
CS3202: Logic, Specification
and Verification

CS3202-LSV 2006–07

cs3202.lec@cs.st-andrews.ac.uk

Dr. James McKinna, RM 1.03

Dr. Stéphane Lengrand, Rm. 1.02

Lecture 4 (20/02/2007):
Intuitionistic vs. classical logic

Decorating proof-trees with variables and terms

JHM+SL: CS3202 Lecture 4 Slide 0

A typo in the tutorial sheet

• Prove? ` ((A ⇒ B) ⇒ B) ⇒ A

• Check whether it is a tautology. Conclusion?

JHM+SL: CS3202 Lecture 4 Slide 1

A typo in the tutorial sheet

• Prove? ` ((A ⇒ B) ⇒ A) ⇒ A

• Check whether it is a tautology. Conclusion?

JHM+SL: CS3202 Lecture 4 Slide 2

Truthtable
•

A B A ⇒ B (A ⇒ B) ⇒ A ((A ⇒ B) ⇒ A) ⇒ A

T T T T T

T F F T T

F T T F T

F F T F T

JHM+SL: CS3202 Lecture 4 Slide 3

Reasoning by contradiction

•

[(A ⇒ B) ⇒ A]

[A] [¬A]

⊥
B

A⇒B

A [¬A]

⊥
A

((A ⇒ B)⇒A) ⇒ A

Is this correct?

JHM+SL: CS3202 Lecture 4 Slide 4

Reasoning by contradiction

• In fact we proved:

[(A ⇒ B) ⇒ A]

[A] [¬A]

⊥
B

A⇒B

A [¬A]

⊥
¬¬A

((A ⇒ B)⇒A) ⇒ ¬¬A

JHM+SL: CS3202 Lecture 4 Slide 5

Natural deduction: soundness & completeness

• Soundness: φ1, . . . , φn ` φ implies φ1, . . . , φn |= φ.

Completeness: φ1, . . . , φn |= φ implies φ1, . . . , φn ` φ?

No.

JHM+SL: CS3202 Lecture 4 Slide 6

Classical Logic vs. Intuitionistic Logic

• Last lectures: Intuitionistic Logic

Semantically incomplete (w.r.t. truthtables)

• Classical logic is obtained by adding:

Reasoning by contradiction Elimination of Double Negation Peirce’s Law

[¬A]···⊥
A

¬¬A

A

(A ⇒ B) ⇒ A

A

Semantically complete (w.r.t. truthtables)

JHM+SL: CS3202 Lecture 4 Slide 7

Proof-terms for proof-trees

JHM+SL: CS3202 Lecture 4 Slide 7

Linking open/active leaves and variables

• We use Variables to keep track of the set of open/active leaves.

• In COQ: Variable H:A.

• Idea: Represent proofs with terms /

Decorate inference rules & steps with terms and variable annotations

• Along proof tree: need to keep track of the link open/active leaves —

variables in an Environment (a.k.a. Context):

Environment = mapping from variables to wff (e.g. x : A for x 7→ A)

• In decorated trees: Nodes are labelled with environment+term+wff

Γ ` M : A

JHM+SL: CS3202 Lecture 4 Slide 8

Typing, proofs. . .

• Noooooo! same symbol as in φ1, . . . , φn ` φ!

But. . . it will be the case (to be checked in each decorated rule later)

that

There exists an M & a (decorated) proof-tree of

x1 : φ1, . . . , xn : φn ` M : φ

if & only if

φ1, . . . , φn ` φ

• Notion of Typing: Γ ` M : A “M is of type A in the environment Γ”

= “M represents a proof of A under the (decorated) assumptions Γ”

JHM+SL: CS3202 Lecture 4 Slide 9

Natural deduction as a Typing System

• Use of an hypothesis:

Γ, x : A ` x : A

On the l.-h. side, the wff A is declared to be available as an open

assumption, decorated with x.

The proof-tree A (or rather,
A

copy
A

?), having the wff A as an open

assumption, concludes A and is decorated by x in the environment

Γ, x : A.

“copy” = “use” ?

JHM+SL: CS3202 Lecture 4 Slide 10

Natural deduction as a Typing System

• ⇒-introduction:

Γ, x : A ` M : B

Γ ` (λx : A.M) : A ⇒ B

NB: In COQ’s concrete syntax

Γ, x : A ` M : B

Γ ` (fun x : A => M) : A → B

In fact, no need for imp i :

imp i A B (fun x:A=>M) is fun x:A=>M

This is (Creation of) unnamed function (see next slide)

JHM+SL: CS3202 Lecture 4 Slide 11

Natural deduction as a Typing System

• COQ’s definitions: Let myfavoritename := myterm.

or Definition myfavoritename := myterm.

• Hence, think of Let myfunction := fun x:A => M. as

myfunction (x:A) {
...

M

...

}
It is of type A->B (if Mis of type B)

x is only available in the body Mof the function.

A is an assumption temporarily made for the (sub-)proof Mof B.

JHM+SL: CS3202 Lecture 4 Slide 12

Natural deduction as a Typing System

• ⇒-elimination (a.k.a. Modus Ponens):

Γ ` M : A ⇒ B Γ ` N : A

Γ ` M N : B

Again, no need for imp e: imp e A B M Nis M N

This is Function application

JHM+SL: CS3202 Lecture 4 Slide 13

Natural deduction as a Typing System

• ∨-introduction:

Γ ` M : A

Γ ` or introl M : A ∨B

Γ ` M : B

Γ ` or intror M : A ∨B

Again, no need for or il : or il A B M is or introl M

and similarly for or ir .

This is a Cast in a union type, with a tag to remember which side of

the union a term comes from.

JHM+SL: CS3202 Lecture 4 Slide 14

Natural deduction as a Typing System

• ∨-elimination:

Γ ` M : A ∨B Γ, x : A ` N : C Γ, y : B ` P : C

Γ `
match M with
or introl x => N
|or intror y => P
end

: C

This is a Case analysis on the tag specifying which part of the union

M comes from.

or e A B M (fun x:A=>N) (fun y:A=>P)

is

match M with
or introl x => N
|or intror y => P
end

.

JHM+SL: CS3202 Lecture 4 Slide 15

Natural deduction as a Typing System

• ∧-introduction:

Γ ` M : A Γ ` N : B

Γ ` conj M N : A ∧B

Γ ` M : A Γ ` N : B

Γ ` pair M N : A ∗B

pair MN abbreviated as (M, N)

Again, no need for and i : and i A B M N is conj M N

This is a Pair / 2-component Structure .

JHM+SL: CS3202 Lecture 4 Slide 16

Natural deduction as a Typing System

• ∧-elimination:

Γ ` M : A ∧B

Γ `
match M with

conj x y => x

end

: A

Γ ` M : A ∧B

Γ `
match M with

conj x y => y

end

: B

This is the Access to one component of a Pair / binary structure .

JHM+SL: CS3202 Lecture 4 Slide 17

Natural deduction as a Typing System

• Point raised: Type “Inference”

• With these rules, it is true that

Given Γ, M , there is at most one type A s.t. there is a decorated

proof-tree concluding Γ ` M : A.

(& there is an algorithm to find it: run by Check command in COQ)

• Exercise: check this fact in all the decorated rules.

In particular, it relies on indicating “: A” in→-intro rule (λx : A.M)

Otherwise, how would you find the type of λx.x?

Exercise: why is it not needed in the discharges of ∨-elim?

JHM+SL: CS3202 Lecture 4 Slide 18

Natural deduction: the actual rules for ⊥ and ¬
• So far, no computational interpretation of⊥ and ¬:

• ⊥-introduction: none ⊥-elimination:
⊥
A

• ¬-introduction:

[A]···⊥
¬A

¬-elimination:
A ¬A

⊥

JHM+SL: CS3202 Lecture 4 Slide 19

Natural deduction as a Typing System for λ-calculus

• Implicational fragment (⇒ as the only connective), in intuitionistic

logic. Syntax obtained:

M, N, P, . . . ::= x | λx : A.M | M N

is the λ-calculus (Church, 30’s).

Set of variables decorating open assumptions (k.a. Free variables):

FV(x) = x

FV(M N) = FV(M) ∪ FV(N)

FV(λx : A.M) = FV(M) \ {x}

Full lecture on it later.

JHM+SL: CS3202 Lecture 4 Slide 20

Questions?

JHM+SL: CS3202 Lecture 4 Slide 20

