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Lecture 4 (20/02/2007):

Intuitionistic vs. classical logic
Decorating proof-trees with variables and terms
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A typo in the tutorial sheet

e Prove? - (A= B)=B)= A

e Check whether it is a tautology. Conclusion?
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Truthtable
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Reasoning by contradiction
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Is this correct?
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(A= B)—A)= A
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Reasoning by contradiction

e In fact we proved.:

——A
(A= B)—A) = -—A
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Natural deduction: soundness & completeness

e Soundness: @1, ..., o, F ¢ implies ¢1,..., 0, = ¢.
Completeness: @1, . .., ¢n = @ implies ¢1, ..., oy F P?
No.
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Classical Logic vs. Intuitionistic Logic

e Last lectures: Intuitionistic Logic

Semantically (w.r.t. truthtables)

e Classical logic is obtained by adding:

Reasoning by contradiction  Elimination of Double Negation Peirce’s Law
—A]
: ——A (A= B)= A
+ A A
A

Semantically (w.r.t. truthtables)
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Proof-terms for proof-trees
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Linking open/active leaves and variables

We use Variables to keep track of the set of open/active leaves.
In Coq: Variable H:A.

Idea: Represent proofs with terms /

Decorate inference rules & steps with terms and variable annotations

Along proof tree: need to keep track of the link open/active leaves —
variables in an Environment (a.k.a. Context):

Environment = mapping from variables to wff (e.g. x : A for x — A)

In decorated trees: Nodes are labelled with

I'-M:A
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Typing, proofs. ..

e Noooooo! same symbol asin @1, ..., o, = @

But. . . it will be the case (to be checked in each decorated rule later)

that

There exists an M & a (decorated) proof-tree of

T1:Plyee Ty O =M : @
if & only if

Py P - @

e Notion of Typing: I' = M : A “M is of type A in the environment I

=“M represents a proof of A under the (decorated) assumptions I"
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Natural deduction as a Typing System

e Use of an hypothesis:

I'Ne:AFx: A

On the I.-h. side, the wff A is declared to be available as an open

assumption, decorated with x.

A
The proof-tree A (or rather, — copy ?), having the wff A as an open
A

assumption, concludes A and is decorated by x in the environment
I'x : A

“Copy” — “use” ?
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Natural deduction as a Typing System

e —>-introduction:
I'Ne:AF-M: B
FI—(A;U:A.M):A:>B

NB: In CoQ’s concrete syntax
I''e: AFM: B
'-(fun z:A=>M):A— B

In fact, no need for IMp _I :
imp_i A B (fun xA=>M) isfun x:A=>M

This is (see next slide)
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Natural deduction as a Typing System

e CoQ’s definitions: Let myfavoritename := myterm.
or Definition myfavoritename = myterm.
e Hence, think of Let myfunction = fun xA => M. as

myfunction (x:A) {
M

}

It is of type A->B (if Mis of type B)

X is only available in the body Mof the function.

Ais an assumption temporarily made for the (sub-)proof Mof B.
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Natural deduction as a Typing System

e —>-elimination (a.k.a. Modus Ponens):

I'-M:A=B TIFN:A
I'-MN:B

Again, no need forimp _e:imp e A B M NisM N
This is
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Natural deduction as a Typing System

e \/-introduction:

I'EM: A I'-M:B
I' - or _introl M:AV B I'or_ntror M:AVDEB

Again, noneed foror _il :or il A B M isor _introl M

and similarly for or _ir .

Thisis a In a union type, with a tag to remember which side of

the union a term comes from.
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Natural deduction as a Typing System

e \/-elimination:

I'-M:AvB TI',x:ArN:C TI,y:BFP:C

match M with

or _introl r => N .
br lor _intror y => P ¢

end

Thisis a on the tag specifying which part of the union
M comes from.
or e A B M (fun xA=>N) (fun y:A=>P)

match M with

or _introl X => N
lor _intror y => P
end
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Natural deduction as a Typing System

e /\-introduction:

r-mMm:A T'EN:B T'T"HFM:A T'HEN:B
I'conf M N:AANB I'tpar MN:AxB

pair M N abbreviated as (M, N)
Again,noneedforand_i :and_i A B M Nisconj M N

Thisis a | 2-component
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Natural deduction as a Typing System

e /\-elimination:

I'-M:AANB I'-M:AANB
match M with match M with

' conj zy => 2 A ' conj zy=>y :B
end end

This is the
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Natural deduction as a Typing System

e Point raised: Type “Inference”

e \With these rules, it is true that
Given I', M, there is at most one type A s.t. there is a decorated
proof-tree concluding I' = M : A.
(& there is an algorithm to find it: run by Check command in CoQ)

e Exercise: check this fact in all the decorated rules.

In particular, it relies on indicating “: A” in —-intro rule (Az : A.M)

Otherwise, how would you find the type of Ax.x?

Exercise: why is it not needed in the discharges of V-elim?
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Natural deduction: the actual rules for 1 and —

e So far, no computational interpretation of L. and —:

A1
e _| -introduction: none | -elimination: —
A
A
: A —A
e —-introduction: —-elimination:
L 1
—-A
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Natural deduction as a Typing System  for A-calculus

Implicational fragment (= as the only connective), in intuitionistic

logic. Syntax obtained:

M,N,P,...:=x | Xx : AM | M N

is the A-calculus (Church, 30's).

Set of variables decorating open assumptions (k.a. Free variables ):

FV(x) =
FV(M N) = FV(M)UFV(N)
FV( Az : AM) =rv(M)\ {z}

Full lecture on it later.
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Questions?
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