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Abstract. LJQ is a focused sequent calculus for intuitionistic logic, with
a simple restriction on the first premisss of the usual left introduction
rule for implication. We discuss its history (going back to about 1950,
or beyond), present the underlying theory and its applications both to
terminating proof-search calculi and to call-by-value reduction in lambda
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1 Introduction

Proof systems for intuitionistic logic close to natural deduction are well-known
to be related to computation. For example, ordinary typed λ-calculus, with beta-
reduction, is the classic model of computation for typed functional programmes
with call-by-name (CBN) semantics; likewise, a system of uniform proofs for
Horn logic is a coherent explanation of proof search in pure Prolog, as argued
by (e.g.) [23]. The focused calculus LJT of Herbelin [17] (with antecedents in
work [20], [3] by Joinet et al) is an intuitionistic sequent calculus equivalent
to natural deduction (in the sense that its cut-free proofs are in a natural 1-1
correspondence with normal deductions); it also has a well-developed theory of
proof-reduction with strong normalisation [17], [10], [12]. It can thus be seen to
fulfil both these important roles, in being a basis both for proof search (where
the proofs are of interest in themselves [9]) and for functional program evaluation
with CBN-semantics. Work by the second author [21], [22] is developing the first
of these ideas for a wide range of type theories.

The purpose of the present paper is to consider a different focused calcu-
lus LJQ, as named by Herbelin [16] and with similar antecedents [20], [3]. We
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present some aspects of its history and its applications both in structural proof
theory and in λ-calculus, with connections in the first instance to automated
reasoning and in the second to call-by-value programming language semantics.
Fuller details will appear elsewhere.

Vorob’ev [34] (detailing ideas published in 1952) showed (Theorem 3) that, in
a minor variant of Gentzen’s calculus LJ for intuitionistic logic, one may, without
losing completeness, restrict instances of the left rule L⊃ for implication to those
in which, if the antecedent A of the principal formula A⊃B is atomic, then the
first premiss is an axiom. Independently, Hudelmaier [18] showed that one could
further restrict this rule to those instances where the first premiss was either
an axiom or the conclusion of a right rule; the result was proved in his [18] and
described in [19] as folklore. The same result is mentioned by Herbelin in [16]
as the completeness of a certain calculus LJQ, described simply as LJ with the
last-mentioned restriction.

It is convenient to formalise such restrictions in terms of a sequent calculus
LJQ′ with two forms of sequent; letting Γ range over multisets of formulae, we
have the ordinary sequent Γ ⇒ A to express the deducibility of the formula A
from assumptions Γ , and the focused sequent Γ → A to impose the restriction
that the last step in the deduction is by an axiom or a right rule (i.e. with the
succedent formula principal). A natural deduction interpretation is straightfor-
ward. Note that the focused sequent p∨ q → p∨ q is not derivable; the last step
of its derivation can only be a right-introduction step.

The rules of the calculus are then as presented below, in Sect. 2. We use the
name LJQ′ rather than LJQ both to indicate the explicit focusing (use of two
kinds of sequent) and the extra focusing (in the premisses of right rules for ∨ and
∧). In later sections, when we consider a term calculus to represent derivations,
we revert to the generic name LJQ for this kind of calculus.

For example, the rule L⊃′ has, as conclusion and second premiss, ordinary se-
quents, but as first premiss a focused sequent, capturing the restriction on proofs
discussed by Hudelmaier (given that the focused sequents are exactly the axioms
or the conclusions of right introduction rules). However, further restrictions are
allowed: our right rules for disjunction and conjunction also have focused pre-
misses. This represents a strengthening of Hudelmaier’s folklore result.

LJQ as described in [16] originates in linear logic, in work by Danos et al [3]
without mention of disjunction and conjunction. This in turn goes back to the
thesis [20] of Joinet. Focusing itself is a technique pioneered by Andreoli [1] (but
one of the points of our paper is a demonstration of its origins in much earlier
work).

Such calculi are of interest not just because of the restricted proof search
imposed by the focusing but because the completeness of LJQ (or of LJQ′)
has as an easy corollary the completeness of more specialised “depth-bounded”
calculi (as devised e.g. by [34], [18], [5]) in which proof search has limited (e.g.
linear) depth (a.k.a. “height”); [33] gives a convenient account of the G4ip
calculus, as it is there called.
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These focused calculi are complementary to other focused calculi like Herbe-
lin’s LJT, as studied in [16], [17], [24], [32], [33], [9], [10], [12].

The present extended abstract outlines the theory (Sect. 2), presents some
variations (Sect. 3), summarises some applications (Sect. 4), presents the calcu-
lus with term annotations (Sect. 5) (including a strongly normalising reduction
system for LJQ and a preservation theorem relating LJQ to Moggi’s calculus
λC) and summarises some related work (joint with Delia Kesner: Sect. 6).

2 LJQ′

Basic syntactic conventions are as in [33]; in particular, P is a metavariable for
“proposition variables” and Γ indicates a multiset of formulae. The symbols p
and q are distinct proposition variables. The rules of LJQ′ are as given below
in Fig. 1.

Γ ,⊥ ⇒ A
L⊥ Γ → A

Γ ⇒ A
Der

Γ , P → P
Ax

Γ , A⊃B → A Γ, B ⇒ C

Γ, A⊃B ⇒ C
L⊃′ A, Γ ⇒ B

Γ → A⊃B
R⊃′

Γ , A ⇒ C Γ, B ⇒ C

Γ, A ∨B ⇒ C
L∨′ Γ → Ai

Γ → A0 ∨A1
R∨′

Γ , A, B ⇒ C

Γ, A ∧B ⇒ C
L∧′ Γ → A Γ → B

Γ → A ∧B
R∧′

Fig. 1. Rules of LJQ′

Expressed in terms of our notation, the right rule for conjunction in the
calculus LJQ of [16] would be

Γ ⇒ A Γ ⇒ B
Γ → A ∧B

and similarly for disjunction; the definition of “pure” derivations in [18] could be
expressed in similar terms. The rule Der is named after the dereliction rule in
linear logic; the latter rule has (used from conclusion to premiss) a similar effect,
enabling a transition between a sequent where a certain formula is optional to
one where it is required. The restriction to proposition variables P in Ax has
the effect that the natural deduction interpretations of derivations are in long
normal form. Use of arbitrary axioms Γ , A → A would give a different notion of
derivability, e.g. p ∨ q → p ∨ q would be derivable.

A formula is irreducible when it is of the form P or B⊃C. To save space,
proofs omit treatment of absurdity, conjunction and disjunction; details will
appear in the full paper. Results as stated apply to the full calculus.
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Lemma 1. All sequents of the following form are derivable:

1. Γ , A,A⊃B ⇒ B;
2. Γ , A → A for irreducible A;
3. Γ , A ⇒ A.

Proof: The three parts are handled by a simultaneous induction on the sizes of
A⊃B, A and A respectively. Each part is allowed to depend on its predecessor
(up to the same size) and on itself and its successors (at smaller sizes). 2

The condition “for irreducible A” is needed once absurdity, disjunction and
conjunction are included in the language; if we omit them all, then the condition
can be omitted.

Weakening rules, some Inversion rules and Contraction rules are routinely
shown to be admissible.

Theorem 1. The following Cut rules are admissible:
Γ → A A, Γ ′ → B

Γ, Γ ′ → B
C1

Γ → A A, Γ ′ ⇒ B

Γ, Γ ′ ⇒ B
C2

Γ ⇒ A A, Γ ′ ⇒ B

Γ, Γ ′ ⇒ B
C3

Proof: Simultaneous induction on cut rank (size of cut formula A, height of first
derivation d1, height of second derivation d2), with case analysis. 2

Note that p → p and p, p⊃q ⇒ q and q → q and q ⇒ q are all derivable but
that p, p⊃q → q is not derivable, hence the rules

Γ → A A,Γ ′ ⇒ B

Γ, Γ ′ → B

Γ ⇒ A A,Γ ′ → B

Γ, Γ ′ → B

Γ ⇒ A A,Γ ′ ⇒ B

Γ, Γ ′ → B

are not admissible.

Corollary 1. The following rules are admissible:

Γ ⇒ A A, Γ ′ → B

Γ, Γ ′ ⇒ B
C4

Γ → A A, Γ ′ → B

Γ, Γ ′ ⇒ B
C5

Proof: Using Der. 2

Corollary 2. The following rules are admissible:
Γ , A ⇒ B

Γ ⇒ A⊃B
R⊃

Γ , A⊃B ⇒ A Γ, B ⇒ C

Γ, A⊃B ⇒ C
L⊃

Proof: The first is derivable using R⊃′ and Der. The second can be achieved,
using Lemma 1 for the premiss A,A⊃B ⇒ B, as

Γ , A⊃B ⇒ A

. . .
A,A⊃B ⇒ B Γ,B ⇒ C

A,A⊃B,Γ ⇒ C
C3

Γ , A⊃B,Γ , A⊃B ⇒ C
C3

Γ , A⊃B ⇒ C
Contr

2

It follows from Corollary 2 and Lemma 1 (3) that this calculus LJQ′ is as
strong as G3ip. Since a derivation therein becomes a G3ip derivation if we
ignore the distinction between the two kinds of sequent (and remove instances
of Der), the two calculi are equivalent.
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3 Variations

Several variations (and combinations of the variations) on the above are possible.
The first is to include the principal formula A⊃B in the antecedent of the

second premiss of L⊃′. This is preferable when we come to consider a term
calculus, in Sect. 5 below; from the point of view of derivability it makes no
difference.

The second removes the focusing from the premisses of the rules R∧ and R∨
(this gives us the calculus LJQ of Herbelin [16]). Completeness of the calculus
so modified is an immediate corollary of the completeness of LJQ′, since the
focused versions (as we have presented them) are derivable using the unfocused
versions and the Der rule.

The third is a multi-succedent version LJQ* (a variant of this appears in
[16], page 78). We use two kinds of sequent as before; but this time, because of
the need for a multiple succedent, we have a semi-colon to separate the focused
formula (the stoup) from the rest of the succedent. The rules of LJQ* are as in
Fig. 2 (− indicates an empty multi-set).

Γ ,⊥ ⇒ ∆
L⊥∗ Γ → A; ∆

Γ ⇒ A, ∆
Der∗

Γ , P → P ; ∆
Ax∗

Γ , A⊃B → A;− Γ , B ⇒ ∆

Γ, A⊃B ⇒ ∆
L⊃∗ A, Γ ⇒ B

Γ → A⊃B; ∆
R⊃∗

Γ , A ⇒ ∆ Γ, B ⇒ ∆

Γ, A ∨B ⇒ ∆
L∨∗ Γ ⇒ A, B, ∆

Γ → A ∨B; ∆
R∨∗

Γ , A, B ⇒ ∆

Γ, A ∧B ⇒ ∆
L∧∗ Γ → A; ∆ Γ → B; ∆

Γ → A ∧B; ∆
R∧∗

Fig. 2. Rules of the multi-succedent calculus LJQ*

The crucial Cut rules are

Γ → A;∆ A, Γ ′ → B;∆′

Γ , Γ ′ → B;∆, ∆′ C1
Γ → A;∆ A, Γ ′ ⇒ ∆′

Γ , Γ ′ ⇒ ∆, ∆′ C2

Γ ⇒ ∆, A A, Γ ′ ⇒ ∆′

Γ , Γ ′ ⇒ ∆, ∆′ C3

and these are admissible by a routine argument similar to that already given.
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4 Applications

4.1 Completeness of G4ip

The calculus G4ip was introduced by Hudelmaier [18], who gives a completeness
proof that is essentially the following. For brevity we omit consideration of ab-
surdity, conjunction and disjunction. Formulae are weighted as follows: w(P ) = 0
and w(A⊃B) = 1 + w(A) + w(B). Sequents Γ ⇒ A are then ordered using the
multi-set ordering (on the multiset Γ , A); in effect, this allows us to refer to the
weight of a sequent. The rules are as follows.

P, Γ ⇒ P
Ax.

A, Γ ⇒ B

Γ ⇒ A⊃B
R⊃

P,B, Γ ⇒ E

P,P⊃B,Γ ⇒ E
L0⊃

D⊃B,C, Γ ⇒ D B, Γ ⇒ E

(C⊃D)⊃B,Γ ⇒ E
L⊃⊃

Note that every inference has as its conclusion a sequent with greater weight
than each premiss; so root-first proof search is terminating, in a depth bounded
by the weight of the sequent being proved.

Proposition 1 (Completeness of G4ip).

1. If Γ → E is derivable in LJQ′, then Γ ⇒ E is derivable in G4ip.
2. If Γ ⇒ E is derivable in LJQ′, then Γ ⇒ E is derivable in G4ip.

Proof: By simultaneous induction on the sequent weight, using case analysis on
the last step of the derivation. For (1), the last step is either an axiom (in which
case we are done) or an R⊃′ inference, where the inductive hypothesis (2) can
be used. For (2), the last step is either a dereliction, in which case (1) (for the
same weight) is used, or an L⊃′ inference with principal formula A⊃B. In the
latter case, if A is an atom P , then the first premiss is an axiom, with P in Γ ;
the inductive hypothesis (2) applied to the second premiss followed by an L0⊃-
inference provides the required G4ip derivation. Otherwise, with A = C⊃D and
Γ = (C⊃D)⊃B,Γ ′, the premisses are Γ ′, (C⊃D)⊃B → C⊃D and Γ ′, B ⇒ E.
The inductive hypothesis (2) provides a G4ip derivation of Γ ′, B ⇒ E. The first
premiss must be the conclusion from Γ ′, (C⊃D)⊃B,C ⇒ D, whose derivabil-
ity in LJQ′ easily implies that of the less weighty sequent Γ ′, D⊃B,C ⇒ D.
The induction hypothesis (2) provides a G4ip derivation of this, and an L⊃⊃
inference provides a G4ip derivation of Γ ′, (C⊃D)⊃B ⇒ E. 2

An almost identical argument, using LJQ* from Section 3, demonstrates the
completeness of the multi-succedent version of G4ip in [5].

4.2 Completeness of Dragalin’s GHPC

Dragalin [4] presented a multi-succedent sequent calculus GHPC for intuition-
istic predicate logic, with the feature that the first premiss of the left rule for
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implication was single-succedent. This feature also appears in LJQ* in Section
3. An easy argument based on the completeness of the calculus LJQ* shows the
completeness of GHPC; every inference (except by Der) in LJQ* becomes an
inference in GHPC, and Der can be simulated by Weakening in GHPC.

4.3 Calculi for (Intuitionistic) Guarded Logic

Guarded first-order classical logic is of interest for its ability to interpret modal
logics. The “guarded” restriction on formulae is that universal quantifiers are
allowed only in the form ∀x(P⊃A), where x is a list of variables, P is an atom,
A is a formula with FV (A) ⊆ FV (P ) and all the variables bound by the quan-
tifier are free in P , i.e. guarded by the atom P ; there is a similar restriction on
existential quantifiers. No function symbols are allowed. In such a situation, the
free variables in P (and hence in A) are a combination of those in x and possibly
others. So, we indicate by Pxy (resp. Axy) an atom (resp. formula) all of whose
free variables are in x,y and by Pzy (resp. Azy) the result of substituting z for
x therein. The notation (∀x :Pxy)Axy then abbreviates ∀x(Pxy⊃Axy).

It is of interest to see whether this specialised form of quantification leads to
a specialised inference rule. We treat this in the intuitionistic case; full details
of this (treating also the existential quantifier) and the classical case are given
in [11], including cut-admissibility proofs. The relevant inference rules are

Pzy, Γ , (∀x :Pxy)Axy, Azy ⇒ B

Pzy, Γ , (∀x :Pxy)Axy ⇒ B
L∀′

Γ , Pzy ⇒ Azy
Γ ⇒ (∀x :Pxy)Axy R∀′

where the variables z are fresh (i.e. disjoint from the free variables of Γ , Axy)
in the R∀′ rule. We regard the atom Pzy in the conclusion of the L∀′ rule as a
key that unlocks the guard on Axy.

The first of these may be considered to be the composition of a standard L∀
rule and a L⊃ rule, as in

Pzy, Γ , (∀x :Pxy)Axy, P zy⊃Azy ⇒ Pzy
Ax

Pzy, Γ , (∀x :Pxy)Axy, Azy ⇒ B

Pzy, Γ , (∀x :Pxy)Axy, Pzy⊃Azy ⇒ B
L⊃

Pzy, Γ , (∀x :Pxy)Axy ⇒ B
L∀

with the same restriction as in LJQ that the first premiss of the L⊃ inference
have its succedent principal. Since this succedent is (by the guarded restriction)
an atom Pzy, that means it must occur in the antecedent, as indicated. Thus,
the LJQ restriction occurs also in this context, of intuitionistic guarded logic.

4.4 Negri’s Conservativity Theorem

Negri [26] showed conservativity of the intuitionistic propositional theory of
apartness over the theory of equality defined as the negation of apartness. The
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first complete proof used the calculus G3ip as basic; this was simplified in [27]
once the completeness of the calculus G4ip (extended with rules for apartness)
was demonstrated (in [8]). The use of G4ip was explained in [27] as “allowing
a better control on derivations”. In retrospect, it appears1 that the use of the
LJQ calculus would have sufficed.

5 LJQ with Terms

In this section we describe LJQ as the typing system of a term syntax, which
we then use to establish a connection between LJQ and the call-by-value λ-
calculus λC of Moggi [25]. For brevity, we consider in this section implication
only, and the main distinction between LJQ and LJQ’ can therefore be ignored;
so, hereafter we just use the name LJQ.

5.1 A Term Calculus for LJQ

This term syntax is described as follows:

V, V ′ ::= x | λx.M | C1(V, x.V ′)
M,N,P ::= ↑ V | x(V, y.N) | C2(V, x.N) | C3(M,x.N)

The terms Ci(−,−.−) are explicit substitutions, to be distinguished from the
meta-notation M{x = N} standing for “M with x replaced by N”. Binding
occurrences of variables are those immediately followed by “.”. A term without
any occurrence of a Ci is said to be cut-free. Values are cut-free terms of the
form V .

Γ , x : A → x : A
Ax

Γ → V : A
Γ ⇒ ↑ V : A

Der

Γ , x : A ⇒ M : B

Γ → λx.M : A⊃B
R⊃′

Γ , x :A⊃B → V :A Γ, x :A⊃B, y :B ⇒ N :C

Γ, x : A⊃B ⇒ x(V, y.N) : C
L⊃′

Γ → V :A Γ, x :A → V ′ :B

Γ → C1(V, x.V ′) : B
C1

Γ → V : A Γ, x : A ⇒ N : B

Γ ⇒ C2(V, x.N) : B
C2

Γ ⇒ M : A Γ, x : A ⇒ N : B

Γ ⇒ C3(M, x.N) : B
C3

Fig. 3. LJQ with terms

1 Personal communication from Sara Negri (Summer 2004)
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The typing rules, shown in Fig. 3, are naturally derived from Fig. 1. Note that
the rules Ax and R⊃′ with focused conclusions are those that type values. There
are three changes, all more appropriate for the consideration of proof-terms.

The first change allows Ax to have an arbitrary formula as principal; by
Lemma 1 this is acceptable in the implicational case.

The second change is that L⊃′ now allows the use of the formula A⊃B in the
proof of its second premiss, thus widening the space of proofs(-terms), as in Sect.
3. For instance, when establishing a connection with λ-calculus, this enables the
proper representation of Church numerals; otherwise they would all (except 0)
be mapped to the same proof-term.

The third change is that we include the cut rules as primitive; in contrast
to those earlier, they are context-sharing (i.e. additive) rather than context-
splitting (i.e. multiplicative or context-independent). This removes the need to
formulate the admissibility of Contraction separately from the admissibility of
cuts, the former being an easy sub-case of the latter.

(B) C3(↑ λx.M, y.y(V, z.P )) −→ C3(C3(↑ V , x.M), z.P ) if y /∈ FV (V ) ∪ FV (P )
C3(↑ x, y.N) −→ N{y = x}
C3(M, y.↑ y) −→ M

C3(z(V, y.P ), x.N) −→ z(V, y.C3(P, x.N))
C3(C3(↑ V ′, y.y(V, z.P )), x.N) −→ C3(↑ V ′, y.y(V, z.C3(P, x.N)))

if y /∈ FV (V ) ∪ FV (P )
C3(C3(M, y.P ), x.N) −→ C3(M, y.C3(P, x.N))

if the redex is not one of the previous rule
C3(↑ λy.M, x.N) −→ C2(λy.M, x.N)

if N is not an x-covalue (see below)

C1(V, x.x) −→ V
C1(V, x.y) −→ y
C1(V, x.λy.M) −→ λy.C2(V, x.M)

C2(V, x.↑ V ′) −→ ↑ C1(V, x.V ′)
C2(V, x.x(V ′, z.P )) −→ C3(↑ V , x.x(C1(V, x.V ′), z.C2(V, x.P )))
C2(V, x.x′(V ′, z.P )) −→ x′(C1(V

′, x.V ), z.C2(V, x.P ))
C2(V, x.(C3(M, y.P ))) −→ C3(C2(V, x.M), y.C2(V, x.P ))

η λx.y(x, z.z) −→ y

N is an x-covalue iff N = ↑ x or N is of the form x(V, z.P ) with x 6∈ FV (V ) ∪ FV (P )

Fig. 4. LJQ-reductions

The reduction rules for the calculus are shown in Fig. 4. This reduction
system has the following properties:

1. It reduces any term that is not cut-free;
2. It satisfies the Subject Reduction property;
3. It is confluent;
4. It is Strongly Normalising;
5. A fortiori, it is Weakly Normalising.
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As a corollary of 1, 2 and 5, we have the admissibility of Cut. It is interesting
to see in the proof of Subject Reduction how these reductions transform the proof
derivations and to compare them to those used in the proof of Theorem 1—details
will be in the full paper. Apart from the differences between the inference rules
already mentioned, there are also differences between the proof-transformations.
The reduction system here is more subtle, because we are now interested not only
in its weak normalisation but also in its strong normalisation and its connection
with call-by-value λ-calculus.

The main reduction rule (B), breaking a cut on an implication into cuts on
its direct sub-formulae, is now done with C3 rather than with C2. The reason
is that we use C3 to encode each β-redex of λ-calculus and C2 to simulate
the evaluation of its substitutions. Just as in λ-calculus, where substitutions
can be pushed through β-redexes, so may C2 be pushed through C3, by use
of the penultimate rule of Fig. 4 (which is not needed if the only concern is
cut-admissibility).

Similarly, the last rule, (η), which has nothing to do with cut-elimination, is
needed to account for η-conversion in (call-by-value) λ-calculus. It is interesting
to see its meaning in proof theory: it generates an axiom on an implication, given
a proof on the same sequent built from axioms on each of its direct sub-formulae,
and then left and right introductions of the implication. In fact, recursive appli-
cation of the reverse transform is precisely what is used to prove that one can
safely restrict LJQ (in the implicational case) to atomic axioms.

5.2 Connection with Call-by-Value λ-Calculus

We will now be precise about what we call CBV λ-calculus. In [30], Plotkin
introduces λV , a calculus whose terms are exactly those of Church’s λ-calculus
and whose reduction rule, called βV , is merely β-reduction restricted to the
case where the argument is a value, i.e. a variable (typed by an axiom) or an
abstraction (typed by implication introduction).

However, the equational theory produced by βV -conversion is shown [30]
to be incomplete with respect to some canonical call-by-value semantics called
Continuation Passing Style. Therefore, λV was later extended [25] to λC with
a let . = . . . in . . .-construct (like our Cut-constructs for LJQ) and additional
reduction rules; [31] shows, in effect, that the equational theory matches the
CBV-semantics. Terms of λC are defined as follows:

M,N,P ::= x | λx.M |M N | let x = M in N

We use V as a meta-variable ranging only over values. The reduction rules
of λC are as follows:

(λx.M) V −→ M{x = V }
let x = V in M −→ M{x = V }
M N −→ let x = M in (x N) (M not a value)
V N −→ let y = N in (V y) (N not a value)
let x = M in x −→ M
let y = (let x = M in N) in P −→ let x = M in (let y = N in P )



XI

The reduction ηV can usefully be added: λx.(V x) −→ηV
V if x 6∈ FV (V )

In the presence of βV , the following rule has the same effect:

λx.(y x) −→ηV
y if x 6= y

We define the translation .[ from LJQ-terms to λC by induction on the
structure of terms:

x[ = x

(λx.M)[ = λx.M [

(↑ V )[ = V [

(x(V, y.M))[ = let y = x V [ in M [

(C3(N,x.M))[ = let x = N [ in M [

(C2(V, x.M))[ = M [{x = V [}
(C1(V, x.V ′))[ = V ′[{x = V [}

We define the translation .] from λC to LJQ by a similar induction, using an
auxiliary translation .\ from values to values (a measure shows that the defini-
tions are well-founded).

x\ = x

(λx.M)\ = λx.M ]

V ] = ↑ V \

(let y = x V in P )] = x(V \, y.P ])
(let y = (λx.M) V in P )] = C3(λx.M ], z.z(V \, y.P ]))
(let z = V N in P )] = (let y = N in (let z = V y in P ))]

if N is not a value
(let z = M N in P )] = (let x = M in (let z = x N in P ))]

if M is not a value
(let z = (let x = M in N) in P )] = (let x = M in (let z = N in P ))]

(let y = V in P )] = C3(V ], y.P ])
(M N)] = (let y = M N in y)]

Notice that if M is a C1/C2-free term of LJQ, M [] = M and that for any term
M of λC , M←→∗ M ][. Now we can state (using −→∗ for the reflexive transitive
closure of −→ , etc) the following:

Theorem 2 (Preservation Theorem).

1. For any terms M and N of λC , if M −→ N then M ]−→∗ N ].
2. For any terms M and N of LJQ, M←→∗ N iff M [←→∗ N [.

Hence, if a term M of LJQ is given the CBV-semantics of M [, LJQ inherits
from λC a semantics that captures exactly its equational theory.

Ongoing work includes refining the connection above and generalising it to
a framework that would also account for the call-by-name discipline, by using a
calculus introduced by Esṕırito Santo [14].
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6 G4ip with Terms

Bringing some of the above ideas together, we can regard G4ip itself as the
typing system for a term calculus. The associated reduction system for cuts
also has the strong normalisation property. Details are in [6]. The main point of
interest is the avoidance of auxiliary operations (corresponding to admissibility
lemmas) in favour of uses of instances of the explicit substitution operation.

7 Conclusion

We have presented, proved complete and shown some applications of a strongly
focused calculus LJQ′, incorporating and extending the restrictions on deriva-
tions explicit in the calculus LJQ of Herbelin [16], implicit in the work on
“purification” in Hudelmaier [18] and with early traces in the work of Vorob’ev
[34]. These applications range from sequent calculi for automated proof search
to CBV-semantics of λ-calculus.

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic, J. Logic
& Computation 2, 297–347, 1992.

2. B. Cooper, J. Truss. “Sets and Proofs”, (Proceedings of Logic Colloquium 97),
Cambridge University Press, 1999.

3. V. Danos, J.-B. Joinet, H. Schellinx. LKQ and LKT: sequent calculi for second
order logic based upon dual linear decompositions of classical implication, in [15],
pp 211–224.

4. A. G. Dragalin. “Mathematical Intuitionism”, Translations of Mathematical
Monographs, 67, Amer. Math. Soc., Providence, Rhode Island, 1988.

5. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic, J. Symbolic
Logic 57, 795–807, 1992.

6. R. Dyckhoff, S. Lengrand, D. Kesner. Strong cut-elimination systems for Hudel-
maiers depth-bounded sequent calculus for implicational logic, submitted, 2006.

7. R. Dyckhoff, S. Negri. Admissibility of structural rules for contraction-free systems
of intuitionistic logic, J. Symbolic Logic 65, 1499–1518, 2000.

8. R. Dyckhoff, S. Negri. Admissibility of structural rules for extensions of
contraction-free sequent calculi, Logic J. of the IGPL 9, 573–580, 2001

9. R. Dyckhoff, L. Pinto. Proof search in constructive logics, in [2], 53–65.

10. R. Dyckhoff, L. Pinto. Cut-elimination and a permutation-free sequent calculus
for intuitionistic logic, Studia Logica 60, 107–118, 1998.

11. R. Dyckhoff, A. Simpson. Proof theory of guarded logics, MS, 2004.

12. R. Dyckhoff, C. Urban. Strong normalization of Herbelin’s explicit substitution
calculus with substitution propagation, J. Logic & Comput. 13, 689–706, 2003.

13. R. Dyckhoff. Variations on a theme of Hudelmaier, MS, 2006.
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