

CS3202: Logic, Specification and Verification

CS3202-LSV 2006-07

cs3202.lec@cs.st-andrews.ac.uk

Dr. James McKinna, Rм 1.03

Dr. Stéphane Lengrand, Rm. 1.02

Lecture 1 (06/02/2007):

Review of logic, syntax and semantics

Review of propositional logic: syntax

- propositional variables (atoms): P, Q, \ldots
- connectives: and \land , or \lor , implies \Rightarrow , iff \Leftrightarrow , not, \neg
- simple context-free grammar of well-formed formulae (wff)
- precedence and associativity (your mileage may vary)

Review of propositional logic: semantics

- yes, models of wffs
- valuations: finite maps from the propositional variables of a wff to the Booleans
- extend valuations to all wffs by structural recursion: need the truth tables
- a model ${\mathcal M}$ of a wff ϕ is a valuation in which ϕ has value true
- tautologies: wffs with value true in *all* valuations

- finite maps $\mathcal V$, taking propositional variables P, etc. into Booleans
- lift to all wffs by *structural recursion*:

• where $tt_{\wedge}(v, w)$, etc. are the *truth-table* functions on truth values for the corresponding connective

 fundamental semantic relation (*consequence relation*) from hypotheses to conclusions

$$\phi_1,\ldots,\phi_n\models\phi$$

- in every valuation in which each of ϕ_1, \ldots, ϕ_n has value true...
- . . . then so too does ϕ
- "entailment", "logical consequence", "semantic consequence" (for propositional logic)

- a *mechanical* process for checking entailments $\phi_1, \ldots, \phi_n \models \phi$
- identify the propositional atoms P, Q ... in ϕ_1, \ldots, ϕ_n , ϕ
- consider all valuations \mathcal{V} on these atoms; (then extend to wffs)
- identify all such $\mathcal V$ for which each of $\mathcal V(\phi_i)$ = true
- check that for all such valuations $\mathcal{V}(\phi)$ = true
- Problem: complexity lower bound of 2^p in the number p of propositional atoms

• *syntactic* consequence relation, capturing "does the conclusion follow from the hypotheses?"

$$\phi_1,\ldots,\phi_n\vdash\phi$$

- defined by *inference rules*: introduction and elimination
- finite system, follows the *structure* of the grammar
- "natural": obviously correct inference from hypothesis to conclusion in each rule
- soundness: formalise this "obviously correct" idea
- completeness: the rules are, in fact enough to characterise semantic consequence (not at all "obvious")

Questions?

JHM+SL: CS3202 Lecture 1 Slide 6