bound in an expression,

formula, etc.

• FV(∀x : A.M) = FV(M) \ {x}
• lots of room to make mistakes. . . so go to the machine for

assistance. . .

• Note: a variable can be substituted for a term which may refer to other

variables (possibly be a variable). Example:

∀m,¬(n = 0){n 7→ m + 1} becomes ∀m,¬(m + 1 = 0)
In other words n is not (yet) substituted for a “value”, i.e. a term

without (free) variables (all leaves are constants).

JHM+SL: CS3202 Lecture 5 Slide 8



Substitution

• on terms

x{x 7→ t} = t

y{x 7→ t} = y

f(u1, . . . , un){x 7→ t} = f(u1{x 7→ t}, . . . , un{x 7→ t})
on wff

(p(u1, . . . , un)){x 7→ t} = p(u1{x 7→ t}, . . . , un{x 7→ t})
(A ∧B){x 7→ t} = (A{x 7→ t}) ∧ (B{x 7→ t})
· · ·
(∀y,A){x 7→ t} = ∀y, (A{x 7→ t}) x 6= y, y 6∈ FV(t)

(∃y,A){x 7→ t} = ∃y, (A{x 7→ t}) x 6= y, y 6∈ FV(t)

JHM+SL: CS3202 Lecture 5 Slide 9



Inference rules for ∀
• We extend Natural Deduction with the following rules:

JHM+SL: CS3202 Lecture 5 Slide 10



Inference rules for ∀
• We extend Natural Deduction with the following rules:

∀-introduction:
A

x 6∈ FV(open leaves)
∀x,A

JHM+SL: CS3202 Lecture 5 Slide 10



Inference rules for ∀
• We extend Natural Deduction with the following rules:

∀-introduction:
A

x 6∈ FV(open leaves)
∀x,A

∀-elimination:
∀x,A

A{x = t}

JHM+SL: CS3202 Lecture 5 Slide 10



Inference rules for ∀
• We extend Natural Deduction with the following rules:

∀-introduction:
A

x 6∈ FV(open leaves)
∀x,A

∀-elimination:
∀x,A

A{x = t}

JHM+SL: CS3202 Lecture 5 Slide 10



Inference rules for ∃
• ∃-introduction:

A{x = t}
∃x,A

JHM+SL: CS3202 Lecture 5 Slide 11



Inference rules for ∃
• ∃-introduction:

A{x = t}
∃x,A

∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

JHM+SL: CS3202 Lecture 5 Slide 11



Inference rules for ∃
• ∃-introduction:

A{x = t}
∃x,A

∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

JHM+SL: CS3202 Lecture 5 Slide 11



Intuition about ∃-elim: an alternative?

• Standard ∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

JHM+SL: CS3202 Lecture 5 Slide 12



Intuition about ∃-elim: an alternative?

• Standard ∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

Intuition: ∃-elimination:

A···
C

becomes

∃x,A

A···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

JHM+SL: CS3202 Lecture 5 Slide 12



Intuition about ∃-elim: an alternative?

• Standard ∃-elimination:

∃x,A

[A]···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

Intuition: ∃-elimination:

A···
C

becomes

∃x,A

A···
C

x 6∈ FV(C) ∪ FV(open leaves)
C

JHM+SL: CS3202 Lecture 5 Slide 12



Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x)

JHM+SL: CS3202 Lecture 5 Slide 13



Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x) WRONG!

JHM+SL: CS3202 Lecture 5 Slide 13



Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x) WRONG!

• Worse:

∃x, P (x)

[P (x)]

P (x)

P (x)

∀x, P (x)

is a proof for ∃x, P (x) ` ∀x, P (x)

JHM+SL: CS3202 Lecture 5 Slide 13



Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x) WRONG!

• Worse:

∃x, P (x)

[P (x)]

P (x)

P (x)

∀x, P (x)

is a proof for ∃x, P (x) ` ∀x, P (x) WRONG!

JHM+SL: CS3202 Lecture 5 Slide 13



Use of the side-condition

• Writing P (x) for a wff A depending on x,

P (x)

∀x, P (x)

is a proof for P (x) ` ∀x, P (x) WRONG!

• Worse:

∃x, P (x)

[P (x)]

P (x)

P (x)

∀x, P (x)

is a proof for ∃x, P (x) ` ∀x, P (x) WRONG!

JHM+SL: CS3202 Lecture 5 Slide 13



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

(∀y, p(y)) ⇒∀z, q(z)

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

q(z)

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

p(z) ⇒ q(z) p(z)

q(z)

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀x, (p(x) ⇒ q(x))

p(z) ⇒ q(z) p(z)

q(z)

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀x, (p(x) ⇒ q(x))

p(z) ⇒ q(z)

[∀y, p(y)]

p(z)

q(z)

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}
and p(z) is (p(y)){y 7→ z}

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀x, (p(x) ⇒ q(x))

p(z) ⇒ q(z)

[∀y, p(y)]

p(z)

q(z)
?

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}
and p(z) is (p(y)){y 7→ z}
Note that the step ? is correct because

z 6∈ FV(∀x, (p(x) ⇒ q(x))) ∪ FV(∀y, p(y))

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∀x, (p(x) ⇒ q(x)) ` (∀y, p(y)) ⇒ ∀z, q(z)
Proof:

∀x, (p(x) ⇒ q(x))

p(z) ⇒ q(z)

[∀y, p(y)]

p(z)

q(z)
?

∀z, q(z)

(∀y, p(y)) ⇒∀z, q(z)

since p(z) ⇒ q(z) is (p(x) ⇒ q(x)){x 7→ z}
and p(z) is (p(y)){y 7→ z}
Note that the step ? is correct because

z 6∈ FV(∀x, (p(x) ⇒ q(x))) ∪ FV(∀y, p(y))

JHM+SL: CS3202 Lecture 5 Slide 14



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

(∃y, p(y)) ∨ (∃z, q(z))

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x) (∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)] (∃y, p(y)) ∨ (∃z, q(z)) (∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z)) (∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

[p(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z)) (∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

since p(x) is (p(y)){y 7→ x}

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

[p(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z))

∃z, q(z)

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

since p(x) is (p(y)){y 7→ x}

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

[p(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z))

[q(x)]

∃z, q(z)

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))

since p(x) is (p(y)){y 7→ x} and q(x) is (q(z)){z 7→ x}

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

[p(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z))

[q(x)]

∃z, q(z)

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))
?

(∃y, p(y)) ∨ (∃z, q(z))

since p(x) is (p(y)){y 7→ x} and q(x) is (q(z)){z 7→ x}
Note that the step ? is correct because

x 6∈ FV((∃y, p(y)) ∨ (∃z, q(z))) and at that point there is no open assumption

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• ∃x, (p(x) ∨ q(x)) ` (∃y, p(y)) ∨ (∃z, q(z))

Proof:

∃x,p(x) ∨ q(x)

[p(x)∨q(x)]

[p(x)]

∃y, p(y)

(∃y, p(y)) ∨ (∃z, q(z))

[q(x)]

∃z, q(z)

(∃y, p(y)) ∨ (∃z, q(z))

(∃y, p(y)) ∨ (∃z, q(z))
?

(∃y, p(y)) ∨ (∃z, q(z))

since p(x) is (p(y)){y 7→ x} and q(x) is (q(z)){z 7→ x}
Note that the step ? is correct because

x 6∈ FV((∃y, p(y)) ∨ (∃z, q(z))) and at that point there is no open assumption

JHM+SL: CS3202 Lecture 5 Slide 15



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

∃x, (p(x) ∨ q(x))

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z)) ∃x, (p(x) ∨ q(x)) ∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)] ∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x)) ∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x)) ∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

[∃z,q(z)]

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

[∃z,q(z)] ∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

[∃z,q(z)]

[q(z)]

p(z) ∨ q(z)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}
and p(z) ∨ q(z) is (p(x) ∨ q(x)){x 7→ z}

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

[∃z,q(z)]

[q(z)]

p(z) ∨ q(z)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))
?

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}
and p(z) ∨ q(z) is (p(x) ∨ q(x)){x 7→ z}
Again, the two ∃-elim are correct: the bound variable y (resp. z) is not free

in the conclusion ∃x, (p(x) ∨ q(x)) & no open assumption

JHM+SL: CS3202 Lecture 5 Slide 16



Example of theorem

• (∃y, p(y)) ∨ (∃z, q(z)) ` ∃x, (p(x) ∨ q(x))

Proof:

(∃y, p(y))∨(∃z, q(z))

[∃y,p(y)]

[p(y)]

p(y) ∨ q(y)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))

[∃z,q(z)]

[q(z)]

p(z) ∨ q(z)

∃x, (p(x) ∨ q(x))

∃x, (p(x) ∨ q(x))
?

∃x, (p(x) ∨ q(x))

since p(y) ∨ q(y) is (p(x) ∨ q(x)){x 7→ y}
and p(z) ∨ q(z) is (p(x) ∨ q(x)){x 7→ z}
Again, the two ∃-elim are correct: the bound variable y (resp. z) is not free

in the conclusion ∃x, (p(x) ∨ q(x)) & no open assumption

JHM+SL: CS3202 Lecture 5 Slide 16



Questions?

JHM+SL: CS3202 Lecture 5 Slide 16


