

CS3202: Logic, Specification and Verification

CS3202-LSV 2006-07

cs3202.lec@cs.st-andrews.ac.uk

Dr. James McKinna, Rм 1.03

Dr. Stéphane Lengrand, Rm. 1.02

Lecture 2 (12/02/2007):

Propositional logic — The notion of proof in Natural Deduction

Review of propositional logic

- A *syntax* to express statements (wwf)
- A semantics to interpret the statements in the world $\{True, False\}$ given by *valuations*

Review of propositional logic: Consequence

• First approach: via the semantics

use the interpretation in the world to determine whether formulae are true or false

Tautology: wff with value true in all valuations

Even better: use the interpretation in the world to determine whether a formula ϕ is a *logical consequence* from other formulae ϕ_1, \ldots, ϕ_n :

every model of ϕ_1,\ldots,ϕ_n is a model of ϕ

$$\phi_1,\ldots,\phi_n\models\phi$$

Review of propositional logic: Consequence

 Second approach: directly in the syntax design a syntactic relation

$$\phi_1, \ldots, \phi_n \vdash \phi$$

via the notion of *proof*.

This is defined by a proof-theoretic formalism, e.g. *Natural deduction* (but there are others)

Question: Is $\phi_1, \ldots, \phi_n \models \phi$ equivalent to $\phi_1, \ldots, \phi_n \vdash \phi$?

... Why?

Natural deduction: the general idea

• Proof-theoretic formalism in which:

A proof is a (labelled & well-formed) tree.

- Nodes are labelled with wff. Example:

$$\frac{a}{a \wedge (b \vee c)} \frac{b}{b \vee c}$$

- Internal nodes and subtrees follow rules: *inference rules*. Example:

$$\frac{A \quad B}{A \wedge B}$$

Schematic rules and instances

• Schema:

$$\frac{A \quad B}{A \wedge B}$$

where A, B range over wff

• Instances (examples):

$$\frac{c \quad c'}{c \wedge c'} \qquad \frac{\neg c \quad \neg c'}{\neg c \wedge \neg c'}$$

for the particular atoms $c \mbox{ and } c^\prime$

. . .

Natural deduction: the syntactic consequence

• Proof-theoretic formalism in which:

A proof is a (labelled & well-formed) tree.

We define the relation $\phi_1, \ldots, \phi_n \vdash \phi$ as:

"there exists a (proof-)tree whose leaves (a.k.a. *hypotheses*) are labelled with wff among ϕ_1, \ldots, ϕ_n and whose root (a.k.a. *conclusion*) is labelled with ϕ "

Natural deduction: the actual rules for \wedge

• \wedge -introduction:

	A	B
\wedge -elimination:	$\overline{A \wedge B}$	
	$A \wedge B$	$A \wedge B$
	\overline{A}	B

Natural deduction: the actual rules for \Rightarrow

• \Rightarrow -introduction:

A is discharged.

 \Rightarrow -elimination (a.k.a. *Modus Ponens*):

$$\frac{A \Rightarrow B \qquad A}{B}$$

Natural deduction: the actual rules for \Rightarrow

• Need to adapt the notion of proof:

Labelled & well-formed tree + subset of leaves (active leaves).

Discharge A = remove from the set some leaves of the subtree labelled with A

• We define the relation $\phi_1, \ldots, \phi_n \vdash \phi$ as:

"there exists a (proof-)tree whose *active* leaves are labelled with wff among ϕ_1, \ldots, ϕ_n and whose root is labelled with ϕ "

Natural deduction: the actual rules for \perp , \neg and \lor

Natural deduction: Soundness

• $\phi_1, \ldots, \phi_n \vdash \phi$ implies $\phi_1, \ldots, \phi_n \models \phi$?

We prove it by induction on the height of tree. The inductive step amounts to analysing whether each inference rule is *correct*.

• Later: a lecture on *induction*.

(structural) induction as the reasoning counterpart to function definition by (structural) recursion

Natural deduction: Completeness

• $\phi_1, \ldots, \phi_n \models \phi$ implies $\phi_1, \ldots, \phi_n \vdash \phi$?

Are the rules enough to characterise semantic consequence?

We shall see tomorrow.

Questions?

JHM+SL: CS3202 Lecture 2 Slide 13