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Abstract

This report presents a conflict-driven satisfiability inference system (CDSAT) for
(quantifier-free) first-order logic modulo a generic combination of disjoint theories. We de-
termine the requirements that the theories and their decision procedures need to satisfy for a
CDSAT combination, generalizing both equality sharing and the MCSAT system of De Moura
and Jovanović, that was introduced for one generic theory and extended to a combination of
specific disjoint theories. We prove soundness, completeness, and termination of CDSAT.
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1 Introduction

Satisfiability (SAT) is the problem of deciding the satisfiability of a propositional formula ϕ.
Satisfiability modulo theory (SMT) is the problem of deciding the satisfiability of a quantifier-
free first-order formula ϕ in a theory T . The answer is either “satisfiable” with a model or
“unsatisfiable” with a refutation. During the search, a SAT or SMT solver maintains a partial
candidate model represented by an assignment of truth values to propositional variables. This
suggests the more general problem of satisfiability modulo assignment (SMA), defined as the
problem of deciding the satisfiability of ϕ in T with respect to an assignment J to some of the
variables in ϕ, including both propositional variables and free first-order variables. If J is empty,
SMA reduces to SMT; if both J and T are empty, SMA reduces to SAT, while an intermediate
state of a SAT or SMT search is an SMA instance. The answer to an SMA problem is either
“satisfiable” with a model extending J , or “unsatisfiable” with a formula ψ that follows from ϕ

and is false in J . Formulæ ϕ and ψ are usually in conjunctive normal form and written as sets of
clauses.

The formula ψ is called explanation, because it explains why ϕ is unsatisfiable under J .
The concept of explanation generalizes known notions, such as those of unsatisfiable core and
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interpolant. In SAT, an unsatisfiable core of ϕ is a conjunction of clauses that follows from ϕ and
is unsatisfiable. If J is written as a formula, a (reverse) interpolant of ϕ and J is a formula that
follows from ϕ and is inconsistent with J (see [2] for a survey on interpolation of ground proofs).

SMA arises in several contexts, such as enumeration of models, optimization, and paralleliza-
tion. The models of a SAT or SMT problem can be enumerated by solving a series of SMA
problems where each initial assignment J excludes the models already found. An optimization
problem can be approached by solving a series of SMA problems where each initial assignment
J contains information generated by the previous runs, in such a way that the series converges
towards an optimal solution1. Approaches to parallel SAT by distributed search solve a SAT prob-
lem with input formula ϕ, by solving in parallel multiple instances of SMA with input formula ϕ
and initial assignments J each containing a distinct guiding path [31] or cube [17].

Model-constructing satisfiability (MCSAT) is a paradigm to design model-constructing deci-
sion procedures for SMA. It was introduced by De Moura and Jovanović for a single theory T
[11], and extended to the case where T is the combination of the theory of equality with uninter-
preted function symbols (EUF) and linear real arithmetic [18]. The motivation was to integrate
model-constructing satisfiability procedures for arithmetical reasoning [25, 21, 7, 19, 20, 16] with
propositional reasoning. MCSAT blends and generalizes some key ideas emerged in the develop-
ment of decision procedures for satisfiability: conflict-driven clause learning (CDCL) [24, 26, 23],
model-based theory combination (MBTC) [30, 15, 10], and lemmas on demand [14, 6], that we
illustrate in the following.

1.1 State of the Art

The Davis-Putnam-Logemann-Loveland (DPLL) procedure for propositional satisfiability (SAT)
that originated in [9, 8] searches for a model of a set of clauses by guessing truth values of
propositional variables (splitting or decision) and propagating consequences of the guesses (clausal
propagation). Conflict-driven clause learning (CDCL) [24, 26, 23] uses inferences to drive the
search for a model. A conflict emerges between the current partial assignment J and the set
of clauses to be satisfied, when for a clause l1 ∨ . . . ∨ ln, the assignment li ← false, or ¬li for
short, is in J . Propositional resolution is applied to explain the conflict, by resolving the conflict
clause with the justification of a ¬li, that is, the clause satisfied precisely by placing ¬li in J .
Heuristics such as first unique implication point (1UIP) (e.g., [23]) are used to determine how
many resolutions to do, which resolvent to add to the set of clauses, and how to mend J by
backjumping and making a literal in the learned resolvent true.

DPLL(T ) (e.g., [28]) integrates a theory solver, or T -solver for short, and a DPLL-CDCL
SAT-solver. Since the SAT-solver accepts only propositional clauses, first-order ground atoms
are mapped to propositional variables known as proxy variables. The interface between SAT and
T -solver consists of two rules: in the T -conflict rule, the T -solver detects that a set of literals
l1, . . . , lk in J is unsatisfiable in T ; in the T -propagation rule, the T -solver detects that a set of
literals l1, . . . , lk in J entails in T a literal l, and adds l to J with the T -lemma ¬l1 ∨ . . .∨¬lk ∨ l

1For example, this concept appeared in the presentation of [13] about adapting to optimization the satisfiability
procedure of [20, 12] for the theory of algebraic reals.
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as justification. There is no creation of new (i.e., non-input) atoms in DPLL(T ), because clauses
learnt by CDCL are propositional resolvents made of input atoms, and in T -propagation the atom
of l must already occur in the existing set of clauses.

If T is a combination of theories T1, . . . , Tn, the Ti-solvers need to agree on the interpretation
of whatever is shared among the theories. If they are disjoint, meaning they do not share function
or predicate symbols other than equality, the theory solvers need to agree on the cardinalities of
the domains for shared sorts and on an arrangement of shared variable symbols, that tells which
are equal and which are not. The equality sharing method proposed by Nelson and Oppen in [27]
is the standard approach to this combination problem. It requires the theories to be stably infinite,
so that the common cardinality of the shared domains can be implicitly assumed to be infinite.
An arrangement is computed by having each Ti-solver propagate any disjunction of equalities
x1 ' y1 ∨ . . .∨ xn ' yn between shared variables that is entailed in Ti by the Ti-subproblem. The
case analysis for these disjunctions, as well as for any other disjunction generated by a Ti-solver,
is entrusted to the SAT-solver. The presentation of DPLL(T ) in [28] was generalized to the case
where T is a combination of theories by equaliy sharing in [1]: the notion that all disjunctions
are handled by the SAT-solver was dubbed splitting on demand; and the framework of [28] was
extended to allow the generation of a finite number of new atoms, namely the proxy variables for
the equalities x1 ' y1, . . . , xn ' yn. The integration of equality sharing in a DPLL-CDCL based
SAT-solver was systematized further in [22].

Model-based theory combination (MBTC) assumes that the Ti-solvers build Ti-models explic-
itly [30, 15, 10]. Each Ti-solver is allowed to propagate equalities between ground terms that are
true in its current candidate Ti-model, rather than entailed (disjunctions of) equalities between
shared variables. If the propagated equalities cause conflicts, conflict-driven backjumping will re-
tract them. The stable infiniteness requirement is not necessary, because the Ti-models are built
explicitly. Also MBTC does not generate new atoms, because the propagation of an equality s ' t
is allowed only if s and t appear in the existing set of clauses. MBTC has been applied preferably
to fragments of arithmetic, where the domain and the interpretation of theory symbols are fixed,
and there exist algorithms that can update the candidate model after a conflict (e.g., [15, 10]).

The idea of lemmas on demand is that a theory solver should generate only theory lemmas that
explain why the current assignment J is inconsistent with respect to the theory [14, 6]. In other
words, theory propagation should be model-based and conflict-driven. If there were no first-order
theory and we were in propositional logic, lemmas on demand would be essentially the same as
CDCL, with propositional resolvents as lemmas. In [6] this concept was developed for the theory
of arrays with extensionality. Although there are decision procedures for this theory [29], most
SMT-solvers reason about it by instantiating the universally quantified variables in the theory
axioms. The decision procedure in [6] features rules that work by propagating read operations
over arrays, and generate lemmas of the form l1 ∧ . . . ∧ lk ⇒ l, where l1, . . . , lk are true in J ,
and l is false in J , whereas it should be true according to the axioms of the theory. The lemma
reveals that the current assignment J is not a theory model and tells why. Often lemmas are
instances of axioms, so that lemmas on demand can be regarded as model-based conflict-driven
axiom instantiation.

MCSAT [11, 18] advances all these ideas in several ways. First, it merges the propositional
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model of CDCL with the theory models of MBTC, by maintaining a central trail J that includes
both literals assigned true, and assignments of values to free first-order variables. Second, it gen-
eralizes CDCL to any theory that can be equipped with clausal inference rules to explain theory
conflicts. These inference rules generate clauses that may contain new ground atoms in the signa-
ture of the theory, beyond what is allowed by DPLL(T ) with splitting on demand. Assignments
to first-order variables and new atoms are involved in decisions, propagations, conflict detections,
and explanations, on a par with Boolean assignments and input literals. For termination, the
method requires that new atoms come from a finite basis. A procedure that applies systemati-
cally the inference rules to enumerate all atoms in the finite basis would be too inefficient. The
key point is that the inference rules are applied only to explain conflicts and amend the current
partial assignment, so that the generation of new atoms is model-based and conflict-driven. In
this sense, MCSAT is a faithful lifting of CDCL to SMT and SMA, with first-order inferences for
theory explanation, beyond explanation by propositional resolution that DPLL-CDCL, DPLL(T ),
DPLL(T ) with splitting on demand, and their integration with superposition in DPLL(Γ+T ) [3],
all have in common.

The big picture sees various approaches to generalize CDCL to first-order reasoning. From
the SMT side, the process started with generalizations of CDCL to specific theories, such as
linear real arithmetic (LRA) [25, 21, 7], linear integer arithmetic (LIA) [19], non-linear arithmetic
[20], and floating-point binary arithmetic [16]. By being generic with respect to the theory, and
integrating theory reasoning and propositional reasoning in all aspects of deduction and search,
MCSAT encompasses these predecessors. From the theorem proving side, semantically-guided
goal-sensitive (SGGS) reasoning lifts CDCL to a method for first-order logic that is refutationally
complete and model-complete in the limit [4, 5]. The future may witness further convergence.

1.2 Contributions

The motivation of MCSAT was to make the integration of theory solvers such as those in [19, 20]
with a CDCL-based SAT solver possible. Thus, the combination of theories, involving at least
propositional logic, equality, and arithmetic, was an objective of the method since its inception.
The goal of this paper is to extend MCSAT to any generic combination of disjoint theories. This
involves:
• Clarifying the requirements that the theories and their solvers need to fulfill;
• Devising deduction mechanisms for the explanation of conflicts across such a generic combi-

nation of theories; and
• Extending the soundness, completeness, and termination results given in [11] for the single

theory case to our general combination setting.
This leads to a theory-modular reasoning system, called CDSAT for Conflict-Driven Satisfiability,
which generalizes both MCSAT and the equality-sharing scheme. In this way we advance both
the development of a model-constructing approach to theory combination and the generalization
of the CDCL paradigm to first-order reasoning.
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2 Preliminary definitions

We assume the basic definitions in automated reasoning, and define those needed for features
of CDSAT or especially important in the sequel. The formulæ given as input to CDSAT are
quantifier-free formulæ where all variable occurrences are free. In this report, quantifiers may
appear only in the axioms of a theory. Axioms are sentences that are formulae where all variables
are quantified. Thus, we use formula for quantifier-free formula, like those appearing in an input
problem, and sentence for the axiomatization of a theory.

In SAT and SMT, we are used to writing l ← true to say that a propositional atom l is
assigned true. In SMT, l can be a proxy for a first-order atom. MCSAT [11, 18] and CDSAT
also use assignments to first-order variables that can be proxies for terms. CDSAT generalizes
the notion of assignment, allowing assignments to first-order variables, terms, atoms, literals,
and even formulæ, in a uniform way. Thus, we choose basic definitions that blur the distinction
between function symbol and predicate symbol, and the distinction between term, atom, literal,
and formula, regarding all these expressions as terms.

Definition 1 (Signature) A signature Σ = (S, F ) consists of a set S of sorts that includes a
special sort prop and a set F of symbols that includes equality symbols 's : (s×s)→prop for every
s ∈ S. ※

For a symbol f ∈ F , the notation f : (s1× · · ·×sm)→s says that f has arity m, input sorts
s1, . . . , sm (m ≥ 0) and output sort s. Symbols can be constant symbols (m = 0), function
symbols, and predicate symbols that have prop as output sort. We may write 'S for {'s :
s×s→prop | s ∈ S}, and ' for 's when sort s is clear from context. The connectives ∧, ∨, and
¬, if present, are seen as symbols whose input and output sorts are prop. Given a set of sorts
S, we use V = (Vs)s∈S for a family of pairwise disjoint sets of variables, where Vs is the set of
variables of sort s. With a slight abuse of the notation, if S1 and S2 are two sets of sorts with
their families of sets of variables V1 and V2, we write V1 ⊆ V2, if for all s ∈ S1, we have s ∈ S2
and Vs

1 ⊆ Vs
2 .

Definition 2 (Σ[V ]-term) Given Σ = (S, F ) and V = (Vs)s∈S , for all s ∈ S, every variable
x ∈ Vs is a Σ[V ]-term of sort s; and for all symbols f : (s1× · · ·×sm)→s in F , if t1, . . . , tm are
Σ[V ]-terms of sorts s1, . . . , sm, then f(t1, . . . , tm) is a Σ[V ]-term of sort s. ※

The free variables fvs(t) of sort s of a Σ[V ]-term t are defined as usual, with fv(t) denoting
the family (fvs(t))s∈S . We call Σ[V ]-formulae the Σ[V ]-terms of sort prop, and use infix notation
for equality. We use l for formulæ and t and u for terms of any sort. The standard formulæ of
multi-sorted first-order logic can be defined as the closure of our formulæ under quantifiers and
Boolean connectives; those with no free variables are called sentences, or Σ-sentences if we want
to specify the signature.

Definition 3 (Σ[V ]-interpretation) Given Σ = (S, F ) and V = (Vs)s∈S , a Σ[V ]-interpretation
M consists of:
• For each sort s ∈ S, a non-empty domain sM, with the proviso that propM = {true, false};
• For each symbol f : (s1× · · ·×sm)→s in F , a function fM from sM1 × · · ·×sMm to sM, with the
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proviso that for each sort s ∈ S, 'Ms is the function from sM×sM to {true, false} that returns
true if and only if its two arguments are the same element; and

• For each variable v ∈ Vs, an element vM in sM. ※

Given a Σ[V ]-interpretation M, the interpretation M(t) of a Σ[V ]-term t is defined as usual.
So is defined the interpretation of any formula of multi-sorted first-order logic, with or without
quantifiers, whose free variables are in V . A Σ-structure is a Σ[~∅]-interpretation.

A theory T on signature Σ is defined axiomatically as a pair (Σ,A), where A is a set of
Σ-sentences that are the axioms of T , and model-theoretically as a class of Σ-structures, called
models of T or T -models. The T -models are those Σ-structures that satisfy the axioms in A. A
T [V ]-model is any Σ[V ]-interpretation that is a T -model when the interpretation of variables is
forgotten. Two signatures are disjoint if they do not share symbols other than equality, and two
theories are disjoint if their signatures are.

Let T1, . . . , Tn be pairwise disjoint theories with signatures Σ1, . . . ,Σn, where Σk = (Sk, Fk) for
1≤ k≤n. Let T∞ be their union, with signature Σ∞ = (S∞, F∞), where S∞ = ⋃n

k=1 Sk and F∞ =⋃n
k=1 Fk, and collection of variables V∞ = (Vs

∞)s∈S∞ . From now on, we use variable for variables
in V∞. If T1, . . . , Tn are defined axiomatically as (Σk,Ak), for 1≤ k≤n, the axiomatization of
T∞ is given by ⋃n

k=1Ak. In this report we sometimes use Σ and T for anyone of Σ1, . . . ,Σn and
T1, . . . , Tn, respectively. We also use term for Σ∞[V∞]-term.

Example 1 Consider the following input problem for CDSAT:
P = {f(select(store(a, i, v), j))'w, f(u)'w − 2, i' j, u' v}.

This problem can be understood in the combination of the theory T1 of linear rational arithmetic,
the theory T2 of equality with the uninterpreted function symbol f , and the theory T3 of arrays,
with the following signatures:

Σ1 = ( {prop,Q} , '{prop,Q} ∪ {(0, 1:Q), (+:(Q×Q)→Q)} ∪ {(c· :Q→Q) | c ∈ Q} )
Σ2 = ( {prop,Q, V } , '{prop,Q,V } ∪ {f :V→Q} )
Σ3 = ( {prop, V, I, (I⇒V )}, '{prop,V,I,(I⇒V )}

∪ {select : (I⇒V )×I→V, store : (I⇒V )×I×V→(I⇒V ))} )

where Q is the sort of the rationals, Q is the set of the rationals, w − 2 is an abbreviation for
w + ((−2)·1), and (I⇒V ), I, and V are the sorts of arrays, array indices, and array values,
respectively. ※

The language of terms is a common language for communication among the theories to be
combined. However, each theory has a partial understanding of a term, as if the theory looked at
the term with its own “color filter”. Given a term t, a theory T whose signature Σ = (S, F ) does
not include the whole of Σ∞ sees a subterm of t whose root symbol is not in F as a free variable.
We call such a variable Σ-foreign, or simply foreign if Σ is clear from context. Foreign variables
correspond to those terms that would be replaced by new variables during purification, a process
also known as variable abstraction or separation. Following [18], we use generalized variables for
free variables including foreign variables. In Fig. 1 we define the set fvs

Σ(t) of generalized free
Σ-variables of sort s in term t for any s ∈ S. A variable in fvs

Σ(t) is Σ-foreign if it is not in
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fvs
Σ(x) {x} if x ∈ Vs

∞
fvs

Σ(x) ∅ if x 6∈ Vs
∞

fvs
Σ(f(t1, . . . , tn)) ⋃n

i=1 fvs
Σ(ti) if f ∈ F

fvs
Σ(f(t1, . . . , tn)) {f(t1, . . . , tn)} if f 6∈ F and f(t1, . . . , tn) is a term of sort s

fvs
Σ(f(t1, . . . , tn)) ∅ if f 6∈ F and f(t1, . . . , tn) is a term not of sort s

Figure 1: Generalized free Σ-variables for Σ = (S, F )

V∞ (fourth line in Fig. 1). Then we use fvΣ(t) for the family (fvs
Σ(t))s∈S , and we adopt the

abbreviations fvs(t) and fv(t) when Σ is Σ∞. These notations extend as expected to sets of terms
or families of sets of terms. Note that a Σ[V ]-interpretation M can interpret term t as M(t) as
soon as fvΣ(t) ⊆ V .

Example 2 Continuing Example 1, the free Σ-variables of P , when Σ is anyone of Σ1, Σ2, and
Σ3 are as follows:

fvΣ1(P ) = { f(select(store(a, i, v), j)), w, f(u), i' j, u' v }
fvΣ2(P ) = { select(store(a, i, v), j), w, u, w − 2, i' j, v }
fvΣ3(P ) = { f(select(store(a, i, v)), j)'w, f(u)'w − 2, i, j, u, v } ※

3 Theory assignments and models

The notion of assignment is central to CDSAT. First, CDSAT reads any input problem as an
assignment: a SAT problem {l1, . . . , lm}, where l1, . . . , lm are propositional clauses, is read as
{l1←true, . . . , lm←true}; an SMT problem {l1, . . . , lm}, where l1, . . . , lm are literals as in Exam-
ple 1, is read as {l1←true, . . . , lm←true}; an SMA problem {l1, . . . , lm} with input assignment
{x←

√
2, j←0} is read as {l1←true, . . . , lm←true, x←

√
2, j←0}. Then, the goal of CDSAT is to

determine whether the input is satisfiable. CDSAT uses assignments to terms of different sorts
to represent a candidate model of the input problem and reason about it. Therefore, we need to
define (1) a sufficiently general notion of assignment, and (2) what it means that an assignment is
satisfied, or, equivalently, when the current assignment does indeed capture a model. The latter
is the objective of the notion of endorsement, or when a model endorses an assignment. For a
Boolean assignment it suffices that assignment and model agree: whatever is assigned a truth value
in the assignment has that truth value in the model. When other sorts are involved, as in x←

√
2,

a preliminary step is required, because a value such as
√

2 is not necessarily part of the signature
of any theory involved, and therefore is not necessarily interpreted by any of their models. The
preliminary step is to extend the signatures of the theories T1, . . . , Tk with new constant symbols
to name whichever values may be necessary to assign in order to establish satisfiability. In this
section we introduce first theory extensions and then assignments and endorsements, considering
first one theory and then many.
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3.1 Assignments and models for one theory

An extension adds constant symbols to the signature. Clearly, we are interested only in extensions
that are conservative:

Definition 4 (Conservative theory extension) Given a theory T with signature Σ = (S, F ),
a conservative extension of T is a theory T + with signature Σ+ = (S, F+) such that F+ extends
F with new constant symbols and every set of Σ[V ]-formulæ that is T +-unsat is T -unsat. ※

Conservativity ensures that reasoning in the extension does not change the problem: if CDSAT
discovers T +

k -unsatisfiability, the problem is Tk-unsatisfiable; if the problem is Tk-satisfiable, there
is a T +

k -model that CDSAT can build.
Let T be a theory and T + a conservative extension. Ds denotes the set of added constants

of sort s ∈ S, called T +-values of sort s. A sort s ∈ S with a non-empty Ds is called T +-public,
because there are T +-values that can be assigned to terms of sort s in a CDSAT derivation.

Since all models interpret formulæ as true or false, we assume without loss of generality that
prop is a T +-public sort withDprop = {true, false}. In other words, true and false are simultaneously
the two Boolean values (cf. Definition 3) and two constants that name them. Furthermore, since
Boolean constants and more generally Boolean terms are formulae, true and false also need to be
interpreted: we assume that true and false are respectively valid and unsatisfiable in T +.

The trivial extension of a theory T is the extension that only adds {true, false} as new constants
and true and ¬false as new axioms.

Example 3 Let RA be the theory of real arithmetic on signature ΣRA = ({R, prop}, F ), with
F = {(0, 1 :R), (+,−,× : (R×R)→R)} ∪ '{R,prop} . An extension RA+ may add a new constant
for every real number that is algebraic. In this manner the signature remains countable. The sort
R is a RA+-public sort and the RA+-values of sort R are the algebraic reals. The axioms of RA+

are the formulæ that hold in the standard model of the reals that interprets every RA+-value as
itself. ※

Extending the signature with names to denote all individuals in the domain(s) of a T -model,
as in the example above, is a standard move in logic. In such cases a T +-value is both the model
element and the corresponding constant symbol that names it. We will do this when T has a clear
“intended model” as for the integers or the reals. For theories without an “intended model”, we
may take T + to be the trivial extension of T . The theory of Equality with Uninterpreted Function
symbols (EUF) can be treated in this way. Alternatives for this theory will be considered in the
sequel. T +-values are the values that may appear in T +-assignments:

Definition 5 (T +-Assignment) A T +-assignment is a set of pairs t←c where t is a term of a
T +-public sort s and c ∈ Ds. Term t and all its subterms are said to occur in the assignment.
The assignment is plausible if for no formula l it contains both l←true and l←false. ※

For example, {x←
√

2, x + y←
√

3} and {f(x)←
√

2, (1×x' x)←true} are RA-assignments,
with x, y and x + y occurring in the former, and x, f(x), 1×x and (1×x' x) occurring in the
latter. A T +-assignment whose pairs all assign values to formulæ is a Boolean assignment. A
singleton T +-assignment is often written t←c instead of {t←c}. A first-order T +-assignment is
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a singleton T +-assignment that is not Boolean. We use A and L for singleton T +-assignments,
reserving L for Boolean ones, and J for generic T +-assignments. The flip L of a singleton Boolean
assignment L assigns to the same formula the opposite Boolean value. When there is no ambiguity,
we abbreviate l←true as l and l←false as l, except in the case of equality where t's u←false is
abbreviated as t 6's u.

Example 4 Building on Example 3, assume theory TRA is combined with some other theory,
whose signature features a symbol f : R→R. Then x←

√
2, f(0)←

√
2, {x←

√
2, f(0)←

√
2} and

{x←
√

2, f(0)←
√

2, (1×f(0)' f(0))} are all T +
RA-assignments, and 1×f(0)' f(0) is a singleton

Boolean assignment. ※

We proceed next to define what it means that a model endorses a T +-assignment.

Definition 6 (Endorsement) A T +[V ]-model M endorses a T +-assignment J with fvΣ(J) ⊆
V , if for all t←c in J , we have M(t) = cM. ※

In the special case of a Boolean assignment, this simply means thatM interprets the formulæ
of J with the correct truth values. The extended signature Σ+ allows us to predicate endorsement
on structures that can make sense of values such as

√
2. Predicating it on T +-models, we further

assume that these structures interpret values in an “intended way”, in this case ensuring that√
2×
√

2 = 2 holds.

3.2 Combining theories

From now on, we assume that each theory Ti, 1 ≤ i ≤ n, has a conservative extension T +
i with

signature Σ+
i = (Si, F

+
i ) and set Di

s of T +
i -values of sort s for all s ∈ Si. As expected, the union

of T +
1 , . . . , T +

n is an extension T +
∞ of T∞ with signature Σ+

∞ = (S∞,
⋃n

k=1 F
+
k ). If T +

1 , . . . , T +
n

are defined axiomatically with sets of axioms A+
1 , . . . ,A+

n , the axiomatization of T +
∞ is given by⋃n

k=1A+
k . We assume without loss of generality that every non-Boolean T +

∞ -value unambiguously
comes from a unique T +

k .
T +
∞ -assignments are simply called assignments, and denoted H. A sort s may be both T +

i -
public and T +

j -public for i6=j, and therefore an assignment H may contain t←ci and t←cj for
i 6= j for a term t of a sort s, a T +

i -value ci ∈ Di
s, and a T +

j -value cj ∈ Dj
s. Unless s is prop,

ci and cj live in the different worlds described by T +
i and T +

j , but they will be identified as the
same element when constructing a T +

∞ -model endorsing H from a T +
i -model and a T +

j -model
both endorsing H.

In order to extend the notion of endorsement (cf. Definition 6) to problems involving many
theories we need the notion of theory view:

Definition 7 (Theory view) Given theory T with signature Σ and extension T + with signature
Σ+ = (S, F+), where S ⊆ S∞ and F+ ⊆ F+

∞, the theory view for T , or T -view, of an assignment
H is the T +-assignment HT =

{ t←c | t←c is a T -assignment in H } ∪⋃n
k=1 { t1's t2 | t1←c, t2←c are Tk-assignments in H, s ∈ S\{prop} } ∪⋃n
k=1 { t1 6's t2 | t1←c1, t2←c2 are Tk-assignments in H, c1 6=c2, s ∈ S\{prop} }. ※
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The first part of HT is the part of H that theory T + can understand; the second part adds
all the equalities entailed by assignments of identical values; and the third part adds all the
disequalities entailed by assignments of distinct values. Typically either T∞-views or Tk-views,
for some k, 1≤ k≤n, are considered.

A CDSAT input is a T +
∞ -assignment H and the problem is to determine whether there exists

a T +
∞ [fv(H)]-model M that endorses its T +

∞ -view:

Definition 8 (View endorsement) Given theory T with signature Σ and extension T + with
signature Σ+ = (S, F+), where S ⊆ S∞ and F+ ⊆ F+

∞, a T +[V ]-model M view-endorses an
assignment H with fvΣ(H) ⊆ V , if it endorses the T -view HT . ※

Note that the disequalities in the definition of HT impose that any T +[V ]-model endorsing
HT distinguishes the distinct T +

k -values that appear in H for all k. If H is a Boolean assignment,
view endorsement collapses to endorsement. CDSAT solves an SMA problem by searching for a
T +
∞ [ ~V∞]-model that endorses the input assignment.

4 Theory modules

In this section we identify a notion of theory module, which is an abstraction of the theory-specific
decision procedures, implemented in theory solvers or theory plugins [18]. Like all conflict-driven
procedures, CDSAT allows the explicit construction of a (partial) model. In practice, it lets
the theory-specific procedures expand the input assignment, finding values for subterms of the
input problem as well as other terms introduced during the derivation. Some of the assignments
are guesses, while others are consequences of such guesses according to inferences. Therefore, a
module I for theory T with extension T +, or T -module, is given by two components:
1. A set of I-inference rules, modeling reasoning steps in theory T +; and
2. A function basisk, called local basis, that maps any finite set X of terms to a finite set of terms

basisk(X) representing the terms that inferences can introduce during a derivation from an
input problem whose set of terms is included in X.
A T -module is required to satisfy a completeness property, that will be defined in such a

way to ensure that if all T -modules are complete then their CDSAT combination is complete.
Section 4.1 formalizes theory modules. Section 4.2 introduces the concepts of acceptability and
relevance that will be used to define the CDSAT system (Section 6). Section 4.3 defines the
completeness requirement for a theory module.

4.1 Theory inference system and basis

Let T be one of the theories T1, . . . , Tn to be combined, with signature Σ, and let T + be its
extension. The first component of a T -module is an inference system I to reason in theory T +.
Due to the centrality of assignments in CDSAT, the theory inference systems work on assignments,
and inference rules derive Boolean assignments from generic assignments. An I-inference J ` L
derives a singleton Boolean assignment L from a T +-assignment J . An inference system I is sound
if for all its inferences J ` L whenever fvΣ(J, L) ⊆ V , every T +[V ]-model that view-endorses J
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t1←c1, t2←c2 ` t1's t2 if c1 and c2 are the same T +-value of sort s
t1←c1, t2←c2 ` t1 6's t2 if c1 and c2 are distinct T +-values of sort s

` t1's t1 reflexivity
t1's t2 ` t2's t1 symmetry

t1's t2, t2's t3 ` t1's t3 transitivity

where t1, t2, and t3 are terms of sort s.

Figure 2: Equality inference rules

endorses L. Since all theories include equality, every theory inference system includes the equality
inference rules of Fig. 2.

Example 5 Following Example 4, these are all RA-inferences:
{ x←

√
2, f(0)←

√
2 } `RA (x×f(0)' 1 + 1)

(x←
√

2) `RA (x×x' 1 + 1)
{(f(0)←

√
2), (x←

√
2)} `RA (f(0)' x)

{(f(0)←
√

2), (x←
√

3)} `RA (f(0) 6' x) ※

The second component of a theory module I is a local basis for signature Σ. This is a function
that must be provided when describing a theory module, but it does not need to be implemented:
it only plays a role in the proof of termination of CDSAT derivations using this theory module.
To motivate this notion, notice that if an I-inference J ` L is used to infer L from J , assignment
L may introduce new terms that were not in J nor even in the input problem. This is in line with
MCSAT calculi [11, 18] where, unlike DPLL(T ), theory solvers can introduce terms and formulæ
that were not present in the original problem, jeopardising termination. Termination is ensured
by requiring that the new terms introduced by theory solvers be drawn from a finite set called
global basis. So the second component of our notion of theory module is a theory-local version
of this global basis, used to limit to a finite number the range of terms that the theory module
may introduce in a derivation for an input problem. This will help ensuring termination of the
CDSAT transition system.

To define the notion of local basis, we introduce the following terminology: A closed set is a
finite set of terms that is closed under the subterm relation and equalities on a sort different from
prop: if t is a subterm of u and u is in the set, then so is t; and if t and u are in the set, of a sort
s different from prop, then so is t's u.

Definition 9 (Local basis) A function basis mapping any closed set X to a closed set basis(X)
is said to be a local basis for signature Σ if the following properties hold:
• Original terms: X ⊆ basis(X);
• Finiteness: basis(X) is finite;
• Monotonicity: If X ⊆ Y then basis(X) ⊆ basis(Y );
• Idempotence: basis(basis(X)) = basis(X);
• No introduction of foreign variables: Every foreign Σ-variable of basis(X) is in X.

※
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Examples of local bases for various theories are given in Section 5. Section 9 shows how the
properties required of a local basis contribute to the termination and progress properties of the
CDSAT system, i.e. the fact that it systematically reduces the input problem to an interesting
normal form. This will also rely, however, on the existence of a global basis for the combination
of theories, and Section 9.3 shows an example of sufficient condition that entails its existence.

For any finite set X of terms, we write ⇓X for the smallest closed set containing X. Note that
the closure operation X 7→⇓X is monotonic and idempotent. Given a local basis, we generalise
the notation basis(X) to the cases where X is not a closed set, meaning basis(⇓X).

In brief, a module for theory T with extension T + is a pair ( `, basis ) as described above.
A further requirement that we impose on a theory module is the completeness property that

we describe in Section 4.3. But it is not needed for the definition of the CDSAT system per se
(given in Section 6), which does require, on the other hand, a couple of concepts and notations.

4.2 Acceptability and Relevance

CDSAT builds incrementally a (partial) model by extending the existing assignment with values
for unassigned terms. When adding an assignment, the system checks that it does not cause a
one-step violation, that is, an inconsistency that one inference is sufficient to expose:

Definition 10 (One-step violation) Given a T +-assignment J , a first-order T +-assignment A
violates J in one I-step, if there exists an I-inference (J ′, A `I L) with J ′, L ⊆ J . ※

Definition 11 (Acceptability) A singleton T +-assignment (t←c) is acceptable for J and I if
(i) J does not already assign a value to t and (ii) either (t←c) is Boolean or it does not violate J
in one I-step. ※

When adding t← c to J , acceptability prevents repetitions (cf. Condition (i)) and contradic-
tions: if t← c is Boolean, its flip should not be in J , preserving plausibility (cf. Condition (i) in
Definition 11 and Definition 5); if t← c is first-order, and therefore has no flip, so that plausibility
does not apply, acceptability ensures that none of the consequences one inference step away has
its flip in J (cf. Condition (ii)).

The following notion of relevance organizes the division of labor among modules. T +-relevant
terms are those that the T +-module should consider for assignment in order to advance the model
building process:

Definition 12 (T +-relevant terms) A term is T +-relevant for an assignment H, if either (i)
it occurs in H and has a T +-public sort, or (ii) it is an equality t1's t2 whose terms t1 and t2
occur in H and whose sort s ∈ S is not T +-public. ※

For instance in the assignment {x←
√

5, f(x)←
√

2, f(y)←
√

3}, x and y, both of sort R, are
RA-relevant, not EUF-relevant, assuming R is not EUF-public, while x'R y is EUF-relevant, not
RA-relevant. Each theory needs to have a mechanism to fix and communicate equalities between
terms of a known sort, such as x and y: EUF can do it by deciding the truth-value of x'R y, while
RA can do it by assigning values, either the same or different, to x and y.
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From now on, we assume that each theory Tk, 1 ≤ k ≤ n, with extension T +
k is equipped with

a theory module Ik = ( `k, basisk ).

4.3 Completeness requirements

CDSAT applies inferences to compute consequences of assignments in order to either detect a
conflict or realize that a model of the input problem can be extracted from the existing assign-
ments. CDSAT is designed in such a way that the latter situation is reached when no theory
module I1, . . . , In can extend the current assignment. As before, T stands for one of the theories
T1, . . . , Tn, Σ = (S, F ) is its signature, T + is its extension, and I = ( `I , basisI ) is its module.

Definition 13 (Assignment extension) Module I can extend a T +-assignment J if
• Either there exists a T +-assignment (t←c), for a T +-relevant term t of J , that is acceptable

for J and I;
• Or there exists an I-inference J ′ `I (l←b) for an assignment J ′ ⊆ J and a formula l ∈

basisI(J) such that (l←b) /∈ J .
※

Intuitively, the first possibility allows the extension of the assignment by publicly assigning
a value to a term, in a way that does not immediately violate what has already been fixed.
This contributes to the construction of a model, either by fixing the value of a subterm in the
assignment, or by determining whether two subterms in the assignment are equal or different.
The second possibility allows I to post consequences of existing assignments, that may lead to
a contradiction, either right away, if l←b is in J , or after further steps producing l′←true and
l′←false for some l′ in the local basis.

The key to completeness is to identify a criterion on assignments and theories such that, if
an assignment satisfies the criterion for all theories, then a model for the combination of the
theories can be extracted from the assignment. From this descends the completeness requirement
for theory modules: a complete module I is one that is capable of extending any assignment J
that does not satisfy the criterion for T. As usual with theory combination, the criterion cannot
simply be consistency, namely the existence of a T- or T +-model for J , since the existence of
such a model for each theory does not imply the existence of a model for the combination of the
theories. Although the criterion needs to be stronger as soon as several theories are involved, it
is still useful to define consistency and its corresponding completeness requirement, especially as
they build upon the notion of view endorsement to take into account first-order assignments.

Definition 14 (Consistency) A T +-assignment J is consistent with T + if there exists a
T +[fvΣ(J)]-model M that view-endorses J . ※

Definition 15 (Completeness) A module I is complete if, for all plausible T +-assignments J ,
either J is consistent with T + or I can extend J . ※

While an assignment can be used to describe finite parts of the common model to be built,
there is an aspect of the model construction that J cannot fully describe: the cardinalities of the
domains interpreting the sorts. If the theories are stably infinite, one can assume w.l.o.g. that the
domains are countably infinite for all sorts except prop. We opt for a more general approach that
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allows us to include theories that are not stably infinite. We only assume that one of theories,
named T0 and with signature Σ0 = (S∞, F0), has information about the cardinality constraints
from all the theories. An assignment J then satisfies the criterion for T +, defined next as T0-
compatibility, if any model of T0 view-endorsing J can be turned into a model of T +.

Definition 16 (T0-Compatibility) Given a family of terms V = (Vs)s∈S∞ and a T +-assignment
J , we say that J is T0-compatible with T + sharing V if for all T0[fvΣ0(J ∪ V )]-model M0 that
view-endorses J , there exists a T +[fvΣ(J ∪ V )]-model M that view-endorses J , such that for all
s ∈ S,

∣∣∣sM∣∣∣ =
∣∣∣sM0

∣∣∣, and for all t and t′ in Vs, M(t) =M(t′) if and only if M0(t) =M0(t′). ※

Compatibility will allow us “to glue” together in one model the models provided by the n
theories by showing that an assignment that is consistent with T0, and T0-compatible with all
theories T +

1 , . . . , T +
n , is view-endorsed by a common T +

∞ -model (cf. Section 8.3). We can finally
express the requirement on theory modules as follows:

Definition 17 (T0-Completeness) A T-module I is T0-complete if for all plausible T +-
assignments J ,
• Either J is T0-compatible with T + sharing all subterms in J ;
• Or I can extend J . ※

An immediate corollary is that, by combining a complete theory module for T0 and T0-complete
theory modules for all theory extensions T +

1 , . . . , T +
n , CDSAT satisfies model-soundness: if the

system ever produces an assignment that no theory module can extend, then the input problem
is satisfiable in T +

∞ . Together with termination and progress, this immediately entails refutational
completeness: if the problem is unsatisfiable in T +

∞ , then the system returns unsat.

5 Examples of theory modules

In this section we give examples of theories and theory modules, and we describe how decision
procedures for Nelson-Oppen theories [27] can be treated as theory modules and accommodated
in the CDSAT framework. As we shall see in the examples, it will be convenient, in theory-specific
inferences, to use an unsatisfiable Boolean assignment ⊥. For this we can use an arbitrary variable
x of sort prop, and introduce > to stand for (x'prop x)←true and ⊥ for (x'prop x)←false. No
interpretation can ever endorse ⊥ and the equality inference ` > can be regarded as trivially
available. However this poses the issue as to whether such an inference should be regarded as
extending an assignment (cf. Definition 13). The answer is positive under the assumption that >
is in the local basis. Then, if the theory module cannot extend J , it means that > is in J and ⊥
is not.

The following lemma will be useful to prove completeness properties of the example theory
modules:

Lemma 1 Assume a T -module I cannot extend a plausible T +-assignment J . Then:
1. For all sorts s ∈ S\{prop}, the binary relation ( 's ) ∈ J over terms occurring in J of sort
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s is an equivalence relation, and if (t1←c1) ∈ J and (t2←c2) ∈ J , then c1 is identical to c2 if
and only if (t1's t2) ∈ J ;

2. For all sorts s ∈ S that is not T +-public, and all terms t1 and t2 of sort s occurring in J ,
t1's t2 is assigned a value in J . All formulae that occur in J are assigned values in J .

3. For all T +-public sorts s ∈ S such that
• The only I-inferences of the form J ′, (t←c) `I L, with t of sort s, are equality inferences,

and
• There are countably many T +-values,
every term of sort s that occurs in J is assigned a value in J . ※

Proof:
1. First, notice that basisI(J) is closed and therefore contains all equalities between terms oc-

curring in J of sort s 6= prop. If I cannot extend J , then it means that the Boolean assign-
ments inferred by the equality inferences for reflexivity, symmetry, and transitivity are already
present in J . This makes this binary relation an equivalence one.
Second, if c1 is identical to c2, an equality inference can infer t1's t2, so if I cannot extend
J , t1's t2 must already be present in J . Conversely if c1 is different from c2, an equality
inference can infer t1 6's t2, so if I cannot extend J , t1 6's t2 must already be present in J , and
therefore plausibility of J entails that t1's t2 is not in J .

2. Direct consequence of the fact that I cannot extend J .
3. Point 2 already subsumes the case when s = prop. Otherwise assume by contradiction that

a term t of sort s that occur in J is not assigned a value. As I cannot extend J , in order to
derive a contradiction it suffices to find an assignment that is acceptable for J and I. Consider
the equivalence class of t for the binary relation ( 's ) ∈ J (which Point 1 proves to be an
equivalence one). If none of the terms in that equivalence class are assigned a value in J , then
for a fresh value c of sort s (i.e. never used in J), (t←c) is an assignment acceptable for J and
I. If one of them, say t1, is assigned some value c1 in J , then again (t←c1) is an assignment
acceptable for J and I: indeed, if (t's t2) or (t2's t) is in J with (t2←c2) ∈ J , then Point
1 entails that (t1's t2) ∈ J and therefore c1 and c2 are the same; and if (t 6's t2) or (t2 6's t)
is in J with (t2←c2) ∈ J , then Point 1 entails that (t1's t2) /∈ J , and therefore c1 and c2 are
different.

�

5.1 A Module for Propositional Logic

The signature ΣBool for propositional logic (Bool) is:
( {prop} , '{prop} ∪ {(∨,∧ : (prop×prop)→prop), (¬ :prop→prop)} )

We take as extension Bool+ the trivial one, so that the signature Σ+
Bool only adds {true, false} as

Bool+-values. The simplest module we can take for Bool, call it IBooleval , only has the following
evaluation inferences:

l1←b1, . . . , lm←bm `Booleval l←b

where l1, . . . , lm are formulæ, l is in the closure of l1, . . . , lm under the ΣBool-constructs, and b
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is its evaluation, fully determined by b1, . . . , bm and the truth tables for the connectives in the
signature. As local basis we take the identity function so that basisBool(X) = X for all X.

Lemma 2 (Completeness) For any theory T0, the Bool-module IBooleval is T0-complete. ※

Proof: Let J be a plausible Bool+-assignment. If IBooleval cannot extend J , if means in particular
that all formulae that occur in J are assigned values in J . It also means that the Σ+

Bool[fvΣBool(J)]-
interpretation M that interprets every t ∈ fvΣBool(J) as indicated by J (and interprets every
Boolean connective as indicated by the usual truth tables) view-endorses J : Indeed, if (l←b) ∈ J
and M(l) were different from b, then there would be an IBooleval-inference concluding l←b, and
thus IBooleval could extend J .

Let Σ0 be T0’s signature. Given any T0[fvΣ0(J)]-interpretation M0 that view-endorses J ,∣∣∣propM
∣∣∣ =

∣∣∣propM0
∣∣∣ = 2, and for all terms t and t′ of sort prop occurring in J , M(t) =M(t′) if

and only ifM0(t) =M0(t′), since this happens if and only if t and t′ are assigned the same value
in J . �

Although they are not needed for completeness, it is convenient to add the following inference
rules, comprising, from left to right, two rules for negation, two rules for conjunction elimination,
and two rules for unit propagation:

¬l `Bool l l1 ∨ · · · ∨ lm `Bool li l1 ∨ · · · ∨ lm, {lj | j 6= i} `Bool li
¬l `Bool l l1 ∧ · · · ∧ lm `Bool li l1 ∧ · · · ∧ lm, {lj | j 6= i} `Bool li

where 1 ≤ j, i ≤ m. We call IBool = ( `Bool, basisBool ) the resulting module, which is of
course still T0-complete for any T0, given that every time IBooleval can extend a Bool+-assignment,
so can IBool.

5.2 Linear Rational Arithmetic (LRA)

Theory LRA can be decided by a simplex algorithm, which could be integrated to our framework
as described above. Below, we present a theory module for LRA that more closely follows its
MCSAT treatment [18]. The signature ΣLRA of theory LRA is ( {prop,Q} , FLRA ) where FLRA is

'prop,Q ∪ {(0, 1:Q), (+:(Q×Q)→Q), (<,≤ : (Q×Q)→prop)} ∪ {(c· :Q→Q) | c ∈ Q}
We take as extension LRA+ the theory whose signature Σ+

LRA adds to FLRA one constant for each
rational number, namely:

( {prop,Q} , FLRA ∪ {(q̃ :Q) | q ∈ Q} ),
and that adds to LRA, as axioms, the equalities q̃'Q q·1 for all rational numbers q.

In order to define the module ILRA with a local basis, we need to fix an arbitrary total order ≺
between all ΣLRA-variables of sort Q. A term t is maximal in a term t′ if it is the greatest element
in fvQ

ΣLRA
(t′) according to ≺. We then define the module ILRA as ( `LRA, basisLRA ) as follows.

The ILRA-inferences are those of the following forms:
• Evaluations:

t1←q̃1, . . . , tm←q̃m `LRA l←b
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where t1, . . . , tm are terms of sort Q, l is a formula in the closure of t1, . . . , tm under the
symbols in FLRA, and b is the evaluation for it as defined through this closure.

• Positivization:
t1 < t2 `LRA t2 ≤ t1
t1 ≤ t2 `LRA t2 < t1

• Elimination of equality:
t1'Q t2 `LRA ti ≤ tj with {i, j} = {1, 2}

• Elimination of disequality:
(e1 ≤ t), (t ≤ e2), (e1'Q e0), (e2'Q e0), (t 6'Q e0) `LRA ⊥

where t is a free ΣLRA-variable of (e1 ≤ t), (t ≤ e2), (t'Q e0), but is not free in e0, e1 or e2.
The expressions (e1 ≤ t), (t ≤ e2), and (t'Q e0) range over all Boolean assignments that can
be normalised to that form (by the usual normalisation of rational expressions).

• Fourier-Motzkin resolutions [18]:
(e1 l1 t), (tl2 e2) `LRA (e1 l3 e2)

where l1,l2,l3 are all in {<,≤} and l3 is < if and only if either l1 or l2 is <,
and t is maximal in (e1 l1 t) and maximal in (tl2 e2), but is not in fvQ

ΣLRA
(e1, e2).

The expressions (e1 l1 t) and (t l2 e2) range over all Boolean assignments that can be nor-
malised to that form.

• Elimination of empty solution spaces:
t1←q̃1, . . . , tm←q̃m, E `LRA ⊥

where t1, . . . , tm are ΣLRA-variables of sort Q, E is a (not necessarily single) Boolean as-
signment such that for all x in fvQ

ΣLRA
(E), x ≺ ti or x = ti for some 1≤ i≤m, and

t1'Q q̃1, . . . , tm'Q q̃m, E is not LRA+-satisfiable.
The local basis is simply the closure of a closed set under the LRA inferences: Given a closed set
X, let basisLRA(X) be the smallest closed set containing X and closed under the rules

⊥

t < t′

t′ ≤ t
t ≤ t′

t′ < t

(e1 l1 t) (tl2 e2)
(e1 l3 e2)

where l3 is < if and only if either l1 or l2 is <, t is maximal in (e1 l1 t) and in (t l2 e2),
and t /∈ fvQ

ΣLRA
(e1, e2), and the expressions (e1 l1 t) and (t l2 e2) range over terms that can be

normalised to that form. Remark that basisLRA(X) is finite.
The role of the precedence relation can be illustrated by the following example:

l0 : −2·x− y < 0
l1 : x+ y < 0
l2 : x < −1

Note that the assignment l0, l1, l2 is LRA-unsatisfiable. If the Fourier-Motzkin resolution inference
were not restricted to eliminate the maximal variable only, it could be used to generate the
following infinite chain:
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l3 : −y < −2 from l0 and l2
l4 : x < −2 from l1 and l3
l5 : −y < −4 from l0 and l4
l6 : x < −4 from l1 and l5
l7 : −y < −8 from l0 and l6
. . .

So the introduction of the precedence and the restriction of the Fourier-Motzkin resolution
inference to only eliminate the maximal variable is used to prevent this chain: if for instance
y ≺ x, then l3 can be derived, but not l4.

This restriction has a price with regards to completeness: Clearly, a smart strategy for LRA
would try assigning values to ΣLRA-variables according to the precedence order, starting from
the lowest ΣLRA-variable, which in our example would be y. But the completeness requirement
cannot assume that this strategy is being employed, and module ILRA must be able to extend any
unsatisfiable assignment J such as

l0, l1, l2, l3, (x←0),>.
Clearly, there is no acceptable assignment for y, so we must find an inference that infers a Boolean
assignment L that is not already present in J . This is where the elimination of empty solution
spaces comes in: taking E to be l0, l1, we have the inference

(−2·x− y < 0), (x+ y < 0), (x←0) `LRA ⊥
Now this kind of inference is only useful for those cases, as above, where ΣLRA-variables were not
assigned according to the precedence order. Indeed, assume the premiss

J ′ = t1←q̃1, . . . , tm←q̃m, E

of an inference eliminating empty solution spaces is included in an assignment J , and assume J
satisfies the property that if it assigns a value to a ΣLRA-variable, then it also assigns a value
to every lower ΣLRA-variable according to ≺. In that case, every ΣLRA-variable of E is assigned
a value in J , so E can be fully evaluated. Since J ′ is not satisfiable, at least one of the single
Boolean assignment in E must be violated by this evaluation. So an evaluation inference can be
used to extend J .

Lemma 3 If ILRA cannot extend a plausible LRA+-assignment J , then every term occurring in
J of sort Q is assigned a value in J . ※

Proof: We first show that all ΣLRA-variables in J of sort Q are assigned a value.
Let t1←q̃1, . . . , tm←q̃m be the assignments in J for ΣLRA-variables of sort Q, with t1 ≺ · · · ≺ tm.
Assume, by contradiction, that t is the smallest unassigned ΣLRA-variable in J , according to ≺.
• If t ≺ tm:

Let EJ be the biggest Boolean assignment included in J such that any ΣLRA-variable in
fvQ

ΣLRA
(EJ) is smaller than or equal to one of t1, . . . , tm according to ≺. The assignment

t1←q̃1, . . . , tm←q̃m, EJ is LRA+-satisfiable, otherwise ILRA could extend J with an inference
eliminating an empty solution space. Let q be the value of t in a model endorsing this
assignment. We prove that t←q̃ is acceptable for J : First, it cannot violate J with an
inference eliminating empty solution spaces, because the Boolean assignment E involved in
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such an inference is included in EJ , and q was chosen so that t1'Q q̃1, . . . , tm'Q q̃m, t'Q q̃, EJ

is LRA+-satisfiable. Second, it cannot violate J with an evaluation inference, because the
Boolean assignment L involved in such an inference is again in EJ . So t←q̃ is acceptable for
J and therefore ILRA can extend J .

• If tm ≺ t:
We first show that for any value q, if (t←q̃) violates J in one ILRA-step, then it does
so with an evaluation inference: Indeed, if it did so with an inference eliminating an
empty solution space, the Boolean assignment E involved in this inference is such that
t1'Q q̃1, . . . , tm'Q q̃m, t'Q q̃, E is LRA+-unsatisfiable, and by minimality of t, all ΣLRA-
variables of E are assigned values in J ; so there is an assignment L in E with an evaluation
inference t1←q̃1, . . . , tm←q̃m, t←q̃ `LRA L. In other words, if an assignment (t←q̃) does not
violate J in one evaluation step, then it is acceptable for J . In order to find such a value q, it
suffices to look at all single Boolean assignments in J whose only free but unassigned ΣLRA-
variable is t, otherwise known as unit constraints on t. Moreover, as ILRA cannot extend J ,
the conclusions of positivization and elimination of equalities inferences are already in J . So
any Boolean assignment in J that is not of the form e1 ≤ e2, e1 < e2, or e1 6's e2, is redundant
with the assignments of these forms. The space of solutions for a collection of unit constraints
of these forms is an interval from which a finite range of points are excluded. We show that
this space cannot be empty: It is empty if either the lower bound is greater than the upper
bound, or the two bounds are equal but one of them is strict, or the two bounds are equal and
large but a disequality removes the only possible point. In the first two cases, the conclusion L
of the applicable Fourier-Motzkin resolution inference must already be present in J , while its
flip L must also be present as the conclusion of the evaluation inference J `LRA L. The third
case is also ruled out as it would allow ILRA to extend J with an elimination of disequality
inference.

Finally, assume that a term t occurring in J is not a ΣLRA-variable. Its ΣLRA-variables are all
assigned in J , so t has a clear value q according to these assignments. If t←q̃ were not acceptable
for J , then it would violate J with an evaluation inference. Another evaluation inference using
the assigned ΣLRA-variables of t instead of t←q̃ itself would already violate J , so module ILRA to
extend J with that inference. �

Lemma 4 (Completeness) For any theory T0 whose models interpret Q as an infinite set,
module ILRA is T0-complete. ※

Proof: Let J be a plausible LRA+-assignment and assume I2 cannot extend J . As the previous
lemma shows, this means that all terms occurring in J of sort Q are assigned values in J (and of
course this is also the case for sort prop). Writing J↓ for the set of terms occurring in J of sort Q
or prop, we build the following LRA+[fvΣLRA(J↓)]-modelM: LetM’s interpretation of Σ+

LRA be the
standard one, and let M interpret every ΣLRA-variable in J as indicated by J . We show that M
view-endorses J , which is here the same thing as simply endorsing J (since ILRA cannot extend
J and therefore J is closed under all equality inferences): Let t←c be an arbitrary assignment in
J . If t is a ΣLRA-variable, then M(t) = cM by definition. Otherwise if t is a formula such that
M(t) 6= cM, ILRA would be able to extend J with an evaluation inference deriving t←c. And
finally if t is a non-variable term of sort Q, ILRA would be able to extend J with an evaluation
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inference deriving t 6'Q t.
Now let Σ0 be T0’s signature and let M0 be a T0[fvΣ0(J)]-interpretation that view-endorses

J . Since QM0 is infinite and Σ+
LRA is countable, by Löwenheim-Skolem theorem, M can be

transformed so that |QM| = |QM0 |, and for all t and t′ in J↓, M(t) = M(t′) if and only if
(t's t

′) ∈ J if and only if M0(t) =M0(t′). �

5.3 Equality with Uninterpreted Function symbols (EUF)

Theory EUF can be decided by a congruence closure procedure, which can be integrated to our
framework in one of the two ways described in Section 5.5.

Alternatively, one can restrict EUF-inferences to only apply to basic forms of unsatifiability:
Given an arbitrary signature ΣEUF = (S, 'S ∪ F ) for EUF, we can use as EUF-inferences

(ti' ui)i=1...m, (f(t1, . . . , tm) 6' f(u1, . . . , um)) `EUF ⊥
for all symbols f ∈ F . For the local basis, we let basisEUF(X) extends X with >, as well as with
any equality l'prop l

′ such that either l and l′ are two formulæ in X with the same symbol f ∈ F at
their root, or there are in X two terms f(t1, . . . , tm, l, u1, . . . , um) and f(t′1, . . . , t′m, l′, u′1, . . . , u′m)
with f ∈ F .

This describes a lazy module IEUF for EUF, similar to that used in [18], which will not propagate
anything before equalities between existing terms are determined to be in contradiction with the
congruence axiom.

As in Section 5.5, we may or may not decide to give ourselves countably many values for each
sort in S\{prop}. In both cases if module IEUF cannot extend an assignment, then all equalities
are determined. The proof below is for the extension EUF+ with the extra values.

Lemma 5 (Completeness) For any theory T0, module IEUF is T0-complete. ※

Proof: Let J be a plausible EUF+-assignment and assume IEUF cannot extend J . As shown
in Lemma 1, all terms occurring in J are assigned values. Now let Σ0 be T0’s signature and let
M0 be a T0[fvΣ0(J)]-interpretation that view-endorses J . We build the following EUF+[fvΣ(J)]-
interpretation M: it interprets the sorts in S as in M0; it interprets any Σ-variable t in J as
M0(t); it interprets any EUF-value v assigned in J to some term t as M0(t);2 it interprets any
other EUF-value as an arbitrary element; and finally it interprets every symbol f : (s1× · · ·×sm)→s
in F as follows: given elements e1 ∈ sM0

1 ,. . . , em ∈ sM0
m , if there is in J a term f(t1, . . . , tm) with

M0(t1) = e1, . . . ,M0(tm) = em, then define fM(e1, . . . , em) as M0(f(t1, . . . , tm)),3 otherwise
define it as an arbitrary element of sM0 . A straightforward induction on t shows that, whenever
(t←c) ∈ J , we have M(t) =M0(t) = cM, which concludes the proof. �

The same property holds for the trivial extension of EUF, which has no extra values but the
Boolean ones. The proof is almost identical, except that non-Boolean terms occurring in J are

2If there are two such terms, M0 must interpret them identically.
3If there are two such terms f(t1, . . . , tm) and f(u1, . . . , um), then by Lemma 1, J must contain

(t1' u1), . . . , (tm' um), f(t1, . . . , tm)' f(u1, . . . , um)
(otherwise IEUF could extend J with an inference), so M0(f(t1, . . . , tm)) =M0(f(u1, . . . , um)).
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not assigned values, but as for any two terms t and u of sort s ∈ S\{prop} we still have a value
for t's u in J , so the argument can be easily adapted.

We could also add some more eager EUF-inferences, without having to change the completeness
argument:4

(ti' ui)i=1...n `EUF (f(t1, . . . , tm)' f(u1, . . . , um))
(ti' ui)i=1...m,i 6=i0 , f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF ti0 6' ui0

for all symbols f ∈ F .

5.4 Arrays (Arr)

The theory of arrays Arr can be decided by an algorithm that can be integrated to our framework
in one of the two ways described in Section 5.5. Alternatively, one can restrict Arr-inferences to
only apply to basic forms of unsatifiability, leading to a theory module for Arr that is similar to
the EUF module(s) presented above.

Consider a signature ΣArr = (S, F ), where S is the free closure of a set Sbasic of basic sorts
(that includes prop) under the binary array sort constructor, which from an index sort I and a
value sort V builds the array sort I⇒V , and where F is

'S ∪ {(selectI⇒V : (I⇒V )×I→V ) | (I⇒V ) ∈ S}
∪ {(storeI⇒V : (I⇒V )×I×V→(I⇒V ))) | (I⇒V ) ∈ S}
∪ {(diffI⇒V : (I⇒V )×(I⇒V )→I) | (I⇒V ) ∈ S}

When sorts can be inferred we sometimes omit writing them as subscripts of the symbols in F .
We further abbreviate store(a, i, v) as a[i:=v] and select(a, i) as a[i].

As with EUF and with the approach described in Section 5.5, we can take as extension Arr+

of Arr either the trivial one or the one that adds an infinite countable set of values to each sort in
S. We formalise the module with the latter option, but the former one could be given as easily.

For this module IArr we take as inferences:
(t' t′), (i' i′), (t[i] 6' t′[i′]) `Arr ⊥

(t' t′), (i' i′), (u' u′), (t[i:=u] 6' t′[i′:=u′]) `Arr ⊥
(t' t′), (u' u′), (diff(t, u) 6' diff(t′, u′)) `Arr ⊥

(t′' t[i:=u]), (i' j), (u 6' t′[j]) `Arr ⊥
(t′' t[i:=u]), (i 6' j), (j' j′), (t[j] 6' t′[j′]) `Arr ⊥

(t 6' u) `Arr (t[diff(t, u)] 6' u[diff(t, u)])

The first three inference rules simply express the congruence property of the signature symbols.
The fourth and fifth are simply the expression of the traditional axioms as inference rules that
can handle equalities. The last axiom is the only one that can produce new terms, and is the
expression as an inference rule of the (Skolemized) extensionality axiom.

For the local basis we define basisArr(X) as the smallest closed set Y containing X ∪ {⊥} and
satisfying the following closure properties:

4In fact, this can be done for any theory treated as in Section 5.5, the main question being how to detect the
applicability of such inferences.
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• If t and u are in Y then so are t[diff(t, u)] and u[diff(t, u)];
• If l1 and l2 are subterms of sort prop of some terms in Y whose root symbol is select, store, or

diff , then l1'prop l2 is in Y .
Note that this set is finite (in particular, diff only produces terms whose sorts are structurally
smaller than that of its arguments).

In order to express the completeness property, we identify the following notion: an updatable
function set from U to V is a subset of the set of functions from U to V that is stable under finite
modifications of their graphs.

Lemma 6 (Completeness) For any theory T0 whose models M0 are such that (I⇒V )M0 has
the cardinality of an updatable function set from IM0 to VM0 , module IArr is T0-complete. ※

Proof: Let J be a plausible Arr+-assignment and assume IArr cannot extend J . As shown in
Lemma 1, all terms occurring in J are assigned values. Now let Σ0 be T0’s signature and let M0
be a T0[fvΣ0(J)]-interpretation that view-endorses J .

Let I⇒V be an array sort, let X be an updatable set of functions from IM0 to VM0 that
is in bijection with (I⇒V )M0 , and let f0 ∈ X. We start by defining a bijective function φ from
(I⇒V )M0 to X.

For this we first define the restriction φY of φ on the (finite) subset Y of (I⇒V )M0 consisting
of those elements a such that at least one term occurring in J is interpreted as a by M0: For
such an element a, we consider the binary relation Ra ⊆ IM0×VM0 defined as follows:

{(M0(i),M0(t[i])) | t[i] occurring in J with M0(t) = a}
∪ {(M0(i),M0(u)) | t[i:=u] occurring in J with M0(t[i:=u]) = a}

∪ {(M0(i),M0(t[i])) | t[j:=u] occurring in J with M0(t[j:=u]) = a and M0(i) 6=M0(j)}

This relation is (finite and) functional (otherwise IArr could extend J), and is therefore a (finite
and) partial function from IM0 to VM0 ; we extend it into a total function φY (a) by mapping
any remaining element c in IM0 to the element f0(c) ∈ VM0 . As φY (a) differs from f0 by only
finitely many modifications, φY (a) is in X. Moreover, φY is injective: For any two elements a =
M0(t) and a′ =M0(t′) with a 6= a′, J must contain t 6' t′ and therefore t[diff(t, t′)] 6' t′[diff(t, t′)]
(otherwise IArr could extend J); so φY (a)(M0(diff(t, t′))) = M0(t[diff(t, t′)]) is different from
φY (a′)(M0(diff(t, t′))) = M0(t′[diff(t, t′)]) and therefore φY (a) 6= φY (a′). Given that the φY is
injective and that (I⇒V )M0 is in bijection with X, we can extend φY into a bijection φ from
(I⇒V )M0 to X.

Now we build an Arr+[fvΣ(J)]-interpretationM as follows: M interprets every sort s likeM0
does, it interprets any Σ-variable t in J as M0(t); it interprets any Arr-value c assigned in J to
some term t asM0(t);5 and it interprets any other Arr-value as an arbitrary element. We are left
with the interpretations of the three kinds of symbols select, store and diff : Given any array sort
I⇒V , we define
• selectMI⇒V as the function mapping any (a, c) ∈ (I⇒VM)×IM to φ(a)(c) ∈ VM;
• storeMI⇒V as the function mapping any (a, c, d) ∈ (I⇒VM)×IM×VM to φ−1(f) ∈ (I⇒VM),

where f is the function that maps c to d and any other c′ ∈ IM to φ(a)(c′) ∈ VM;
5If there are two such terms, M0 must interpret them identically.
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• diffMI⇒V as the function mapping any (a, a′) ∈ (I⇒VM)×(I⇒VM) with a 6= a′ to an element
c ∈ IM such that φ(a)(c) 6= φ(a′)(c), and mapping any pair (a, a) to an arbitrary element of
IM.

Clearly by construction,M satisfies the axioms of the array theory, and is therefore a Arr+[fvΣ(J)]-
interpretation. A straightforward induction on t shows that, whenever (t←c) ∈ J , we have
M(t) =M0(t) = cM, which concludes the proof. �

Again, the same property holds for the trivial extension of Arr, which has no extra values but
the Boolean ones. The proof is almost identical, except that non-Boolean terms occurring in J

are not assigned values, but as for any two terms t and u of sort s ∈ S\{prop} we still have a
value for t's u in J , so the argument can be easily adapted.

5.5 Theories with procedures suited for Nelson-Oppen combination

Assume T is a stably infinite theory on signature Σ = (S, F ), with a procedure deciding the
satisfiability of conjunctions of literals. A first way to accommodate such a theory and procedure
into our framework is to take as extension T +1 the trivial one, whose signature we denote Σ+1,
and define a module I1 = ( `T , basisT ) for theory T with extension T +1 as follows. The local
basis basisT only adds the formula > (i.e. , basisT (X) = X ∪ {>} for all X). The I1-inference
system features a single inference rule

l1←b1, . . . , lm←bm `T ⊥
where l1, . . . , lm are formulæ, and the conjunction of the literals corresponding to the Boolean
assignments l1←b1, . . . , lm←bm is found T -unsatisfiable by the decision procedure.

Lemma 7 (Completeness) For any theory T0 whose models interpret each sort in S\{prop} as
an infinite countable set, the T -module I1 is T0-complete. ※

Proof: Let J be a plausible T +1-assignment. If I1 cannot extend J , Lemma 1 concludes that
all formulae that occur in J are assigned values in J , and for any two terms t and t′ occurring in
J of sort s in S\{prop}, the equality t's t

′ is assigned a value in J . Also, the conjunction of the
literals corresponding to the Boolean assignments in J is T -satisfiable: otherwise I1 could extend
J with inference J `T ⊥. By interpreting the Boolean values as themselves we get a T +1[fvΣ(J)]-
interpretation M that view-endorses J . Since T is stably infinite, we can assume w.l.o.g. that it
interprets every sort S\{prop} as an infinite countable set. Let Σ0 be T0’s signature. Given any
T0[fvΣ0(J)]-interpretationM0 that view-endorses J , we are left to check that for all terms t and t′
occurring in J of some sort s ∈ S,M(t) =M(t′) if and only ifM0(t) =M0(t′). This is the case,
since either s is prop and each ofM(t) =M(t′) andM0(t) =M0(t′) occur if and only if t and t′
are assigned the same value in J , or s is not prop and each ofM(t) =M(t′) andM0(t) =M0(t′)
occur if and only if (t's t

′←true) is in J . �

Note that the above would also work if we only took as I1-inferences those inferences J `T ⊥
where J is an unsatisfiable core (removing any single assignment from J would result in a T -
satisfiable conjunction of literals).

The second way to accommodate such a theory and procedure into our framework is to take as
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extension T +2 the theory whose signature Σ+2 adds to Σ an infinite countable collection of T +2-
values cs

0, . . . , c
s
i , . . . for each sort s in S\{prop}, but that does not assume anything about these

new values. We then define the module I2 (for theory T with extension T +2) as ( `T , basisT )
again, i.e. with the exact same inferences and local basis as in I1. In other words, the equality
inferences are the only inferences that make use of first-order T +2-assignments, inferring equalities
and disequalities between terms that are assigned identical or distinct T +2-values. In effect, T +2-
values are thus used to label the equivalence classes of terms: For instance the T +2-assignment

t1←c, t2←c, t3←c3, t4←c4, t5←c5

encodes the four equivalence classes given by the literals
t1' t2, t1 6' t3, t1 6' t4, t1 6' t5, t3 6' t4, t3 6' t5, t4 6' t5

Lemma 8 (Completeness) For any theory T0 whose models interpret each sort in S\{prop} as
an infinite countable set, the T -module I2 is T0-complete. ※

Proof: Let J be a plausible T +2-assignment and assume I2 cannot extend J . As shown by
Lemma 1, this means that all terms occurring in J of a sort in S are assigned values in J . It also
means that for any two terms t and t′ occurring in J of sort s in S\{prop}, the equality t's t

′

is assigned a value in J : Indeed, (t's t
′) belongs to the closed set basisT (J), and since t and t′

are both assigned values in J , I2 could extend J with an equality inference concluding t's t
′ or

t 6's t
′, unless t's t

′ is already assigned a value in J . Finally, as for I1, we also conclude that
the conjunction of the literals corresponding to the Boolean assignments in J is T -satisfiable. So
there exists a T -model of those literals, which we turn into a T +2[fvΣ(J)]-interpretation M that
view-endorses J as follows: M interprets the sorts in S, the symbols in F , and the Σ-variables
as in the T -model; the Boolean values are interpreted as themselves; and for a non-Boolean T +2-
value v of sort s, either it is never used in J , in which case we let M interpret it arbitrarily in
sM, or there is some assignment t←c in J , in which case we define vM as the interpretation of
term t in the T -model.6 That makes M view-endorse J . The rest of the argument is the same
as for I1. �

As for I1, the above would also work if we only took as I2-inferences those inferences J `T ⊥
where J is an unsatisfiable core.

The above shows that the Nelson-Oppen combinations of theories form a particular case of
our framework: The triviality of the basis corresponds to the fact that the procedures in a
Nelson-Oppen combination do not introduce new literals (literals that were not present in the
original problem), and their interaction does not introduce any new literals either, save for the
equalities between shared variables that an arrangement determines. The unability for one theory
to extend an assignment J entails that the theory, on its own, has a model, but also entails that
every equality is determined by J , which is thereby defining a particular arrangement between
shared variables. If the other theories cannot extend J either, then a model for the union of the
theories exists, a property that is a consequence of our completeness requirement (see Section 8.3).

Module I2 is a slight optimisation of module I1 that allows the representation of determined
6 Note that if there are two such assignments in J , say t1←c and t2←c, we know that (t1's t2) ∈ J and therefore

the T -model interprets t1 and t2 as the same value.
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equalities without explicitly listing the literals t1's t2 or t1 6's t2 (in the worst case, quadratic in
the number of terms), but using CDSAT values as identifiers for equivalence classes of terms.

This is one possible use of CDSAT values. The next examples of theories are theories for
which a decision procedure could fit into the framework as described above, but for which a more
interesting theory module could be defined, with a more interesting way of using values.

6 Abstract calculus

In this section we present our calculus. We start with the data structures that it uses:

Definition 18 (Trail) A trail is
• a finite DAG whose vertices are singleton assignments t←c whose non-root vertices are all

Boolean assignments, and such that if t←c1 and t←c2 are two vertices then c1 and c1 are
non-Boolean T +

i - and T +
j -values, respectively, for distinct i and j;

• a collection of roots marked as decisions and equipped with a total order denoted <. ※

The total order allows the numbering of decisions from smallest to greatest, assigning to each
decision a number traditionally called its level,7 as we do in Section 9.

The calculus uses the following concepts and notations about trails. A trail Γ can always be
seen as an assignment (its set of vertices, forgetting about edges), so we can freely use with Γ
every notation defined for assignments. Given a non-decision vertex A in Γ, we write explΓ(A)
for the predecessors of A in Γ. Given a set of vertices J , the set of decisions that have a path
to some vertex in J is denoted decΓ(J), and the greatest decision in it (when it is non-empty) is
denoted decsup

Γ (J). An assignment J is in Γ if every single assignment in J is a vertex in Γ. In
this case, and for any single Boolean assignment L such that neither L nor L is a vertex of Γ,
we write Γ, (J ` L) for the trail extending Γ with a new vertex for L and a new edge from each
single assignment of J to L. By extension, we say that a T -inference (J `T L) builds on Γ if J
is in Γ and L is not in Γ. The trail Γ, A is the extension of Γ with a new root A marked as a
decision, and greater than any decision in Γ. If D is a set of decision roots in Γ, the trail denoted
Γ\D is obtained from Γ by removing the decisions in D and every vertex that is reachable from
one of these decisions. If A is a root of Γ and A′ is a new assignment, the trail denoted Γ\AxA′

is obtained by extending Γ\A with a new root A′ marked as a decision, and inserted in the order
at the same position as A.

The calculus is a state transition system:

Definition 19 (Search state, conflict state) States are of two kinds:
• search states, which are simply trails
• conflict states, which are of the form 〈Γ;E;A〉, where Γ is a trail, E is a subset of vertices in

Γ, and A = decsup
Γ (E).

※
7We use an order rather than numbers, because the calculus will allow the removal of a decision without

necessarily removing the greater decisions, thus triggering a re-numbering, should numbers be used.
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Search rules
Decide

Γ −→B Γ, A if A is a T +
k -assignment for a T +

k -relevant term of Γ
that is acceptable for ΓTk

and Ik, with 1≤ k≤n
In the next three rules we assume an inference J `Ik

L builds on Γ,
with L being an assignment for a formula in B and 1≤ k≤n.
Propagate

Γ −→B Γ, (J ` L) if L not in Γ
Conflict

Γ −→B Γ′ if L in Γ, A = decsup
Γ (J, L), and 〈Γ; J, L;A〉 =⇒∗ Γ′

Fail
Γ −→B unsat if L in Γ, and decΓ(J, L) = ∅

Conflict analysis rules
Resolve
〈Γ;E,L;A〉 =⇒ 〈Γ;E ∪ explΓ(L);A〉 if L is not a decision, A ∈ decΓ(L), and

either A is Boolean or A /∈ explΓ(L)
UIPBackjump
〈Γ;E,L;A〉 =⇒ (Γ\D), (E ` L) if D is a set of decisions with A ∈ D

and ∀A′ ∈ decΓ(E),∀A′′ ∈ D,A′ < A′′

SemSplit
〈Γ;E,L;A〉 =⇒ Γ\AxL if A is a non-Boolean assignment

in decΓ(E) ∩ explΓ(L)
Undo
〈Γ;E,A;A〉 =⇒ Γ\A if A is a non-Boolean assignment

not in decΓ(E)

Figure 3: The CDSAT transition system

The intuition of a conflict state 〈Γ;E;A〉 is that E is a set of conflicting assignments in Γ, and
A is the greatest decision that contributes to the conflict:8 we shall undo (at least) that decision
before switching back to a search state.

Definition 20 (Calculus) An input problem is an assignment.
The initial state corresponding to a given input problem X = {A1, . . . , Am} is the search state

whose vertices are the assignments in X, all of which are non-decision roots.
The MCSAT system, presented in Fig. 3, is a transition system between search states, param-

eterised by a set B of terms called basis. Such transitions are denoted e.g. Γ −→B Γ′ and called
8A is always determined by Γ and E, but keeping it explicitly in the state simplifies the rules.
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B-transitions. The system also uses an auxiliary transition system for conflict analysis, whose
single steps are denoted with =⇒ and multi-steps are denoted =⇒∗. ※

We say that an input problem is Boolean, or an SMT-problem, if it is a Boolean assignment.
Otherwise it is more generally an SMA problem.

Notice that the side-condition for rule UIPBackjump implies in particular that A has no path to
any vertex in E (A /∈ decΓ(E)). In this system we have not included rules for learning, forgetting
or restarting. We address learning in Section 10, mostly to show that it can be included without
breaking our termination argument, while we leave the forgetting and restarting features out of our
abstract description. Finally, we introduce the notion of level, which will be used in Sections 8.1
and 9.1 about soundness and termination.

Definition 21 (Level i assignment in a trail) Let Γ be a trail, with A1, . . . , Am being its
decisions unambiguously enumerated from smallest to greatest. For all i in 1, . . . ,m, the set LΓ

i of
level i assignments in Γ is defined as the set of all assignments A in Γ such that Ai = decsup

Γ ({A})
(i.e. Ai is the greatest decision with a path to A). The set LΓ

0 of level 0 assignments in Γ is the
set of all assignments A in Γ such that decΓ({A}) = ∅ (i.e. no decision has a path to A). ※

We write LΓ
≤i for ⋃i

j=0 LΓ
j .

7 Example with arithmetic, EUF, and arrays

In this section, we illustrate how CDSAT works in the case of Example 2. Fig. 4 shows a CDSAT
derivation, where assignments in sort Q are LRA+-assignments, and assignments in sort V are
TV -assignments, where TV can be taken to be Arr+, EUF, or another theory altogether.

We start with the four non-decision roots on line 0 (l0). Theory LRA then makes the de-
cision (w←0) (any other value was possible there) (l1). Three decisions follow on lines 2,3,4:
From the point of view of LRA, these are really consequences of the decision (w←0) (and, for
the last two, of the input equalities), but that fact is private to the theory: from the point of
view of the main calculus, they are all decisions. Theory TV then makes the decision (u←c1),
where c1 is a random TV -value of sort V , followed by (v←c1) (as in arithmetic, this is a con-
sequence for TV of (u←c1) and the equality u' v, but is seen as a decision by the main calcu-
lus). Theory TV then makes the decision (a[i:=v][j]←c2), with another random value different
from c1 (there is no reason why the same one should be picked) (l7). Theory Arr picks up on
this, spotting an incoming conflict: the equalities (v 6' a[i:=v][j]) and (a[i:=v]' a[i:=v]) are in-
ferred from the assignments (l8,l9), and the calculus switches to a conflict state (l10) because
of the Arr-inference (i' j), (v' a[i:=v][j]), (a[i:=v]' a[i:=v]) `Arr ⊥.9 Rule Resolve applies on
a[i:=v]' a[i:=v], which removes it from the conflict as it has no predecessors (l11). Then only
rule UIPBackjump applies, yielding the search state Γ3 (l12). Theory TV then makes the decision
(a[i:=v][j]←c1), the only acceptable one according to the trail (l13). Theory EUF picks up on
this, spotting an incoming conflict, and the assignments f(u) 6' f(a[i:=v][j]) and u' a[i:=v][j]
are inferred, yielding the trail Γ5. The calculus switches to a conflict state (l16), because of the

9We assume for simplicity that > is in the trail, otherwise it can be introduced at that point.
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0 (f(a[i:=v][j])'w) , (f(u)'w−2) , (i' j) , (u' v) =: Γ0
1 Γ0, (w←0)
2 Γ0, (w←0), (w−2←−2)
3 Γ0, (w←0), (w−2←−2), (f(u)←−2)
4 Γ0, (w←0), (w−2←−2), (f(u)←−2), (f(a[i:=v][j])←0) =: Γ1
5 Γ1, (u←c1)
6 Γ1, (u←c1), (v←c1)
7 Γ1, (u←c1), (v←c1), (a[i:=v][j]←c2)
8 Γ1, (u←c1), (v←c1), (a[i:=v][j]←c2), (v, a[i:=v][j] ` v 6' a[i:=v][j])
9 Γ1, (u←c1), (v←c1), (a[i:=v][j]←c2), (v, a[i:=v][j] ` v 6' a[i:=v][j]), (` a[i:=v]' a[i:=v]) =: Γ2

10 〈Γ2; i' j, v 6' a[i:=v][j], a[i:=v]' a[i:=v] ; a[i:=v][j]←c2〉
11 〈Γ2; i' j, v 6' a[i:=v][j] ; a[i:=v][j]←c2〉
12 Γ1, (u←c1), (v←c1), (i' j ` v' a[i:=v][j]) =: Γ3
13 Γ3, (a[i:=v][j]←c1) =: Γ4
14 Γ4, (f(u), f(a[i:=v][j]) ` f(u) 6' f(a[i:=v][j]))
15 Γ4, (f(u), f(a[i:=v][j]) ` f(u) 6' f(a[i:=v][j])), (u, a[i:=v][j] ` u' a[i:=v][j]) =: Γ5
16 〈Γ5; f(u) 6' f(a[i:=v][j]), u' a[i:=v][j] ; a[i:=v][j]←c1〉
17 Γ3, (f(u), f(a[i:=v][j]) ` f(u) 6' f(a[i:=v][j])), (f(u) 6' f(a[i:=v][j]) ` u 6' a[i:=v][j]) =: Γ6
18 〈Γ6; u' v, v' a[i:=v][j], u 6' a[i:=v][j] ; f(a[i:=v][j])←0〉
19 〈Γ6; u' v, v' a[i:=v][j], f(u) 6' f(a[i:=v][j]) ; f(a[i:=v][j])←0〉
20 Γ0, (w←0), (w−2←−2), (f(u)←−2), (u←c1), (v←c1), (i' j ` v' a[i:=v][j]), . . .
21 . . . (u' v, v' a[i:=v][j] ` f(u)' f(a[i:=v][j])) =: Γ7
22 Γ7, (f(a[i:=v][j])'w, f(u)' f(a[i:=v][j]) ` f(u)'w) =: Γ8
23 〈Γ8; w←0, f(u)←−2, f(u)'w ; f(u)←−2〉
24 Γ0, (w←0), (w−2←−2), (u←c1), (v←c1), (i' j ` v' a[i:=v][j]), . . .
25 . . . (u' v, v' a[i:=v][j] ` f(u)' f(a[i:=v][j])), . . .
26 . . . (f(a[i:=v][j])'w, f(u)' f(a[i:=v][j]) ` f(u)'w) =: Γ9
27 Γ9, (f(u)'w−2, f(u)'w ` w'w−2)
28 unsat

Figure 4: Example

EUF-inference (u' a[i:=v][j]), (f(u) 6' f(a[i:=v][j])) `EUF ⊥. Again, only rule Resolve applies,
yielding the search state Γ6. At this point, Theory TV cannot pick a value for a[i:=v][j]: the ex-
planation is to be found in the equality inference (u' v), (v' a[i:=v][j]) `= u' a[i:=v][j] which
contradicts the trail. Making progress towards the latest decision contributing to the conflict
(f(a[i:=v][j]←0), we use Resolve (l19), and then UIPBackjump, to get back the search state Γ7
spreading over lines 20 and 21. Theory LRA is now unable to pick a value for f(a[i:=v][j]): this is
explained by inferring f(u)'w from the current trail (l22), while the current assignments for w
and f(u) rather entail f(u) 6'w, triggering a conflict (l23). Applying Undo yields the search state
Γ9, spreading over lines 24, 25, and 26. Theory LRA is then unable to correct the assignment for
f(u): this is explained by the inferences w'w−2 from the trail, and ` w 6'w−2; applying the

29



former puts us in a position to apply the Fail rule.

8 Soundness

In this section, we focus on two special kinds of states that CDSAT can reach. Section 9 will show
that one of these states will necessarily be reached in finitely many steps, but this section focuses
on the consequences of reaching these states from an input problem: The first kind is the state
unsat itself, and Section 8.1 shows that, if it is reached from an input problem, then this problem
is unsatisfiable, a property known as refutational soundness. The second kind is that of mute
states which, roughly speaking, are states that no theory module can extend; Section 8.3 shows
the model-soundness property, namely that reaching a mute state does indeed imply that a T +

∞ -
model of the input problem can be extracted from the state, assuming appropriate completeness
conditions on the theory modules, which we introduced in Section 4.3 and whose purpose we
illustrate in Section 8.2 by a motivating example.

8.1 Refutational soundness

Intuitively, the refutational soundness property comes from the fact that every propagation that
was made came from a sound inference of one of the theories, or from a conflict which itself results
from the analysis of prior propagations. By recursively analysing the history of how trails and
conflicts were formed, we show that such trails and conflicts satisfy a property of “soundness” with
respect to the union of the theories, formalised by the next definition. This property will entail
that models of the input problem will be models of every level 0 assignments, so if a contradiction
was found at level 0, then there can be no model of the input problem.

Definition 22 (Justified trail, justified conflict state) A non-decision vertex A of a trail Γ
is justified in Γ (or simply justified, if Γ is clear) if, whenever fv(explΓ(A), A) ⊆ V ,
1. every T +

∞ [V ]-model that view-endorses explΓ(A) view-endorses A, and,
2. should both A and explΓ(A) be Boolean assignments, if also every T∞[V ]-model that endorses

explΓ(A) endorses A.
Now let Γ be a trail and H be a subset of its non-decision roots.

The trail Γ is H-justified if all non-decision vertices A that are not in H are justified in Γ.
A conflict state 〈Γ;E;A〉 is H-justified if the trail Γ is H-justified and, whenever fv(E) ⊆ V ,

1. there are no T +
∞ [V ]-models that view-endorse E, and,

2. should E be Boolean, if there are also no T∞[V ]-models that endorse E.
※

To show the soundness property we also need to project a given T +
∞ -model as a T +

i -model, a
notion that is more precisely given by the following definition.

Definition 23 (Model projection) Given Σ = (S, F ) and Σ′ = (S′, F ′) with S′ ⊆ S and
F ′ ⊆ F , and given Σ-variables V and Σ′-variables V ′ with fvΣ(V ′) ⊆ V , the Σ′[V ′]-projection
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of a Σ[V ]-interpretation M is the Σ′[V ′]-interpretation M′ such that sM′ = sM for all s ∈ S′,
fM

′ = fM for all f ∈ F ′, and tM
′ =M(t) for all t ∈ V ′. ※

Lemma 9 (Soundness of inferences with respect to the union of theories)

Let J `Ik
L be an Ik-inference for some theory Tk with extension T +

k with 1≤ k≤n, and
let fv(J, L) ⊆ V . Any T +

∞ [V ]-model that view-endorses J (resp. any T∞[V ]-model endorsing J ,
should J be Boolean) endorses L. ※

Proof: Let Σk (resp. Σ+
k ) be the signature of theory Tk (resp. T +

k ), and let V ′ = fvΣk
(J, L).

Note that fv(V ′) ⊆ fv(J, L) ⊆ V .
Assume M is a T +

∞ [V ]-model that view-endorses J . The Σ+
k [V ′]-projection of M is a Σ+

k [V ′]-
interpretationM′ that interprets any Σ+

k [V ′]-term, and any Σ+
k -sentence, the same wayM does.

So M′ is a T +
k [V ′]-model view-endorsing J . By definition of Tk-inferences, M′ must endorse L,

and therefore M must also endorse L.
In the case where J is Boolean, assume M is a T∞[V ]-model that endorses J . Again, the

Σk[V ′]-projection of M is a Σk[V ′]-interpretation M′ that interprets any Σk[V ′]-term, and any
Σk-sentence, the same wayM does. SoM′ is a Tk[V ′]-model endorsing J . Then by conservativity
of T +

k with respect to Tk, every Tk[V ′]-model endorsing J must endorse L. In particular M′. So
again M endorses L as well. �

Now we prove that the property is preserved by every step of a CDSAT derivation:

Lemma 10 (Preservation of justifiedness)
1. If 〈Γ;E;A〉 is H-justified and 〈Γ;E;A〉 =⇒∗ Γ′, then Γ′ is H-justified.
2. If Γ is H-justified and Γ −→B Γ′, then Γ′ is H-justified. ※

Proof:
1. By induction on the derivation of 〈Γ;E;A〉 =⇒∗ Γ′ and case analysis on the first rule used:

Resolve The trail does not change, so it is still H-justified. Moreover, assume there is a T +
∞ [V ]-

model that view-endorses E ∪ explΓ(L) (resp. T∞[V ]-model endorsing E ∪ explΓ(L), should
E ∪ explΓ(L) be Boolean). Since the trail is H-justified and L /∈ H (as H only contains
non-decision roots), that model would also be a T +

∞ [V ]-model (resp. T∞[V ]-model) of E,L.
UIPBackjump Since H only contains non-decision roots, no vertex of H is affected by the

removal of vertices. All remaining vertices are still justified, as their predecessors have not
changed. Let E ` L be the propagation arising from conflict E,L: Any T +

∞ [V ]-model that
view-endorses E (resp. any T∞[V ]-model endorsing E, should E be Boolean) cannot be
endorsing L as well, so it must endorse L.

SemSplit Again, since H only contains non-decision roots, no vertex of H is affected by the
removal of vertices. All remaining vertices are still justified, as their predecessors have not
changed. The only new vertex being a decision, the resulting trail is H-justified.

Undo Again, since H only contains non-decision roots, no vertex of H is affected by the removal
of vertices. All remaining vertices are still justified, as their predecessors have not changed.
There are no new vertices, so the resulting trail is H-justified.

2. By case analysis on the rule:
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Decide The only change in the trail is the addition of a decision, so the trail remains H-justified.
Propagate There is only one new vertex: L, and by Lemma 9, it is justified.
Conflict Again by Lemma 9, any T +

∞ [V ]-model that view-endorses J (resp. T∞[V ]-model en-
dorsing J , should J be Boolean) must endorse L, so clearly there are no T +

∞ [V ]-model
that view-endorse J, L (resp. T∞[V ]-model endorsing J, L). Therefore the resulting conflict
state is H-justified, and by the point 1, the search state resulting from conflict analysis is
H-justified.

Fail There is nothing to prove.
�

Lemma 11 (Satisfiability of level 0 assignments)

Let Γ be an H-justified trail and let fv(Γ) ⊆ V .
• Any T +

∞ [V ]-model that view-endorses H view-endorses LΓ
0 .

• If H is Boolean, then LΓ
0 is Boolean and any T∞[V ]-model endorsing H endorses LΓ

0 .
※

Proof: In LΓ
0 , there are no decision assignments, so every vertex that is not in H is justified. By

induction on the DAG structure of LΓ
0 (i.e. propagating truth values along the paths), the model

of H view-endorses every vertex of that level (resp. endorses every vertex of that level, should H
be Boolean). �

Theorem 12 (Refutational soundness) Let H be an input problem. If the calculus reaches
state unsat, then there is no T +

∞ [V ]-model with fv(H) ⊆ V that view-endorses H. If H is Boolean,
then there is no T∞[V ]-model with fv(H) ⊆ V that endorses H. ※

Proof: The initial state is trivially H-justified. By Lemma 10, every trail in the derivation of
unsat is H-justified, in particular the last trail Γ preceding unsat. Assume there is a T +

∞ [V ]-model
M with fv(H) ⊆ V that view-endorses H (resp. a T∞[V ]-modelM with fv(H) ⊆ V that endorses
H, should H be Boolean). By picking random domain elements to interpret the variables in
fv(LΓ

0 ) \ fv(H), we get a model M′ that still view-endorses (resp. endorses) H. So by Lemma 11
M′ view-endorses (resp. endorses) LΓ

0 , which includes J and L used in the transition to unsat. By
as J `Ik

L for one of the theory modules Ik, Lemma 9 entails that M′ should also endorse L. �

8.2 Example and reference theory

We now turn to model-soundness. As already mentioned in Section 4.3, a trail is not a datas-
tructure that can be used by the theory modules for T1, . . . , Tn to exchange complete information
about the shared sorts’ cardinalities. Here is an example:

Example 6 Given two sorts s and s′, let Ts,s′ be the theory on signature
Σs,s′ = ({prop, s, s′}, '{prop,s,s′} ∪ {fs,s′ :s→s′})

whose models are those satisfying the property that, should |s| ≥ 2, fs,s′ is injective but not
surjective (this theory can be given by one axiom of multi-sorted first-order logic).

Now let s1, s2, s3 be three sorts, and consider the combination T∞ of the four disjoint theories
Ts1,s2 , Ts2,s3 , Ts3,s1 , and T4, the theory on signature Σ4 = ({prop, s3}, '{prop,s3} ) whose models are

32



those where |s3| ≤ 1000 (also axiomatisable by one axiom of multi-sorted first-order logic).
There is exactly one model of T∞, namely that where each of the sorts s1, s2, s3 is interpreted

as a singleton, and fs1,s2 , fs2,s3 , fs3,s1 are interpreted as the only functions that exist between the
three sorts.

Now the input problem x 6's1 y is unsatisfiable in T∞. Note that removing any of the four
theories makes it satisfiable. The question is now to understand how CDSAT will produce the
unsat answer. None of the four theories can, on its own, detect the problem; none of them even
knows about all three sorts (all of which are involved in making the problem unsat). None of
the function symbols appear in the input problem, so it is hard to see why the theory modules
would start enumerating the input/output pairs (i.e. the graphs) of the functions interpreting the
symbols, especially given that there could be infinitely many (e.g. if theory T4 was not there). ※

We deal with this issue in two stages:
First, we rule out the kind of example above by requiring that the cardinality constraints

aggregated from the different theories be subsumed by one of the theories T1, . . . , Tn, say Tk. This
is typically not the case in the above example. Technically, we require that the signature of
theory Tk is of the form (S∞, Fi) (i.e. it knows about all sorts), and the module for every theory
other than Tk is T +

k -complete (as well as requiring that the Tk-module is complete). With that
requirement, the next section shows model-soundness of CDSAT.

Second, the case of theory combinations T∞ = T1∪ . . .∪Tn where none of the involved theories
subsumes the aggregated cardinality constraints (as in the example above) can be reduced to the
case where there is one, if one can find a extra theory T0, with extension T +

0 ,
• that subsumes them, meaning that the module for every theory T1, . . . , Tn is T +

0 -complete;
• such that T +

0 ∪ T +
∞ conservatively extends T +

∞ , meaning that every set of formulæ that is
(T +

0 ∪ T +
∞ )-unsat is T +

∞ -unsat;
• together with a complete theory module for it.

Indeed if such a theory can be found, CDSAT can be run with the theory modules for T0, T1, . . . , Tn.
In case it concludes unsatisfiability of an input problem, conservativity implies its unsatisfiability
in T1 ∪ . . . ∪ Tn.

In the case of the above example, T0 can be taken to be the theory on signature Σ0 =
({prop, s1, s2, s3}, '{prop,s1,s2,s3} ) that imposes that |s1| = |s2| = |s3| = 1. We can take T +

0 to be
the trivial extension of T0, and take the T0-module I0 to comprise the inferences t 6's u `I0 ⊥ for
s in {s1, s2, s3}. This would be the module that detects the unsatisfiability of the input problem
x 6's1 y.

In the case where T1, . . . , Tk are all stably infinite, T0 can be the theory of structures where
all sorts (but prop) are countably infinite, and the T0-module with no inference rules is complete
for this (since an assignment is only going to mention finitely many terms and values).
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8.3 Model-soundness

In this section, theory T1 plays a particular role, as motivated by the previous section. In partic-
ular, we assume that its signature Σ1 is of the form (S∞, F1) (i.e. it knows all sorts).

The core theorem of this section, Theorem 13 below, glues together the different models that
the different theories may have for a given assignment. For this we need the notion of shared terms:
Equalities or disequalities between shared terms will have to be agreed upon by the theories in
order to construct a model.

Definition 24 (Shared terms) Given a finite set X of terms, the set Vshared(X) of shared terms
(for signatures Σ1, . . . ,Σn) is the smallest superset Y of X closed under the following rules

u, u′ ∈ Y t ∈ fvΣk
(u) t ∈ fvΣj

(u′) i 6= j

t ∈ Y

u ∈ Y t ∈ fvΣk
(u) t /∈ V∞

t ∈ Y ※

Note that, since X is finite, Vshared(X) is also finite (as it consists of subterms of terms in X).
We write Vs

shared(X) for the (finite) set of terms in X of sort s, and we identify Vshared(X) with
the family (Vs

shared(X))s∈S∞ . We also use the notations Vs
shared(H) and Vshared(H) when H is an

assignment, viewing H as the finite set of terms being assigned values, and even Vs
shared(Γ) and

Vshared(Γ) when Γ is a trail, viewing it as an assignment.

Definition 25 (Model-describing assignment) An assignment H is model-describing if HT1

is consistent with T +
1 and if, for 2≤ k≤n, HTk

is T +
1 -compatible with T +

k sharing Vshared(H). ※

We now prove the main theorem about the common model construction.

Theorem 13 (Glueing models) If H is a model-describing assignment, there exists a
T +
∞ [fv(H)]-model view-endorsing H. ※

We assume H is a model-describing assignment and split the proof as follows.

Lemma 14 We always have fv(H) ⊆ ⋃n
k=1 fvΣk

(Vshared(H)). ※

Proof: Let x ∈ fv(H) and let Y be the (non-empty) subset of ⋃n
k=1 fvΣk

(Vshared(H)) of terms
having x as a subterm. Let t be a term in Y such that the distance between t’s root position
and the position of the leftmost occurrence of x is minimal. If t is not x itself, then its root is
a symbol of some Σk, and there is u ∈ fvΣk

(t) having the occurrence of x as a subterm. By the
second closure rule, t ∈ Vshared(H) and therefore u ∈ Y , with a smaller distance between its root
position and the position of the leftmost occurrence of x, which is a contradiction. �

Remark 15 Whenever 1≤ k≤n,
1. fvΣk

(HTk
) = fvΣk

(H) ⊆ fvΣk
(Vshared(H)), so fvΣk

(HTk
∪ Vshared(H)) = fvΣk

(Vshared(H)).
2. view-endorsing HTk

is the same as view-endorsing H.
※

Definition 26 (Construction of bijections) Since HT1 is consistent with T +
1 , there exists a

T +
1 [fvΣ1

(H)]-model that view-endorses H. We extend it into a T +
1 [fvΣ1

(Vshared(H))]-model M1
by picking arbitrary values for terms in fvΣ1

(Vshared(H)) \ fvΣ1
(H).

Now whenever 2≤ k≤n, the fact that HTk
is T +

1 -compatible with T +
k implies that there exists

a T +
k [fvΣk

(Vshared(H))] model Mk that view-endorses H and such that for all s ∈ Sk,
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•
∣∣∣sMk

∣∣∣ =
∣∣∣sM1

∣∣∣, and

• for all t and t′ in Vs
shared(H), Mk(t) =Mk(t′) if and only if M1(t) =M1(t′).

We extract from this a bijection φs
k from sMk to sM1 such that for all t ∈ Vs

shared(H) we have
φs

k(Mk(t)) =M1(t). For k = 1 and all s ∈ S∞, we take φs
1 to be the identity from sM1 to sM1 .

※

We now build a T +
∞ [fv(H)]-model M.

Definition 27 (Construction of the model)

• For any sort s, we take sM = sM1 , and equality symbols are necessarily interpreted as equality
of domain elements.

• For any other symbol f : (s1× · · ·×sm)→s in signature Σk (the fact that theories are disjoint
makes k unique), we take fM(a1, . . . , am) = φs

k(fMk((φs1
k )−1(a1), . . . , (φsm

k )−1(am))).
• For a variable x ∈ fvs(H) with x ∈ Vshared(H): we take xM = xM1 .
• For a variable x ∈ fvs(H) with x 6∈ Vshared(H): Lemma 14 gives a k with 1≤ k≤n such that
x ∈ fvΣk

(Vshared(H)). Moreover, this k is unique, otherwise the first closure rule of Vshared(H)
would entail x ∈ Vshared(H). So we take xM = φs

k(xMk).
• For a non-Boolean T +

k -value c we take cM = φs
k(cMk), and of course trueM = true and

falseM = false. ※

Lemma 16 (Coincidence of interpretations)
1. Assume 1≤ k≤n, and let t be a term of sort s ∈ Sk such that fvΣk

(t) ⊆ fvΣk
(H).

Assume for all s′ ∈ Sk and all u ∈ fvs′
Σk

(t) ∩ Vs′
shared(H) we have M(u) = φs′

k (Mk(u)).
then we have M(t) = φs

k(Mk(t)).
2. For all t ∈ Vshared(H) we have M(t) =M1(t).
3. Assume 1≤ k≤n and let t be a Σ+

k [fvΣk
(Vshared(H))]-term of sort s ∈ Sk.

We have M(t) = φs
k(Mk(t)).

※

Proof:
1. By induction on t:

• If t ∈ fvΣk
(t) ∩ Vshared(H) then we apply the hypothesis.

• If t ∈ fvΣk
(t)\Vshared(H) then t ∈ fv(H) and by definition we have M(t) = φs

k(Mk(t)).
• If t is of the form f(t1, . . . , tm) with f : (s1× · · ·×sm)→s in signature Σk, then
M(f(t1, . . . , tm)) = φs

k(fMk((φs1
k )−1(M(t1)), . . . , (φsm

k )−1(M(tm)))), and by applying the
induction hypothesis on each of t1, . . . , tm, it is equal to φs

k(fMk(Mk(t1)), . . . ,Mk(t1)) =
φs

k(Mk(t)).
2. By induction on t:

• If t ∈ V∞ then by definition we have M(t) =M1(t).
• If t is of the form f(t1, . . . , tm) with f : (s1× · · ·×sm)→s in signature Σk for some 1≤ k≤n:

Then for all s′ ∈ Sk and all u ∈ fvs′
Σk

(t) ∩ Vs′
shared(H), we have M(u) = φs′

k (Mk(u)),
since, on the one hand, u is strictly smaller than t and therefore the induction hypothesis
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provides M(u) = M1(u), and on the other hand, the fact that u ∈ Vs′
shared(H) entails

M1(u) = φs′
k (Mk(u)). We can therefore apply Point 1 and get M(t) = φs

k(Mk(t)). Since
t ∈ Vs

shared(H) we have M1(t) = φs
k(Mk(t)) and therefore M(t) =M1(t).

3. By induction on t:
• If t ∈ Vshared(H), then M(t) =M1(t) = φs

k(Mk(t)), using Point 2.
• If t ∈ fvΣk

(Vshared(H)) with t 6∈ Vshared(H), then we must have t ∈ fv(Vshared(H)) and, by
construction, M(t) = φs

k(Mk(t)).
• If t is a non-Boolean T +

k -value, then by construction we have M(t) = φs
k(Mk(t)).

• If t is of the form f(t1, . . . , tm) with f : (s1× · · ·×sm)→s in signature Σk, then
M(f(t1, . . . , tm)) = φs

k(fMk((φs1
k )−1(M(t1)), . . . , (φsm

k )−1(M(tm)))), and by applying the
induction hypothesis on each of t1, . . . , tm, it is equal to φs

k(fMk(Mk(t1)), . . . ,Mk(t1)) =
φs

k(Mk(t)).
�

We now finish the proof of Theorem 13.
Proof: From the previous Lemma, and whenever 1≤ k≤n, M is a T +

k -model (forgetting the
interpretation of all sorts and symbols that are not in Σ+

k ). We are left to show that if t←c is in
HT∞ , then M(t) = cM.

If the single assignment t←c is in H, then c is a T +
k -value for one of the theories T +

k . If it
is not in H, then t is of the form t1's t2 and for any theory T +

k with s ∈ Sk we have t←c in
HTk

. In both cases, M(t) =Mk(t) = cMk = cM, whether c is a Boolean value or a non-Boolean
T +

k -value. �

The second task is to formally define the mute kind of states, which is a syntactic notion that
will entail, together with completeness assumptions about the theory modules, that such states
give a model-describing assignment.

Definition 28 (Mute state) A state is mute if it is a search state whose underlying assignment
H is such that whenever 1≤ k≤n, HTk

is a plausible T +
k -assignment that Ik cannot extend. ※

Lemma 17 (Mute states are model-describing)

Assume that for 2≤ k≤n, module Ik is T +
1 -complete, and assume module I1 is complete.

If a state is mute, its underlying assignment is model-describing. ※

Proof: From the definitions of completeness and T +
1 -completeness. �

Corollary 18 (Model-soundness)

Assume that for 2≤ k≤n, module Ik is T +
1 -complete, and assume module I1 is complete.

If CDSAT reaches a mute state Γ, there exists a T +
∞ -model that view-endorses Γ, and therefore

view-endorses the input problem. ※

Proof: Notice that the input problem remains present in every reached state. So if CDSAT
reaches a mute state, its underlying assignment H contains the input problem and from the
previous lemma it is model describing. Hence by Theorem 13, there exists a T +

∞ -model that
view-endorses H, and therefore view-endorses the input problem. �
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Note that CDSAT can reach a state whose underlying assignment is model-describing long
before it reaches a mute state. In an implementation, it may therefore be useful to let theory
modules notify the main algorithm when the underlying assignment of current trail becomes
T +

1 -compatible with their theory.

9 Termination and progress

In this section we prove termination and progress of CDSAT: termination ensures that, starting
from any input problem X, applying B-transitions always reaches an irreducible state, in finitely
many steps and regardless of the strategy used to apply them; progress ensures that an irreducible
state has an interesting shape, namely that it is either unsat or a model-describing state. Termi-
nation and progress do require, however, that B be appropriate for the input problem X, namely
that it be a global basis for it.

Definition 29 (Global basis) Let X be a set of terms.
A closed set B is a global basis for X with respect to theory modules I1, . . . , In if

1. Original terms: X ⊆ B
2. Finiteness: B is finite;
3. Stability: for all 1≤ k≤n, basisk(B) ⊆ B

※

Section 9.1 shows how finiteness ensures termination, and how stability ensures progress,
i.e. the fact that the B-transition system does not get stuck on a state that is not unsat and that
some theory modules can still extend. Section 9.3 gives a condition on the local bases of individual
theory modules that is sufficient to guarantee the existence of a global basis.

9.1 Proofs of termination and progress given a global basis

We now assume that B is a finite set of terms, and prove termination of B-transitions. For this,
we encode each trail as a 3|B|-tuple of integers, and show that every B-transition decreases this
encoding according to the lexicographic order on 3|B|-tuples of integers, which we denote >lex.

Definition 30 (Encoding of trails as tuples) Let Γ be a trail, with A1, . . . , Am being its de-
cisions unambiguously enumerated from smallest to greatest. For i in 1, . . . ,m, let soΓ

i be 0 if Ai

is a Boolean assignment, and be 1 if not. For i in 0, . . . ,m, let wΓ
i denote |B| − |LΓ

i | (the number
of terms in B that do not have a level i assignment in Γ), and let badΓ

i denote the number of
decisions in Γ, of some level greater than i, that are first-order T -assignments, for some theory T
with module I, and that violate LΓ

≤i in one I-step. We encode Γ as the 3|B|-tuple

asTuple(Γ) = (wΓ
0 , badΓ

0 , soΓ
1 , w

Γ
1 , badΓ

1 , . . . , soΓ
m, w

Γ
m, badΓ

m, 2, . . . , 2). ※

We now prove that conflict analysis decreases the tuples encoding trails, compared in lexico-
graphic order:

Lemma 19 (Conflict analysis decreases the measure)

If 〈Γ;E;A〉 =⇒∗ Γ′ then asTuple(Γ) >lex asTuple(Γ′). ※
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Proof: By induction on the derivation of 〈Γ;E;A〉 =⇒∗ Γ′, doing a case analysis on the first
rule used:
Resolve 〈Γ;E,L;A〉 =⇒ 〈Γ;E ∪ explΓ(L);A〉

There is nothing to prove as Resolve does not change the trail.
UIPBackjump 〈Γ;E,L;A〉 =⇒ (Γ\D), (E ` L)

Let i be the level of A. Clearly, the side condition of rule UIPBackjump entails that L is
in L(Γ\D),(E`L)

j for some j in 0, . . . , i − 1. For all j′ in 1, . . . , j, so(Γ\D),(E`L)
j′ = soΓ

j′ . And
as we only remove decisions (those in D) that are greater than j, for all j′ in 0, . . . , j − 1,
bad(Γ\D),(E`L)

j′ ≤ badΓ
j′ . For all j′ in 0, . . . , j − 1, w(Γ\D),(E`L)

j′ = wΓ
j′ . Finally, notice that

w
(Γ\D),(E`L)
j < wΓ

j , because L has been added to level j.

SemSplit 〈Γ;E,L;A〉 =⇒ Γ\AxL

Let i be the level of A. For all j in 1, . . . , i − 1, soΓ\AxL
j = soΓ

j . For all j in 0, . . . , i − 1,
w

Γ\AxL
j = wΓ

j . And as we only replace decision A by a Boolean decision, for all j in 0, . . . , i−1,
badΓ\AxL

j ≤ badΓ
j . Now soΓ\AxL

i = 0 while soΓ
i = 1.

Undo 〈Γ;E,A;A〉 =⇒ Γ\A
Let i be the level of A. Clearly, the side condition of rule Undo entails that A violates LΓ

j

in one step, for some j in 0, . . . , i − 1. Taking the smallest of such j, we have: For all j′ in
1, . . . , j, soΓ\A

j′ = soΓ
j′ . For all j′ in 0, . . . , j, wΓ\A

j′ = wΓ
j′ . And as we only remove decision A

and j is the smallest level that A violates in one step, for all j′ in 0, . . . , j− 1, badΓ\A
j′ = badΓ

j′ .
Finally, notice that badΓ\A

j < badΓ
j .

�

Theorem 20 (Search rules decrease the measure)

If Γ −→B Γ′ then asTuple(Γ) >lex asTuple(Γ′). ※

Proof:
Decide Γ −→ Γ, A

We have asTuple(Γ) of the form (. . . , badΓ
m, 2, . . . , 2), and asTuple(Γ, A) of the form

(. . . , badΓ,A
m , soΓ,A

m+1, w
Γ,A
m+1, badΓ,A

m+1, 2 . . . , 2).
For all j in 1, . . . ,m, soΓ,A

j = soΓ
j . For all j in 0, . . . ,m, wΓ,A

j = wΓ
j . And as the side-condition

of rule Decide forbids A to violate anything in Γ in one step, for all j in 0, . . . ,m, badΓ,A
j = badΓ

j .
We conclude with soΓ,A

m+1 < 2.
Propagate Γ −→ Γ, (J ` L)

Let i be the level of L. For all j in 1, . . . , i, soΓ,(J`L)
j = soΓ

j . For all j in 0, . . . , i − 1,
w

Γ,(J`L)
j = wΓ

j , and badΓ,(J`L)
j = badΓ

j . We conclude with w
Γ,(J`L)
i < wΓ

i .

Conflict Γ −→ Γ′, given that 〈Γ; J, L;A〉 =⇒∗ Γ′.
By the previous lemma, asTuple(Γ′) >lex asTuple(Γ).

Fail There is nothing to prove, the transition reaches an irreducible form.
�
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Corollary 21 (Termination) B-transitions terminate. ※

We now prove progress, assuming B is a global basis for an input problem X.

Remark 22 If the trail Γ of a state is such that Γ ⊆ B, then after one B-transition, the state
has a trail Γ′ ⊆ B. ※

Proof: Only rules Decide and Propagate may introduce a new formula; In the case of Decide, it
is either a relevant term or a relevant equality of Γ ⊆ B, so it is still in B. In the case of Propagate,
the side-condition enforces that this new formula be in B. �

Therefore, starting from an input problem X, any term ever appearing in the trail of a state
reached by B-transitions is a term in B.

Theorem 23 (Progress) From every conflict state a transition rule applies. If a search state Γ
with Γ ⊆ B is not mute, then a B-transition rule applies. ※

Proof: We start with the case of a conflict state 〈Γ;E;A〉: If A is boolean, then Resolve can be
applied unless all vertices of E are decisions, one of which is A, and in that case we can apply
UIPBackjump. If A is not boolean, assume that Resolve cannot be applied: then E only contains
decisions (which may or may not include A) and vertices towards which A has an edge; if A has
an edge to at least one vertex in E, then either UIPBackjump or SemSplit applies (depending on
whether A is in E), and if not, A must be in E and Undo applies.

Now if a search state Γ is not mute, then for at least one i among 1, . . . , n, either ΓTi is not
plausible or it is and Ii can extend it.

If ΓTi is not plausible, then it is a particular case of the situation where ΓTi is not included in
Γ. This means there are two T +

j -assignments t1←c1 and t2←c2 in Γ with an inferrable equality
assignment (t1's t2)←b that is not in Γ. If (t1's t2)←b is in Γ we can apply Conflict or Fail, and
if not we can apply Propagate.

We now assume that ΓTi is a plausible T +
i -assignment included in Γ, and that Ii can extend it.

If it can extend ΓTi with an inference J `Ii L, then J ⊆ ΓTi ⊆ Γ and L is a Boolean assignment
for a formula in basisi(ΓTi) ⊆ basisi(Γ) ⊆ basisi(B) ⊆ B (by monotonicity of basisi and stability of
B). Again, if L is in Γ we can apply Conflict or Fail, and if not we can apply Propagate. If it can
extend ΓTi with a T +

i -assignment t←c that is acceptable for ΓTi and Ii, where t is a T +
i -relevant

term of ΓTi , then rule Decide can be applied. �

Corollary 24 (Normalisation) Given an input problem, CDSAT always reaches a state that is
either unsat or a mute state. If the T1-module is complete and every other module is T +

1 -complete,
then CDSAT always reaches a state that is either unsat or a model-describing state. ※

9.2 Completeness results

In this section we assume that the T1-module is complete and every other module is T +
1 -complete.

Corollary 25 (Refutational completeness) If there is no T +
∞ [V ]-model that view-endorses

the input problem, then the calculus reaches state unsat. ※

39



Proof: Since there are no T +
∞ [V ]-model that view-endorse the input problem, Corollary 18 entails

that the calculus cannot reach a model-describing state. By Lemma 17 and our completeness
assumptions it cannot reach a mute state. Therefore Corollary 24 entails that state unsat is
reached. �

Corollary 26 (Model-completeness) If there is a T +
∞ [V ]-model that view-endorses the input

problem, then the calculus reaches a model-describing state. If the input problem is Boolean and
there is a T∞[V ]-model endorsing it, then again the calculus reaches a model-describing state. ※

Proof: Since there is a T +
∞ [V ]-model that view-endorses the input problem (resp. a T∞[V ]-model

endorsing the input problem, should the latter be Boolean), Theorem 12 entails that the calculus
cannot reach state unsat. Therefore Corollary 24 entails that a mute state is reached, which by
Lemma 17 and our completeness assumption is model-describing. �

9.3 A sufficient criterion for the existence of a global basis

The argument above for the termination of CDSAT depends on the existence of a global basis,
which is not necessarily entailed by the local bases of the theory modules I1, . . . , In and their basic
properties. As mentioned in Section 4.1, the risk is that, from the set X of terms involved in an
input problem, a theory module Ik might at some point introduce a term u0 in Y0 = basisk(X),
which another theory module Ij had not anticipated, and which prompts Ij to introduce a
term t1 in X1 = basisj(basisk(X)), which in turns prompts Ik to introduce a term u1 in Y1 =
basisk(basisj(basisk(X))), etc. In other words, despite each of those sets being finite, ⋃m∈NXm

might be infinite, where X0 = X and Xm+1 = basisj(basisk(Xm)). In order to get a finite global
basis, we therefore explore how to permute local bases, e.g. how to relate basisj(basisk(X)) and
basisk(basisj(X)). This leads to a sufficient global criterion, about the local bases basis1, . . . , basisn,
for the existence of a global basis. For this we introduce the notion that a theory module may
produce and consume a given sort.

Definition 31 (Production and consumption of a sort)

Let I = (`I , basisI) be a module for theory T with signature Σ = (S, F ), and let s be in S.
I does not produce s if for all closed set X, all terms in basisI(X) of sort s are in X.
I does not consume s if for all closed set X and all terms t of sort s, if t is a Σ-variable or an

equality and all of its strict subterms are in X, then
basisI(X ∪ {t}) ⊆ ⇓(basisI(X) ∪ {t}). ※

We use these two notions to define a binary relation ≺ between theory modules: Ik ≺ Ij if
there exists a sort s such that Ik produces s and Ij consumes s. The intuition is that if Ik 6≺ Ij

then basisj(basisk(X)) ⊆ basisk(basisj(X)) for any X. This will imply the following result.

Theorem 27 (Existence of a global basis) If ≺ is acyclic, then theories can be numbered so
that if Ik ≺ Ij then i ≤ j, and for every closed set X, the set basis∞(X) = basisn(. . . basis1(X))
is a global basis for X with respect to theory modules I1, . . . , In. ※
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The rest of the section is devoted to proving Theorem 27, for which we can already notice that
basis∞(X) contains X and is finite for every closed set S. So we only have to prove the stability
property of a global basis. We assume the hypothesis of Theorem 27 and assume the numbering
of the theories is such that if Ik ≺ Ij then k≤ j.

Lemma 28 (Permutability of local bases) Assume 1 ≤ i < j ≤ k and let X be a closed set.
1. For all sets Y of terms that is closed under the subterm relation and with X ⊆ Y ⊆ basisj(X),

we have basisk(Y ) ⊆ ⇓(basisk(X) ∪ Y ).
2. We have basisk(basisj(X)) ⊆ basisj(basisk(X)).

※

Proof: First, note that Ij 6≺ Ik, so none of the sorts produced by Ij is consumed by Ik.
1. By induction on the (finite) size of Y .

If Y = X we are done. Otherwise let t be a term of greatest size in Y \X. We know t is in
basisj(X). Since theories have disjoint signatures, t is either Σj-foreign, Σk-foreign, a variable
or an equality. It cannot be Σj-foreign, otherwise the “no introduction of foreign terms”
requirement for basisj(X) entails that t is in X. It is therefore either a Σk-variable or an
equality. Moreover, every strict subterm of t is in Y \{t} (since Y is closed under the subterm
relation), and therefore in ⇓ (Y \{t}). Finally, t must be of a sort s that is produced by Ij

(otherwise it would be in X) and that is not consumed by Ik. So we apply the definition of s
not being consumed by Ik on the closed set ⇓(Y \{t}), and get

basisk(⇓(Y \{t}) ∪ {t}) ⊆ ⇓(basisk(⇓(Y \{t})) ∪ {t}).
On the other hand, let us make two remarks: First, we still have X ⊆ (Y \{t}). Second, Y \{t}
is still closed under the subterm relation: indeed, if t were a strict subterm of a term u in Y ,
then either u would be in X in which case t would be in X, or u would be in Y \X in which
case t would not be a term of greatest size in there. Therefore, we can apply the induction
hypothesis on Y \{t} and get

basisk(Y \{t}) ⊆ ⇓(basisk(X) ∪ (Y \{t})).
Putting it all together:

basisk(Y ) = basisk((Y \{t}) ∪ {t})
⊆ basisk(⇓(Y \{t}) ∪ {t}) as basisk is monotonic
⊆ ⇓(basisk(⇓(Y \{t})) ∪ {t}) as proved above
= ⇓(basisk(Y \{t}) ∪ {t})
⊆ ⇓(⇓(basisk(X) ∪ (Y \{t})) ∪ {t}) as proved above
⊆ ⇓⇓(basisk(X) ∪ (Y \{t}) ∪ {t})
= ⇓(basisk(X) ∪ Y )

2. We can derive
basisk(basisj(X)) ⊆ ⇓(basisk(X) ∪ basisj(X)) Point 1 with Y being basisj(X)

⊆ ⇓(basisj(basisk(X)) ∪ basisj(X)) as basisk(X) ⊆ basisj(basisk(X))
= ⇓(basisj(basisk(X))) as X ⊆ basisk(X)

and basisj is monotonic
= basisj(basisk(X)) as basisj(basisk(X)) is closed

�
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Lemma 29 (Stability) Given a closed set X and k with 1≤ k≤n,
basisk(basis∞(X)) = basis∞(X) ※

Proof: We show by induction on j the more general result that if 1 ≤ k ≤ j ≤ n we have
basisk(basisj(. . . basis1(X))) = basisj(. . . basis1(X))

The inclusion basisj(. . . basis1(X)) ⊆ basisk(basisj(. . . basis1(X))) is a requirement on basisj .
For the other direction, we do a case analysis: If j = k then this is simply the idempotence
property of basisk. Otherwise let us assume the induction hypothesis IH for j. We then have

basisk(basisj+1(basisj(. . . basis1(X)))) ⊆ basisj+1(basisk(basisj(. . . basis1(X)))) Lemma 28.2
⊆ basisj+1(basisj(. . . basis1(X))) IH

�

This finishes the proof of Theorem 27. We finish this section by mentioning which sorts are
produced and consumed by the examples of theory modules given in Section 5.

Remark 30 First, most theory modules will produce sort prop, in particular as soon as they may
introduce the assignment ⊥.
• Modules IBooleval and IBool for the Boolean theory do not produce or consume any sorts;
• Modules I1 and I2, for an abstract theory with a decision procedure, produce sort prop only

and do not consume any sorts;
• Module ILRA produces sorts prop and Q and consumes sort Q only;
• Module IEUF produces sort prop only and does not consume any sorts;
• Module IArr produces all sorts in its signature and consumes all array sorts (such production

and consumption occurs because, when seeing t 6'I⇒V u in the trail, the module can introduce
terms t[diff(t, u)] and u[diff(t, u)]).

※

So these modules can be combined, for instance IBool, I2, ILRA, IEUF, IArr, with for any set X
the global basis basisBool(basisI2(basisEUF(basisLRA(basisArr(X))))).

10 Small extensions that do not break termination

In this section we extend CDSAT with three rules: from the previous sections, it is clear that they
are not needed for completeness, but we present them because other calculi of the literature that
we want to simulate here need them, and rightly so because these extra rules can provide shortcuts
in derivations; moreover, they are “safe” in that they preserve justifiedness (as in Lemma 10) and
they pass the termination argument (Lemma 19 and Theorem 20).

The following definition allows CDSAT to internalise a conflict (a set of Boolean assignments)
in the form of a formula, more precisely a clause.

Definition 32 (Literal assignment and conflict clause) A literal assignment is a Boolean
assignment l←b such that l is a Boolean variable (i.e. fvΣBool(l) = {l}). A conflict clause CC(E)
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Decide+

Γ −→B Γ, A if A is a T +
k -assignment for a term in B and

it is acceptable for ΓTk
and Ik, with 1≤ k≤n

Prune
〈Γ;E;A〉 =⇒ 〈Γ\D;E;A〉 if D is a set of decisions that are

strictly greater than A

Learn
〈Γ; J ∪ E;A〉 =⇒ 〈Γ, (J ` CC(E)); J ∪ E;A〉 if E is a set of literal assignments

Figure 5: Extra rules of CDSAT

of a set E of literal assignments is
(∨(t←true)∈E ¬t) ∨ (∨(t←false)∈E t) ※

Nothing in the definition imposes that there be a conflict, but as we shall see below, we shall
only use this concept when E is in the conflict of a conflict state.

The extra rules of CDSAT are given in Fig. 5.
Rule Decide+ allows CDSAT to make a decision on any term in the global basis, rather than

on a T +
k -relevant term of the current trail.

Rule Prune allows CDSAT to prune anything that belongs to a level higher than that of the
decision that definitely needs to be undone (being the greatest one that contributes to the conflict).
As most SMT-solvers implement the trail as a stack, it is natural, in order to undo a decision, to
pop out of the stack anything of a level higher than that of the decision being undone. This rule
allows the present CDSAT system to model this behavior.

Rule Learn turns conflicts into clauses and learns them by adding them to the trail. For
this to be useful, a Boolean module such as IBool presented in Section 5 needs to be present,
otherwise no theory can make sense of the disjunction and the negation symbols. If it is present
though, it will be able to re-use that conflict for e.g. unit propagation, so that, even if many
theories have been involved in creating the conflict, it can be re-used without involving those
theories again. Learning is again a fundamental feature of SAT- and SMT-solvers, which this
extra rule thus models in CDSAT. Note that, as expected, learning is not a feature that is needed
for completeness (every time a learnt clause is used, the original reasoning justifying that clause
could be replayed), but only to speed up the runs. Note that rule Learn allows CDSAT to derive
any conflict clause encountered during conflict analysis (not necessarily the last one). Also note
that the termination argument needs to be adapted, in that the learnt clauses need to be in the
global basis: for instance the Boolean module IBool can include all possible learnt clauses in its
local basis: for a closed set X, basisBool(X) adds to X all clauses whose Boolean variables appear
in X (these are in finite numbers). This modified module now produces sort prop, in the sense of
Definition 31, so in order to apply our sufficient criterion for the existence of a global basis, no
other theory should consume sort prop (as it is the case with the examples of Section 5).

Other rules that are commonly used in the litterature, like forgetting (learnt clauses) or restart-

43



ing, can also be added without difficulty but, while they would also preserve state soundness, they
may jeopardise termination, unless a specific strategy is used to control them. We therefore leave
them as implementation-oriented features.

11 Conclusion

In this report we have provided a generic calculus called CDSAT to combine abstract theories, each
of which comes with a theory module that may or may not explicitly use “semantical assignments”
such as x←

√
2, following the MCSAT approach [11, 18]. The combination being generic, we have

identified specifications that we require of the theories and their modules for the generic calculus
to be sound, complete, and terminating.

As it can handle several theories abstractly, CDSAT generalizes the MCSAT calculus for the
Boolean theory combined with only one abstract theory [11]. CDSAT also generalizes the MCSAT
calculus that specifically combines Bool, LRA,EUF [18], and we have expressed the theory-specific
mechanisms involved in this combination (or very similar ones) as theory modules satisfying our
specifications.

We have also included the decription of a module for the extensional theory of arrays, a theory
that had no published MCSAT treatment.

CDSAT is also able to integrate “regular” theory-specific decision procedures used in Nelson-
Oppen combinations [27]. In effect, we have reproved the soundness and completeness properties
of Nelson-Oppen combinations as a particular case of our soundness and completeness theorems:
that where no theory module ever uses semantical assignments. This also opens the door to
designing SMT-provers where “MCSAT-like” procedures and “Nelson-Oppen”-like procedures can
collaborate.

We chose to express CDSAT at a rather abstract level, not only to avoid relying on theory-
specific features but also to avoid committing to specific strategies (for instance using state tran-
sition systems rather than more deterministic algorithms) or committing to specific implemen-
tation choices (for instance using a graph-based rather than stack-based presentation of trails).
The system, and the theorems proved about it, are all the more general as any strategy and
implementation choices can be accommodated.

However, several of the more pragmatic aspects of MCSAT, as described for instance in [18], are
left aside by this level of abstraction. One of the main questions is how the actual implementation
of a theory module can detect whether one of its inferences is applicable from the current trail or
from the extension of the current trail with a potential decision (typically detecting acceptability
of a decision). Let us mention two instances of this issue:

As in several examples of Section 5, a typical CDSAT module inference is evaluation, where
the value of a complex term is inferred from the values of its subterms. Detecting acceptability
of a decision with regards to the evaluation inferences that it could trigger suggests to keep track
of those complex terms that become unit constraints: only one semantical assignment is missing
to determine the value of a complex term. Evaluation plays an important role in [11, 18], as does
the tracking of unit constraints. The unit completeness property mentioned in [18] is here part of
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the completeness requirement of theory modules.
Applicability of the LRA-inference that we call here elimination of empty solution spaces would

in general require a full LRA-solver run, unless the strategy used to assign values to LRA variables
does so by systematically treating LRA variables in one particular precedence order (in that case
the inference rule is redundant). The generic calculus and its properties are here independent
from such strategy issues, but the strategy would here have an impact on how easy it is to detect
applicability of inference rules. This follows the general idea that strategies should matter for
speed, but not for the soundness, completeness, and termination of the generic calculus.
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