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Abstract
CDSAT (Conflict-Driven Satisfiability) is a paradigm for theory combination that works by
coordinating theory modules to reason in the union of the theories in a conflict-driven manner.
We generalize CDSAT to the case of nondisjoint theories by presenting a new CDSAT theory
module for a theory of arrays with abstract length, which is an abstraction of the theory of
arrays with length. The length function is a bridging function as it forces theories to share
symbols, but the proposed abstraction limits the sharing to one predicate symbol. The CDSAT
framework handles shared predicates with minimal changes, and the new module satisfies the
CDSAT requirements, so that completeness is preserved.
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1. Introduction
CDSAT (Conflict-Driven Satisfiability) is a method to decide the satisfiability of a formula
modulo a union of theories and an initial assignment of values to terms [1, 2]. CDSAT
orchestrates theory modules, one for every theory in the union, to perform a conflict-driven
search of a model of the input formula. A theory module is an abstraction of a theory
satisfiability procedure. For proving properties such as soundness, completeness, and
termination, a theory module is simply an inference system for the theory.

In this paper we generalize CDSAT to handle unions of theories that are not necessarily
disjoint. Disjoint theories share only sorts and equality predicates on shared sorts.
Nondisjoint theories share also symbols other than equality. For example, consider a
theory of arrays with length. Length is usually thought of as a function from arrays to
integers. Such a function is called a bridging function [3, 4, 5], because it constitutes a
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bridge between arrays and linear integer arithmetic (LIA) that forces the two theories to
share symbols (e.g., the theory of arrays with MaxDiff [6] and LIA share 0 and ≤).

We present a new abstract approach to nondisjoint theories with bridging functions,
and we exemplify it with the theory ArrL of arrays with abstract length. In ArrL, the
length of an array can be an integer, but does not have to be, and the concept of an index
being within bounds is abstracted into that of an index being admissible. Admissibility
is expressed by the shared predicate Adm, which remains uninterpreted for ArrL, while
another theory 𝒯 , which is not necessarily LIA, provides its interpretation. In this manner,
the two theories share a minimum amount of information, namely Adm and the sorts of
its arguments, indices and lengths. In ArrL, an array is interpreted as a partial updatable
function, whose domain of definition is given by the set of admissible indices. We define
an axiomatization and a CDSAT theory module for the theory ArrL.

We show that CDSAT is complete for this kind of nondisjoint combination (soundness
and termination are preserved). The completeness of CDSAT employs the concept of a
leading theory, say 𝒯1, which may be one of the theories in the union or a theory that only
needs to exist in principle. 𝒯1 acts as a hub: it has the information shared between any
two theories, and it suffices that each theory agrees with 𝒯1 on the shared information to
have an agreement among all the theories. If the theories are disjoint, they only need
to agree on equalities and the cardinalities of shared sorts. Thus, 𝒯1 has all the sorts in
the union and aggregates all the cardinality constraints on the shared sorts [1, 2]. If the
theories are not disjoint, they also need to agree on shared symbols other than equality.
Therefore, 𝒯1 has also all the symbols shared by any two theories. For example, ArrL and
𝒯 share the predicate Adm with 𝒯1. The agreement between 𝒯 and 𝒯1 and the agreement
between ArrL and 𝒯1 imply the agreement between 𝒯 and ArrL, on the interpretation of
Adm, equalities, and cardinalities of shared sorts.

2. Preliminaries
A signature Σ is given by a set 𝑆 of sorts, including the sort prop of Booleans, and a set 𝐹
of sorted symbols, with equality symbols ≃𝑠 for all sorts 𝑠 ∈ 𝑆. A collection 𝒱 = (𝒱𝑠)𝑠∈𝑆

of disjoint sets of variables is available. We use 𝑡 and 𝑢 for terms, and 𝑙 for formulae that
are the terms of sort prop. Σ[𝒱 ]-interpretations and Σ-structures are defined as usual.

A theory 𝒯 is defined by a signature Σ and a set 𝒜 of axioms that state properties
of symbols in Σ, or as the class of Σ-structures that satisfy 𝒜, called models of 𝒯 or
𝒯 -models. Symbols that do not appear in the axioms are free or uninterpreted. Let
𝒯1, . . . , 𝒯𝑛 with signatures Σ𝑘 = (𝑆𝑘, 𝐹𝑘), ∀𝑘, 1≤ 𝑘≤𝑛, be the theories to be combined.
Their union is denoted 𝒯∞, with signature Σ∞ = (𝑆∞, 𝐹∞), for 𝑆∞ = ⋃︀𝑛

𝑘=1 𝑆𝑘 and
𝐹∞ = ⋃︀𝑛

𝑘=1 𝐹𝑘. The symbols 𝒯 and Σ stand for any 𝒯𝑘 and Σ𝑘 including 𝒯∞ and Σ∞. If
the top symbol of a subterm 𝑢 of a 𝒯∞-term 𝑡 is not in 𝐹𝑘, term 𝑢 is a variable for theory
𝒯𝑘: term 𝑢 and its top symbol are dubbed Σ𝑘-foreign. Recall that ⊴ is the subterm
ordering. The set fvΣ(𝑡) of the free Σ-variables of term 𝑡 is the set of all ◁-maximal
subterms of 𝑡 whose top symbol is Σ-foreign.



3. A Theory of Arrays with Abstract Length
The simplest theory of arrays is the theory Arr0 of arrays without extensionality, which
does not have axioms specifying when two arrays are equal. The theory Arr of arrays
with extensionality adds to Arr0 an extensionality axiom saying that two arrays are equal
if and only if they have the same elements at all indices. In this section we define a
theory ArrL of arrays with extensionality and abstract length, which extends Arr0 in a
different way, specifying different conditions for two arrays to be equal.

The signature of ArrL has sorts for arrays, indices, elements, and lengths. In order to
allow arrays of different types, including arrays of arrays, one assumes a set of basic sorts,
which includes prop, and an array sort constructor, denoted ⇒, so that 𝐼 𝐿⇒ 𝑉 is the sort
of arrays with indices of sort 𝐼, elements of sort 𝑉 , and lengths of sort 𝐿. The set 𝑆ArrL
of the sorts of ArrL is the free closure of the set of basic sorts with respect to ⇒.

The signature of ArrL includes the function symbols select : (𝐼 𝐿⇒ 𝑉 )×𝐼 → 𝑉 for select
or read, store : (𝐼 𝐿⇒ 𝑉 )×𝐼×𝑉 → (𝐼 𝐿⇒ 𝑉 ) for store or write, and len : (𝐼 𝐿⇒ 𝑉 )→ 𝐿 that
maps an array 𝑎 to its length len(𝑎). Terms of the form select(𝑎, 𝑖) may be abbreviated
as 𝑎[𝑖]. The signature also features a predicate symbol Adm : 𝐼×𝐿→ prop, such that if 𝑖
is a term of sort 𝐼 and 𝑎 is a term of sort 𝐼 𝐿⇒ 𝑉 , then Adm(𝑖, len(𝑎)) is true if index 𝑖 is
admissible with respect to len(𝑎). Another theory shares with ArrL the symbol Adm and
the sorts 𝐼 and 𝐿 (sharing the sort 𝑉 is not necessary) and provides a concrete meaning
of admissibility. The notion of admissibility is an abstraction that frees the theory of
arrays from the commitment that lengths are positive integers and that the indices of
array 𝑎 are the consecutive nonnegative integers in the interval [0, 𝑛) for 𝑛 = len(𝑎).
Although this is a popular choice (e.g., [6]), it is not the only one.

Example 1. LIA interprets both the sort 𝐿 of lengths and the sort 𝐼 of indices as the set
Z of the integers, and defines Adm(𝑖, 𝑛)↔ 0 ≤ 𝑖 < 𝑛. A different theory may interpret 𝐼
as a set 𝑆 and 𝐿 as the powerset of 𝑆, denoted 𝒫(𝑆), and define Adm(𝑖, 𝑛)↔ 𝑖 ∈ 𝑛. In
this case, 𝑛 ∈ 𝒫(𝑆) is the set of admissible indices, indices are not necessarily numbers,
and 𝑛 does not have to be an interval nor even an ordered set. Another theory may
interpret 𝐼 as Z and 𝐿 as the set of pairs of the form (𝑎𝑑𝑑𝑟, 𝑛), where 𝑎𝑑𝑑𝑟 is a binary
number representing the start address of the array in memory, and 𝑛 is an integer
representing the number of admissible indices. Then, the axiom defining admissibility
would be Adm(𝑖, (𝑎𝑑𝑑𝑟, 𝑛)) ↔ 0 ≤ 𝑖 < 𝑛, where the start address plays no role in
characterizing the set of admissible indices. With this axiom for admissibility, we can
have two distinct arrays 𝑎 and 𝑏 with the same set of admissible indices {0, 1, 2, 3, 4}, but
len(𝑎) = (000100, 5) ̸= (010100, 5) = len(𝑏) because 𝑎 and 𝑏 start at distinct addresses.

Let 𝑎 and 𝑏 be variables of an 𝐼
𝐿⇒ 𝑉 sort, 𝑣 and 𝑢 be variables of sort 𝑉 , 𝑖 and 𝑗

be variables of sort 𝐼, and 𝑛 and 𝑚 be variables of sort 𝐿. The axiomatization of ArrL
includes congruence axioms (1)-(4), select-over-store axioms (5)-(6), an axiom saying
that length is unaffected by a store (7), and an extensionality axiom (8):

∀𝑎, 𝑣, 𝑖, 𝑗. (𝑎≃ 𝑏 ∧ 𝑖≃ 𝑗)→ select(𝑎, 𝑖)≃ select(𝑏, 𝑗), (1)



∀𝑎, 𝑣, 𝑖, 𝑗, 𝑢, 𝑣. (𝑎≃ 𝑏 ∧ 𝑖≃ 𝑗 ∧ 𝑢≃ 𝑣)→ store(𝑎, 𝑖, 𝑢)≃ store(𝑏, 𝑗, 𝑣), (2)
∀𝑎, 𝑏. 𝑎≃ 𝑏→ len(𝑎)≃ len(𝑏), (3)

∀𝑛,𝑚, 𝑖, 𝑗. (𝑛≃𝑚 ∧ 𝑖≃ 𝑗 ∧ Adm(𝑖, 𝑛))→ Adm(𝑗,𝑚), (4)
∀𝑎, 𝑣, 𝑖. Adm(𝑖, len(𝑎))→ select(store(𝑎, 𝑖, 𝑣), 𝑖)≃ 𝑣, (5)
∀𝑎, 𝑣, 𝑖, 𝑗. 𝑖 ̸≃ 𝑗 → select(store(𝑎, 𝑖, 𝑣), 𝑗)≃ select(𝑎, 𝑗), (6)

∀𝑎, 𝑖, 𝑣. len(store(𝑎, 𝑖, 𝑣))≃ len(𝑎), (7)
∀𝑎, 𝑏. [len(𝑎)≃ len(𝑏) ∧ (∀𝑖. Adm(𝑖, len(𝑎))→ select(𝑎, 𝑖)≃ select(𝑏, 𝑖))]→ 𝑎≃ 𝑏. (8)

The other direction of axiom (8) is omitted as it follows from the congruence axioms.
Axiom (6) is the same as in theories Arr0 and Arr. Axiom (5), (7), and (8) are new.
Axiom (8) says that 𝑎 and 𝑏 are equal if they have the same length and the same elements
at all admissible indices. In other words, if 𝑎 and 𝑏 are different, either they differ in
length or at an admissible index. On the other hand, in theory Arr, if 𝑎 and 𝑏 are different,
they differ at an arbitrary index. As the following example shows, neither theory entails
the extensionality axiom of the other.

Example 2. Picture a model of Arr, extended with an interpretation of len and Adm,
where arrays 𝑎 and 𝑏 have the same length, agree at all admissible indices, but disagree at
an index that is not admissible: 𝑎≃ 𝑏 is false in this model and hence the extensionality
axiom of ArrL (axiom (8)) also is false. On the other hand, picture a model of ArrL where
arrays 𝑎 and 𝑏 agree at all indices but have different lengths: 𝑎≃ 𝑏 is false in this model
and hence the extensionality axiom of Arr also is false. Note that this can happen even if
𝑎 and 𝑏 have the same set of admissible indices, as in the third case of Example 1, where
arrays starting at distinct addresses have different lengths and hence are different. This
interpretation of array equality is common in programming languages.

Axioms (5) and (7) are designed having in mind the intuition that a store at an
inadmissible index leaves the array unchanged. Therefore, first, the length is unchanged
(axiom (7)), and, second, the value argument of the store is lost, so that axiom (5)
requires index 𝑖 to be admissible. The theory of arrays with MaxDiff [6] makes the same
choices in the special case where the admissible indices of an array form an interval [0, 𝑛).

Alternatively, one can have a theory where a store at an inadmissible index 𝑖 in array
𝑎 changes the length. This is captured by replacing axiom (7) with

∀𝑎, 𝑖, 𝑣. Adm(𝑖, len(𝑎))→ len(store(𝑎, 𝑖, 𝑣))≃ len(𝑎). (9)

Then, one can drop Adm(𝑖, len(𝑎)) from the antecedent of axiom (5) restoring the select-
over-store axioms of theory Arr. In the resulting theory (like in Arr), if 𝑎≃ store(𝑎, 𝑖, 𝑣),
then by congruence select(𝑎, 𝑖)≃ select(store(𝑎, 𝑖, 𝑣), 𝑖), and by the select-over-store axiom
select(𝑎, 𝑖)≃ 𝑣. In other words, select(𝑎, 𝑖) ̸≃ 𝑣 implies 𝑎 ̸≃ store(𝑎, 𝑖, 𝑣). However, by
axiom (8) with 𝑏 replaced by store(𝑎, 𝑖, 𝑣), if select(𝑎, 𝑖) ̸≃ 𝑣 and ¬Adm(𝑖, len(𝑎)), then
len(𝑎) ̸≃ len(store(𝑎, 𝑖, 𝑣)). One way of further specifying the change of length is to impose
that index 𝑖 be admissible in store(𝑎, 𝑖, 𝑣). This is obtained by adding the axiom

∀𝑎, 𝑗, 𝑖, 𝑣. (Adm(𝑗, len(𝑎)) ∨ 𝑗≃ 𝑖)→ Adm(𝑗, len(store(𝑎, 𝑖, 𝑣))). (10)



Models of this theory include data structures such as finite maps and vectors (aka dynamic
arrays) which satisfy stronger versions of axiom (10). Maps satisfy the double implication

∀𝑎, 𝑗, 𝑖, 𝑣. (Adm(𝑗, len(𝑎)) ∨ 𝑗≃ 𝑖)↔ Adm(𝑗, len(store(𝑎, 𝑖, 𝑣))). (11)

Vectors assume that indices are integers and satisfy the double implication

∀𝑎, 𝑗, 𝑖, 𝑣. (Adm(𝑗, len(𝑎)) ∨ 𝑗 ≤ 𝑖)↔ Adm(𝑗, len(store(𝑎, 𝑖, 𝑣))), (12)

which captures the growth of the vector as an effect of the store.

4. CDSAT for Nondisjoint Theories Sharing Predicates
In this section we summarize the CDSAT framework and we modify it sparingly to
accommodate shared predicates. CDSAT works with assignments of values to terms,
including formulae that get Boolean values. Thus, CDSAT treats Boolean and first-order
assignments, initial assignments and generated assignments, as uniformly as possible. The
values for a theory 𝒯 with signature Σ are provided by a conservative theory extension
𝒯 + with signature Σ+ that adds as many constant symbols as needed to name all the
individuals in the sets used to interpret the sorts of 𝒯 . The added constants are called
𝒯 -values. In this way terms and values are kept separate. Conservativity means that if a
Σ-formula is 𝒯 -satisfiable then it is also 𝒯 +-satisfiable. All extensions add the values
true and false, so that true and false are 𝒯 -values for all 𝒯 . The trivial extension adds
only true and false. The signature of 𝒯 +

∞ is the union of the signatures of 𝒯 +
1 , . . . , 𝒯 +

𝑛

so that all values are 𝒯∞-values. We use b for true or false and c for generic values of
arbitrary sort. A 𝒯 -assignment is one where all assigned values are 𝒯 -values.

Definition 1 (Assignment). A set 𝐽 = {𝑢1←c1, . . . , 𝑢𝑚←c𝑚} is a 𝒯 -assignment if for all
𝑖, 1≤ 𝑖≤ 𝑚, 𝑢𝑖 is a 𝒯∞-term and c𝑖 is a 𝒯 -value of the same sort.

The set of terms that occur in 𝐽 as above is 𝐺(𝐽) = {𝑡 | 𝑡 ⊴ 𝑢𝑖, 1≤ 𝑖≤ 𝑚}. If all
values in 𝐽 are Boolean, 𝐽 is a Boolean assignment. If no value in 𝐽 is Boolean, 𝐽 is a
first-order assignment. The flip of a Boolean singleton assignment 𝐿, written 𝐿, assigns
the opposite Boolean value to the same formula. Standard abbreviations are 𝑙 for 𝑙←true,
𝑙 for 𝑙←false, 𝑡 ̸≃ 𝑢 for (𝑡≃ 𝑢)←false, ⊤ for (𝑥≃prop 𝑥)←true, and ⊥ for 𝑥 ̸≃prop 𝑥, where
𝑥 is an arbitrary variable of sort prop. We use 𝐽 for generic assignments, 𝐴 for generic
singletons, 𝐿 for Boolean singletons, and 𝐻 or 𝐸 for 𝒯∞-assignments. An unqualified
assignment is a 𝒯∞-assignment. A 𝒯 -assignment is plausible if it does not contain both
𝑙←true and 𝑙←false. A plausible 𝒯 -assignment may contain first-order assignments 𝑢←c1
and 𝑢←c2 with c1 ̸= c2, from which CDSAT deduces ⊥. The reason for this difference is
that CDSAT can generate terms 𝑢1≃𝑠 𝑢2 and 𝑢1 ̸≃𝑠 𝑢2 from terms 𝑢1 and 𝑢2 of sort 𝑠,
except when 𝑠 is prop. The exception prevents the construction of an infinite series such
as 𝑙1 = (𝑙≃prop 𝑙), 𝑙2 = (𝑙1≃prop 𝑙1), 𝑙3 = (𝑙2≃prop 𝑙2), etc. Input assignments are assumed
to be plausible and CDSAT preserves plausibility. The view that a theory 𝒯𝑘 has of a
𝒯∞-assignment 𝐻 is made of the 𝒯𝑘-assignments in 𝐻, plus all equalities and inequalities
between terms of a 𝒯𝑘-sort that are entailed by first-order assignments in 𝐻.



𝑡1←c, 𝑡2←c ⊢ 𝑡1≃𝑠 𝑡2 if c is a 𝒯-value of sort 𝑠
𝑡1←c1, 𝑡2←c2 ⊢ 𝑡1 ̸≃𝑠 𝑡2 if c1 and c2 are distinct 𝒯-values of sort 𝑠

⊢ 𝑡1≃𝑠 𝑡1 (reflexivity)
𝑡1≃𝑠 𝑡2 ⊢ 𝑡2≃𝑠 𝑡1 (symmetry)

𝑡1≃𝑠 𝑡2, 𝑡2≃𝑠 𝑡3 ⊢ 𝑡1≃𝑠 𝑡3 (transitivity)

Figure 1: Equality inference rules, where 𝑡1, 𝑡2, and 𝑡3 are terms of sort 𝑠

Definition 2 (Theory view). Given a theory 𝒯 with set of sorts 𝑆 and a 𝒯∞-assignment
𝐻, the 𝒯 -view 𝐻𝒯 of 𝐻 is the 𝒯 -assignment equal to the union of the following sets:

• { 𝑢←c | 𝑢←c is a 𝒯 -assignment in 𝐻}
• { 𝑢1≃𝑠 𝑢2 | 𝑢1←c, 𝑢2←c are in 𝐻 and have sort 𝑠 ∈ 𝑆∖{prop}}
• { 𝑢1 ̸≃𝑠 𝑢2 | 𝑢1←c1, 𝑢2←c2 are in 𝐻, have sort 𝑠 ∈ 𝑆∖{prop}, and c1 ̸=c2}.

Note that a Boolean assignment is in every theory view. A 𝒯 +-model ℳ endorses
a 𝒯-assignment 𝐽 , written ℳ |= 𝐽 , if ℳ satisfies 𝑢≃ c for all pairs (𝑢←c) ∈ 𝐽 . If
{𝑢←c, 𝑡←c}⊆𝐽 , then ℳ also satisfies 𝑢≃ 𝑡. Endorsing the 𝒯-view 𝐽𝒯 of 𝐽 is generally
stronger than endorsing 𝐽 : if ℳ |= 𝐽𝒯 , then ℳ also satisfies 𝑢 ̸≃ 𝑡, for all pairs 𝑢←c1
and 𝑡←c2 in 𝐽 such that c1 ̸= c2 and the sort of 𝑢 and 𝑡 is a sort of 𝒯. A 𝒯-assignment
𝐽 is satisfiable if there is a 𝒯 +-model ℳ such that ℳ |= 𝐽𝒯 and it is unsatisfiable
otherwise. The relation 𝐽 |= 𝐿 holds if ℳ |= 𝐿 for all 𝒯 +-models ℳ such that ℳ |= 𝐽𝒯 .
For a 𝒯∞-assignment 𝐻, we say that ℳ globally endorses 𝐻 if ℳ |= 𝐻𝒯∞ also written
ℳ |=𝐺 𝐻 to emphasize “globally.”

Every theory 𝒯𝑘 (1≤ 𝑘≤𝑛) is equipped with a theory module ℐ𝑘, whose inference rules
produce inferences of the form 𝐽 ⊢ℐ𝑘

𝐿 (or 𝐽 ⊢𝑘 𝐿 for short) where 𝐽 is a 𝒯𝑘-assignment
and 𝐿 is a Boolean assignment. All CDSAT theory modules include the equality inference
rules in Fig. 1. CDSAT theory modules are required to be sound: if 𝐽 ⊢𝑘 𝐿 then 𝐽 |= 𝐿.

CDSAT works with a trail Γ which is a sequence of distinct singleton assignments
that are either decisions, written ?𝐴 to convey guessing, or justified assignments, written
𝐻 ⊢𝐴. Decisions can be either Boolean or first-order assignments. The justification
𝐻 in 𝐻 ⊢𝐴 is a set of singleton assignments that appear before 𝐴 in the trail. Input
assignments are justified assignments with empty justification. All justified assignments
are Boolean except for input first-order assignments. Given a trail Γ = 𝐴0, . . . , 𝐴𝑚, the
level of an assignment is levelΓ(𝐴𝑖) = 1 + max{levelΓ(𝐴𝑗) | 𝑗 < 𝑖}, if 𝐴𝑖 is a decision, and
levelΓ(𝐴𝑖) = max{levelΓ(𝐴) | 𝐴 ∈ 𝐻}, if 𝐴𝑖 is 𝐻 ⊢𝐴𝑖 (where levelΓ(𝐴𝑖) = 0 if 𝐻 = ∅).

The transition system of CDSAT, given in Fig. 2, comprises trail rules and conflict
state rules (see [1, 2] for a detailed description). A conflict state is made of a trail and a
conflict, where a conflict is an unsatisfiable assignment. Rule Decide expands the trail
with a decision ?𝐴, provided it is acceptable for a 𝒯 -module ℐ in the 𝒯 -view of the trail.

Definition 3 (Acceptability). A singleton 𝒯 -assignment 𝑢←c is acceptable for a 𝒯 -
module ℐ in a 𝒯 -assignment 𝐽 , if (i) 𝐽 does not assign a 𝒯 -value to 𝑢, (ii) if 𝑢←c
is first-order, there are no ℐ-inferences 𝐽 ′ ∪ {𝑢←c} ⊢ℐ 𝐿 for 𝐽 ′ ⊆ 𝐽 and 𝐿 ∈ 𝐽 , and (iii)
𝑢 is relevant to 𝒯 in 𝐽 .



Trail rules (assume 1≤ 𝑘≤𝑛)
Decide Γ −→ Γ, ?𝐴 if 𝐴 is an acceptable 𝒯𝑘-assignment for ℐ𝑘 in Γ𝒯𝑘

The next three rules share the conditions: 𝐽 ⊆ Γ, (𝐽 ⊢𝑘 𝐿), and 𝐿 ̸∈ Γ.
Deduce Γ −→ Γ, 𝐽 ⊢𝐿 if 𝐿 ̸∈ Γ and 𝐿 is in ℬ
Fail Γ −→ unsat if 𝐿 ∈ Γ and levelΓ(𝐽 ∪ {𝐿}) = 0
ConflictSolve Γ −→ Γ′ if 𝐿 ∈ Γ, levelΓ(𝐽 ∪ {𝐿}) > 0, and

⟨Γ; 𝐽 ∪ {𝐿}⟩ =⇒* Γ′

Conflict state rules (recall that ⊎ is disjoint union)
UndoClear

⟨Γ;𝐸 ⊎ {𝐴}⟩ =⇒ Γ≤𝑚−1 if 𝐴 is a first-order decision of level 𝑚 > levelΓ(𝐸)
Resolve

⟨Γ;𝐸 ⊎ {𝐴}⟩ =⇒ ⟨Γ;𝐸 ∪𝐻⟩ if (𝐻 ⊢𝐴) ∈ Γ and for no first-order decision 𝐴′ ∈ 𝐻
levelΓ(𝐴′) = levelΓ(𝐸 ⊎ {𝐴})

UndoDecide
⟨Γ;𝐸 ⊎ {𝐿}⟩ =⇒ Γ≤𝑚−1, ?𝐿 if (𝐻 ⊢𝐿) ∈ Γ and for a first-order decision 𝐴′ ∈ 𝐻

𝑚 = levelΓ(𝐸) = levelΓ(𝐿) = levelΓ(𝐴′)
LearnBackjump

⟨Γ;𝐸 ⊎𝐻⟩ =⇒ Γ≤𝑚, 𝐸 ⊢𝐿 if 𝐿 is a clausal form of 𝐻, 𝐿 is in ℬ,
𝐿 /∈ Γ, 𝐿 /∈ Γ, and levelΓ(𝐸) ≤ 𝑚 < levelΓ(𝐻)

Figure 2: The CDSAT transition system

Condition (i) avoids multiple assignments to a term by the same theory and preserves
plausibility. Condition (ii) blocks a first-order assignment that triggers an inference
yielding a trivial conflict {𝐿,𝐿}. Condition (iii) ensures that the assigned term 𝑢 is
relevant. The definition of relevance of a term to a theory in an assignment is the first
definition that has to be changed to accommodate shared predicates. First, it makes sense
that a 𝒯 -module ℐ may decide a value for a term 𝑢 if 𝑢 occurs in the 𝒯 -view Γ𝒯 of the
trail and 𝒯 has values for the sort of 𝑢. For equality, it also makes sense that ℐ may
decide 𝑢≃ 𝑡 if 𝑢 and 𝑡 occur in Γ𝒯 , even if 𝑢≃ 𝑡 does not, and 𝒯 does not have values
for the sort of 𝑢 and 𝑡: indeed, if 𝒯 has values for their sort, ℐ can decide values for 𝑢
and 𝑡, and glean the value of 𝑢≃ 𝑡 by an equality inference. For shared predicates other
than equality the latter subtlety is irrelevant.

Definition 4 (Nondisjoint Relevance). Given a theory 𝒯 with signature Σ = (𝑆, 𝐹 ) and
a 𝒯 -assignment 𝐽 , where 𝐺(𝐽) is the set of terms that occur in 𝐽 , a term 𝑢 is relevant
to 𝒯 in 𝐽 , if either (i) 𝑢 ∈ 𝐺(𝐽) and 𝒯 has values for the sort of 𝑢; or (ii) 𝑢 is an
equality 𝑢1≃𝑠 𝑢2 such that 𝑢1, 𝑢2 ∈ 𝐺(𝐽), 𝑠 ∈ 𝑆, but 𝒯 does not have values for sort 𝑠;
or (iii) 𝑢 is a Boolean term 𝑝(𝑢1, . . . , 𝑢𝑚) such that 𝑝 ∈ 𝐹 is a shared predicate symbol
𝑝 : (𝑠1× · · ·×𝑠𝑚)→prop, and for all 𝑖, 1 ≤ 𝑖 ≤ 𝑚, 𝑢𝑖 ∈ 𝐺(𝐽) and 𝑠𝑖 ∈ 𝑆.

Example 3. Consider ArrL with Adm interpreted by LIA (cf. Example 1). Given assign-
ment 𝐻 = {𝑖←3, 𝑖≃ 𝑗, len(𝑎)≃ 𝑛, 𝑛←5, select(store(𝑎, 𝑖, 𝑣), 𝑗) ̸≃ 𝑣}, the view of 𝐻 for
LIA is 𝐻 ∪ {𝑖 ̸≃ 𝑛}, whereas the view of 𝐻 for ArrL contains the Boolean assignments
in 𝐻 and {𝑖 ̸≃ 𝑛}. The term Adm(𝑖, 𝑛) does not occur in either view, but its arguments



do. Thus, Adm(𝑖, 𝑛) is relevant to both LIA and ArrL by Condition (iii) in Definition 4.
Having the definition of Adm, LIA can decide wisely Adm(𝑖, 𝑛)←true. If ArrL were to
venture Adm(𝑖, 𝑛)←false, LIA would detect a conflict.

Rule Deduce expands the trail with a justified assignment 𝐽 ⊢𝐴 supported by a theory
inference 𝐽 ⊢𝑘 𝐴 for some 𝑘, 1≤ 𝑘≤𝑛. These deductions cover propagation or conflict
detection/explanation. Propagations put on the trail the consequences of decisions.
Conflict detection detects a theory conflict. Conflict explanation transforms it into
a Boolean conflict: 𝐿 can be derived and 𝐿 is on the trail. If such a conflict arises
at level 0, rule Fail reports unsatisfiability. If such a conflict arises at a level greater
than 0, the system enters conflict state with rule ConflictSolve. Rule Resolve transforms
the conflict state until the conflict can be solved by either UndoClear or UndoDecide
or LearnBackjump, producing a modified trail that ConflictSolve returns, allowing the
search to resume. Trail Γ≤𝑚 is the restriction of trail Γ to its elements of level at most
𝑚 (cf. UndoClear, UndoDecide, and LearnBackjump). The clausal form of a Boolean
assignment 𝐻 = {𝑙1, . . . , 𝑙𝑛} is ¬𝑙1 ∨ . . . ∨ ¬𝑙𝑛 (cf. LearnBackjump).

As theory module inferences can generate new (i.e., non-input) terms, every theory
module ℐ𝑘 comes with a local basis denoted basis𝑘. Given a finite set 𝑋 of terms (in
practice, the set of input terms), basis𝑘(𝑋) is a finite superset of 𝑋 from which ℐ𝑘 can
pick new terms. From the local bases it is possible to construct a finite stable global basis
ℬ, where stable means basis𝑘(ℬ) ⊆ ℬ for all 𝑘, 1 ≤ 𝑘 ≤ 𝑛 (see [2] for the details of the
construction). The sets produced by the local bases and hence ℬ are required to be closed,
meaning ◁-closed (if 𝑢 is a member so is every 𝑡 such that 𝑡 ◁ 𝑢) and equality-closed
(if non-Boolean terms 𝑢 and 𝑡 are members so is 𝑢≃ 𝑡). CDSAT checks that the terms
generated during a derivation are in ℬ (cf. Deduce and LearnBackjump).

CDSAT is sound if the theory modules are sound [1, Thm. 1]; and terminating, if ℬ is
finite, closed, and contains all input terms [1, Thm. 2]. Soundness and termination are
not affected by the presence of nondisjoint theories, as long as their modules are sound,
come with finite closed local bases, and there exists a ℬ with the required properties.

Completeness of CDSAT requires that there is a leading theory, its module is complete,
the other modules are leading-theory-complete, ℬ is stable and contains all input terms [1,
Thms. 3, 4, 5]. The notions of a module being complete (for its own theory) or leading-
theory-complete do not need to be reformulated for the nondisjoint case. First, we say
that a 𝒯 -module ℐ expands a 𝒯 -assignment 𝐽 by adding either a 𝒯 -assignment 𝐴 that is
acceptable for ℐ in 𝐽 (cf. Decide), or a Boolean assignment 𝑙←b such that 𝐽 ′ ⊢ℐ (𝑙←b),
for 𝐽 ′ ⊆ 𝐽 , (𝑙←b) /∈ 𝐽 , and 𝑙 ∈ basis(𝐽) (cf. Deduce, Fail, and ConflictSolve). Then,
a 𝒯 -module ℐ is complete if whenever it cannot expand a plausible 𝒯 -assignment 𝐽 ,
there exists a 𝒯 +-model ℳ such that ℳ |= 𝐽 [1, Def. 12]. Also, a 𝒯 -module ℐ is
leading-theory-complete if whenever it cannot expand a plausible 𝒯 -assignment 𝐽 , then 𝐽
is leading-theory-compatible with 𝒯 sharing the set of terms 𝐺(𝐽) [1, Def. 14]. In the
disjoint case, leading-theory-compatibility says that if ℳ1 |= 𝐽𝒯1 for a 𝒯 +

1 -model ℳ1,
then there exists a 𝒯 +-model ℳ such that ℳ |= 𝐽 (𝐽 = 𝐽𝒯 as 𝐽 cannot be expanded)
and ℳ agrees with ℳ1 on the cardinality of shared sorts and on equalities between
shared terms [1, Def. 13]. Leading-theory-compatibility is the second definition that



changes to allow shared predicates. The change consists of extending the treatment of
equality to all shared predicates.

Definition 5 (Nondisjoint leading-theory-compatibility). Let 𝒯1 be the leading theory, 𝒯
and Σ = (𝑆, 𝐹 ) stand for 𝒯𝑘 and Σ𝑘 = (𝑆𝑘, 𝐹𝑘), 2≤ 𝑘≤𝑛, and 𝑁 be a set of terms.
A 𝒯 -assignment 𝐽 is leading-theory-compatible with 𝒯 sharing 𝑁 , if for all 𝒯 +

1 [𝒱1]-
models ℳ1 such that ℳ1 |= 𝐽𝒯1 with fvΣ1(𝐽 ∪ 𝑁) ⊆ 𝒱1, there exists a 𝒯 +[𝒱 ]-model
ℳ with fvΣ(𝐽 ∪ 𝑁) ⊆ 𝒱 , such that (i) ℳ |= 𝐽 ; (ii) for all shared predicates 𝑝 ∈
𝐹 ∩ 𝐹1 with 𝑝 : (𝑠1× · · ·×𝑠𝑚)→prop and for all terms 𝑢1, . . . , 𝑢𝑚 ∈ 𝑁 of sorts 𝑠1, . . . , 𝑠𝑚,
ℳ1(𝑝(𝑢1, . . . , 𝑢𝑚)) = ℳ(𝑝(𝑢1, . . . , 𝑢𝑚)); and (iii) for all sorts 𝑠 ∈ 𝑆, there exists a
bijection 𝑓𝑠 from domain 𝑠ℳ to domain 𝑠ℳ1 (so that |𝑠ℳ| = |𝑠ℳ1 |), such that for all
shared predicates 𝑝 ∈ 𝐹∩𝐹1 with 𝑝 : (𝑠1× · · ·×𝑠𝑚)→prop and for all inhabitants 𝑣1, . . . , 𝑣𝑚

of 𝑠ℳ
1 , . . . , 𝑠ℳ

𝑚 , 𝑝ℳ(𝑣1, . . . , 𝑣𝑚) = 𝑝ℳ1(𝑓𝑠1(𝑣1), . . . , 𝑓𝑠𝑚(𝑣𝑚)).

When equality is the only shared predicate, property (𝑖𝑖) in the above definition reduces
to ℳ(𝑢1) = ℳ(𝑢2) if and only if ℳ1(𝑢1) = ℳ1(𝑢2) for all sorts 𝑠 ∈ 𝑆 and terms
𝑢1, 𝑢2 ∈ 𝑁 of sort 𝑠. Property (𝑖𝑖𝑖) reduces to |𝑠ℳ| = |𝑠ℳ1 | for all 𝑠 ∈ 𝑆, because all
models interpret equality as identity. With other shared predicates, the property is stated
explicitly, relying on named bijections between the interpretations of a shared sort.

5. A CDSAT Module for Arrays with Abstract Length
In previous work we gave a CDSAT module for theory Arr [1] and proved its leading-
theory-completeness [2, Thm. 4]. In this section we give a CDSAT theory module ℐArrL
for theory ArrL (cf. Sect. 3 for Arr, ArrL and the axioms of ArrL). The reduction to clausal
form of the extensionality axiom (8) of ArrL introduces the Skolem function symbols
diff : (𝐼 𝐿⇒ 𝑉 )×(𝐼 𝐿⇒ 𝑉 )→ 𝐼 that map two arrays to an index, called a witness, where
they differ. Module ℐArrL augments the equality rules of Fig. 1 with the following rules:

𝑎≃ 𝑏, 𝑖≃ 𝑗, select(𝑎, 𝑖) ̸≃ select(𝑏, 𝑗) ⊢ArrL ⊥ (13)
𝑎≃ 𝑏, 𝑖≃ 𝑗, 𝑢≃ 𝑣, store(𝑎, 𝑖, 𝑢) ̸≃ store(𝑏, 𝑗, 𝑣) ⊢ArrL ⊥ (14)

𝑎≃ 𝑏 ⊢ArrL len(𝑎)≃ len(𝑏) (15)
𝑛≃𝑚, 𝑖≃ 𝑗, Adm(𝑖, 𝑛), ¬Adm(𝑗,𝑚) ⊢ArrL ⊥ (16)

𝑎≃ 𝑐, 𝑏≃ 𝑑, diff(𝑎, 𝑏) ̸≃ diff(𝑐, 𝑑) ⊢ArrL ⊥ (17)
𝑖≃ 𝑗, len(𝑎)≃ 𝑛, Adm(𝑖, 𝑛), 𝑏≃ store(𝑎, 𝑖, 𝑣), select(𝑏, 𝑗) ̸≃ 𝑣 ⊢ArrL ⊥ (18)
𝑖 ̸≃ 𝑗, 𝑘≃ 𝑗, 𝑏≃ store(𝑎, 𝑖, 𝑣), 𝑎≃ 𝑐, select(𝑏, 𝑘) ̸≃ select(𝑐, 𝑗) ⊢ArrL ⊥ (19)

len(store(𝑎, 𝑖, 𝑣)) ̸≃ len(𝑎) ⊢ArrL ⊥ (20)
𝑎 ̸≃ 𝑏, len(𝑎)≃ len(𝑏) ⊢ArrL select(𝑎, diff(𝑎, 𝑏)) ̸≃ select(𝑏, diff(𝑎, 𝑏)) (21)

𝑎 ̸≃ 𝑏, len(𝑎)≃ len(𝑏) ⊢ArrL Adm(diff(𝑎, 𝑏), len(𝑎)) (22)

where rules (13)-(16) correspond to axioms (1)-(4), rule (17) adds congruence for diff ,
rules (18)-(19) correspond to axioms (5)-(6) with premises flattened by introducing new



variables, rule (20) corresponds to axiom (7), and rules (21) and (22) correspond to the
clauses for axiom (8). The flattening conveys that in order to fire, for example, rule (18),
it suffices to have on the trail terms of the form 𝑏≃ store(𝑎, 𝑖, 𝑣) and select(𝑏, 𝑗) ̸≃ 𝑣, and
not necessarily the term select(store(𝑎, 𝑖, 𝑣), 𝑗) ̸≃ 𝑣. This is relevant for completeness,
because the equality rules of Fig. 1 do not include a rule for replacement of equals
by equals and hence cannot deduce select(store(𝑎, 𝑖, 𝑣), 𝑗) ̸≃ 𝑣 from 𝑏≃ store(𝑎, 𝑖, 𝑣) and
select(𝑏, 𝑗) ̸≃ 𝑣.

The first requirement when designing a CDSAT module is that its rules are sound,
which is satisfied by ℐArrL. The second requirement is that it is possible to define a
local basis. Rules that generate ⊥ are convenient, because they are useful for conflict
detection and they are trivial for the construction of the local basis, since it suffices
that it contains ⊤ (the flip of ⊤ is ⊥). The third requirement is that the module is
leading-theory-complete. In order to prove this property, the rules of the module must put
on the trail the terms needed for defining a model. This is why rules (15), (21) and (22)
produce terms other than ⊥. Thus, the design of a CDSAT module demands a balancing
act between the local basis requirement, which suggests to minimize the generation of
new terms, and the completeness requirement.

The local basis for ArrL maps any given finite set 𝑋 of terms to a set basisArrL(𝑋)
defined as the smallest closed set 𝑌 such that 𝑋 ⊆ 𝑌 , ⊤ ∈ 𝑌 , and:

1. For all terms 𝑙1 and 𝑙2 of sort prop that occur as subterms of terms in 𝑌 with select,
store, len, or diff as top symbol, (𝑙1≃prop 𝑙2) ∈ 𝑌 ;

2. For all terms 𝑡 ∈ 𝑌 and 𝑢 ∈ 𝑌 of the same array sort, Ded(𝑡, 𝑢) ⊆ 𝑌 , where
Ded(𝑡, 𝑢) contains precisely the terms len(𝑡), select(𝑡, diff(𝑡, 𝑢)), select(𝑢, diff(𝑡, 𝑢)),
Adm(diff(𝑡, 𝑢), len(𝑡)), and Adm(diff(𝑡, 𝑢), len(𝑢)).

Clause (1) adds equalities between formulae that may be needed (e.g., picture arrays
where indices or elements are Boolean) and whose presence is not guaranteed by equality-
closedness that applies to non-Boolean terms. Clause (2) adds the terms that may be
generated by rules (15), (21), and (22).

The following reasoning shows that 𝑌 is finite. For Clause (1), for terms 𝑙1 and 𝑙2 of sort
prop, let 𝑃 1(𝑙1, 𝑙2) stand for the conjunction of the conditions 𝑙1 ◁ 𝑡, 𝑡 ∈ 𝑋, 𝑙2 ◁𝑢, 𝑢 ∈ 𝑋,
top(𝑡) ∈ {select, store, len, diff}, and top(𝑢) ∈ {select, store, len, diff}. Let Sat1(𝑋) be
the union of 𝑋 and ⋃︀

𝑃 1(𝑙1,𝑙2){𝑙1≃prop 𝑙2}. For Clause (2), for all terms 𝑡 of an array sort,
let depth(𝑡) be the number of occurrences of the array sort constructor ⇒ in the sort of 𝑡.
Let 𝑘 = 𝑚𝑎𝑥{depth(𝑡) | 𝑡 ∈ 𝑋, 𝑡 of an array sort}. For terms 𝑡 and 𝑢 of the same array
sort, let 𝑃 2

𝑞 (𝑡, 𝑢) stand for 𝑡 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ depth(𝑡) = 𝑞 ∧ depth(𝑢) = 𝑞. Let Sat2
𝑞(𝑋) be

the union of 𝑋 and ⋃︀
𝑃 2

𝑞 (𝑡,𝑢) Ded(𝑡, 𝑢). All terms in ⋃︀
𝑃 2

𝑞 (𝑡,𝑢) Ded(𝑡, 𝑢) have depth smaller
than 𝑞, because even in the case of an array-indexed array the depth of an array term
used as index is smaller. Thus, the closure 𝑌 = Sat1(Sat2

1(Sat2
2(. . . Sat2

𝑘(𝑋) . . .))) is finite.
A theory ArrL with array sorts 𝑠1, . . . , 𝑠𝑛 (𝑛 > 1) can be viewed as the union of 𝑛 theories
ArrL with one array sort each. Then, the above finiteness argument is an instance of the
proof showing how to construct a finite global basis for a union of theories from the local
bases of the component theories [2].

As arrays represent functions that can be updated, a model of Arr interprets an array
as an updatable function from indices (meaning a set interpreting the sort of indices) to



elements (meaning a set interpreting the sort of elements). Given generic sets 𝒰 and
𝒱, and the set 𝒱𝒰 of the functions from 𝒰 to 𝒱, we say that 𝒲 ⊆ 𝒱𝒰 is an updatable
function set from 𝒰 to 𝒱, if every function obtained by a finite number of updates to a
function in 𝒲 is in 𝒲 . A model of Arr interprets an array sort as an updatable function
set. A model of ArrL interprets an array as a partial updatable function, whose domain
of definition is the set of admissible indices. Therefore, the cardinality of an array sort
depends on the interpretation of Adm.

Definition 6 (ArrL-suitability). A leading theory 𝒯1 is suitable for ArrL, or ArrL-suitable,
if it has all the sorts in 𝑆ArrL, it shares with ArrL only the equality symbols ≃𝑠 for all
sorts 𝑠 ∈ 𝑆ArrL and the symbol Adm, and for all 𝒯1-models ℳ1 and array sorts 𝐼 𝐿⇒ 𝑉
there exists a length-indexed collection (𝑋𝑛)𝑛∈𝐿ℳ1 of nonempty sets such that

|(𝐼 𝐿⇒ 𝑉 )ℳ1 | = |⨄︀𝑛∈𝐿ℳ1 𝑋𝑛|
where 𝑋𝑛 is an updatable function set from 𝐼𝑛 = {𝑖 | 𝑖 ∈ 𝐼ℳ1 ∧ Admℳ1(𝑖, 𝑛)} to 𝑉 ℳ1

for all 𝑛 ∈ 𝐿ℳ1.

The set 𝑋𝑛 is the set of updatable functions that interprets the arrays of length 𝑛.
The functions in 𝑋𝑛 are partial as they are defined only on the set 𝐼𝑛 of admissible
indices for length 𝑛 and not on the set 𝐼ℳ1 of all indices. Note that the interpretation of
select remains nonetheless a total function, because every term select(𝑎, 𝑖) is interpreted.
ArrL-suitability does not restrict the realm of theories with which ArrL can be combined,
because ArrL-suitability merely formalizes sensible requirements on the cardinalities of
array sorts. As usual in CDSAT, the leading theory simply aggregates appropriately the
requirements on cardinalities coming from the theories in the union.

Example 4. Consider the first case of Example 1. Suppose that ArrL interprets also 𝑉
as Z. A leading theory that interprets 𝐿, 𝐼, and Adm as stipulated by LIA, and 𝑉 as
stipulated by ArrL is ArrL-suitable: for all 𝑛 ∈ Z, the set 𝐼𝑛 of admissible indices is
{𝑖 | 𝑖 ∈ Z ∧ 0 ≤ 𝑖 < 𝑛}. Since 𝑋𝑛 is countably infinite for all 𝑛, 𝑛 > 0, the cardinality of
the interpretation of 𝐼 𝐿⇒ 𝑉 is countably infinite. Suppose that ArrL interprets 𝑉 as a
finite set of cardinality 𝑚 (𝑚 > 0). A leading theory that interprets 𝐿, 𝐼, and Adm as
stipulated by LIA, and 𝑉 as stipulated by ArrL is ArrL-suitable: since 𝑋𝑛 has cardinality
𝑚𝑛 for all 𝑛, 𝑛 > 0, the cardinality of the interpretation of 𝐼 𝐿⇒ 𝑉 is countably infinite.
In both cases, a leading theory that interprets 𝐼 𝐿⇒ 𝑉 as being finite is not ArrL-suitable.

Example 5. Consider the union of ArrL and the theory BV of bitvectors, where BV[𝑛] is
the set of bitvectors of length 𝑛. Assume that BV interprets 𝐼 as BV[1], 𝐿 as BV[2], and
Adm as true everywhere except for the pairs (0, 00), (1, 00), and (1, 01). Suppose that
the two theories share also 𝑉 and that BV interprets it as BV[1]. A leading theory that
interprets 𝐿, 𝐼, Adm, and 𝑉 as stipulated by BV is ArrL-suitable: the sets of admissible
indices are 𝐼00 = ∅, 𝐼01 = {0}, and 𝐼10 = 𝐼11 = {0, 1}, so that the cardinalities of the
updatable function sets are |𝑋00| = 20 = 1, |𝑋01| = 21 = 2, and |𝑋10| = |𝑋11| = 22 = 4,
and the cardinality of the interpretation of 𝐼 𝐿⇒ 𝑉 is 11. On the other hand, a leading
theory that interprets 𝐼 𝐿⇒ 𝑉 as being countably infinite is not ArrL-suitable.



The extension ArrL+ for ArrL may either be trivial, or add a countably infinite set of
ArrL-values for each sort in 𝑆∖{prop}. We prove that ℐArrL is leading-theory-complete
assuming that ArrL+ is nontrivial.

Lemma 1. If 𝐽 is a plausible ArrL-assignment that ℐArrL cannot expand, for all terms 𝑡
of an array sort, if 𝑡 is in 𝐺(𝐽), then the term len(𝑡) is also in 𝐺(𝐽).

Proof: By reflexivity (𝑡≃ 𝑡) ∈ 𝐽 , by rule (15) (len(𝑡)≃ len(𝑡)) ∈ 𝐽 , so that len(𝑡) ∈ 𝐺(𝐽).

This lemma (and the form of rule (15)) may be surprising, as one may expect that ℐArrL
needs to be concerned only with the lengths of arrays that differ. The point is that in
ArrL the length is an essential part of an array (since the definition of arrays sorts as
𝐼

𝐿⇒ 𝑉 ), and the model construction in the proof of leading-theory-completeness of ℐArrL
needs to define a length function as a step towards the functional interpretation of arrays.

Theorem 1. Module ℐArrL is leading-theory-complete for all ArrL-suitable leading theories.

Proof: Let 𝐽 be a plausible ArrL-assignment that ℐArrL cannot expand. We show that 𝐽
is leading-theory-compatible with ArrL sharing 𝐺(𝐽). We begin by observing that every
formula 𝑙 ∈ 𝐺prop(𝐽) is relevant to ArrL by Condition (i) of Definition 4, and therefore 𝐽
assigns a value to 𝑙 (see [2, Lemma 1, Claim 2]). For a sort 𝑠 other than prop, every term
𝑢 ∈ 𝐺𝑠(𝐽) is relevant to ArrL by Condition (i) of Definition 4, as ArrL+ has (infinitely
many) values for all sorts 𝐼, 𝑉 , 𝐿, and 𝐼

𝐿⇒ 𝑉 . Moreover, the only ArrL-inferences
using first-order assignments are equality inferences, and therefore 𝐽 assigns a value
to every such term 𝑢 (see [2, Lemma 1, Claim 3]). It follows that 𝐽 assigns values to
all terms in 𝐺(𝐽) (†) and fvΣArrL(𝐺(𝐽)) = fvΣArrL(𝐽) (see [2, Corollary 1]). Let 𝒯1 be an
ArrL-suitable leading theory, Σ1 its signature, 𝒯 +

1 its extension,ℳ1 a 𝒯 +
1 [𝒱1]-model such

that fvΣ1(𝐽) ⊆ 𝒱1 andℳ1 |= 𝐽𝒯1 , and (𝑋𝑛)𝑛∈𝐿ℳ1 the length-indexed family of updatable
function sets for ℳ1 of Definition 6. We start the construction of the ArrL+[𝒱 ]-model
ℳ with fvΣArrL(𝐽) ⊆ 𝒱 by interpreting

• All sorts in 𝑆 and all variables 𝑡 ∈ fvΣArrL(𝐽) as ℳ1 does;
• The shared predicate Adm as ℳ1 does, to get Parts (ii) and (iii) of Definition 5;
• All ArrL-values c such that (𝑡←c) ∈ 𝐽 as ℳ1 interprets 𝑡; and
• All other ArrL-values arbitrarily.

We need to define how ℳ interprets symbols len, store, select, and diff . To this end,
for every inhabitant 𝑎 of (𝐼 𝐿⇒ 𝑉 )ℳ, we construct a functional interpretation mapping
indices in 𝐼ℳ to elements in 𝑉 ℳ. More precisely, we will define

• A function len from (𝐼 𝐿⇒ 𝑉 )ℳ to 𝐿ℳ mapping arrays to lengths;
• A function 𝜓 from (𝐼 𝐿⇒ 𝑉 )ℳ to ⨄︀

𝑛∈𝐿ℳ1 𝑋𝑛 such that 𝜓(𝑎) is in 𝑋𝑛 for 𝑛 = len(𝑎),
so that 𝜓(𝑎) is an updatable function from the set of admissible indices 𝐼𝑛 to 𝑉 ℳ;

• A function 𝜑 from (𝐼 𝐿⇒ 𝑉 )ℳ to an updatable function set from 𝐼ℳ to 𝑉 ℳ so that
𝜑(𝑎) is a total updatable function from 𝐼ℳ to 𝑉 ℳ that agrees with 𝜓(𝑎) on 𝐼𝑛;

• A function diff from (𝐼 𝐿⇒ 𝑉 )ℳ×(𝐼 𝐿⇒ 𝑉 )ℳ to 𝐼ℳ mapping pairs of arrays to
indices.



The functions len, 𝜓, 𝜑, and diff will be used to construct the ℳ-interpretation of
symbols len, store, select, and diff , respectively. We build this interpretation so as to
satisfy:

1. The axioms of ArrL so that ℳ is an ArrL+[fvΣArr(𝐽)]-model;
2. The assignment 𝐽 so that ℳ |= 𝐽 and Part (i) of Definition 5 is fulfilled;
3. The cardinality constraints conveyed by ℳ1 to get Part (iii) of Definition 5.

For (3), we make sure that 𝜓 is a bijection from (𝐼 𝐿⇒ 𝑉 )ℳ to ⨄︀
𝑛∈𝐿ℳ 𝑋𝑛. In order

to define the functional interpretations of inhabitants of (𝐼 𝐿⇒ 𝑉 )ℳ we pick functions
𝑓𝑛 ∈ 𝑋𝑛 (i.e., from 𝐼𝑛 to 𝑉 ℳ) for all 𝑛 in 𝐿ℳ, and we complete every 𝑓𝑛 into a total
function 𝑔𝑛 from 𝐼ℳ to 𝑉 ℳ. These functions will be used as defaults in the construction.
The rest of the construction is subdivided in four parts. We start by considering those
inhabitants of (𝐼 𝐿⇒ 𝑉 )ℳ that are used by ℳ1 to interpret terms in 𝐺(𝐽). Let 𝑌 be the
finite subset of (𝐼 𝐿⇒ 𝑉 )ℳ consisting of those elements 𝑎 such that ℳ1(𝑡) = 𝑎 for some
term 𝑡 ∈ 𝐺(𝐽). The first step is to define len𝑌 , 𝜑𝑌 , and 𝜓𝑌 , the respective cores of len,
𝜓, and 𝜑 that are only defined on 𝑌 .

1. Definition of len𝑌 , 𝜑𝑌 , and 𝜓𝑌 :
Let 𝑎 be an element of 𝑌 with 𝑎 = ℳ1(𝑡) for term 𝑡 ∈ 𝐺(𝐽). By Lemma 1,
len(𝑡) ∈ 𝐺(𝐽). Model ℳ1 sees len(𝑡) as a variable in fvΣ1(𝐽), since len is a Σ1-
foreign symbol. We define len𝑌 (𝑎) =ℳ1(len(𝑡)). Let ℛ𝑎 ⊆ 𝐼ℳ×𝑉 ℳ be the set
of index-element pairs dictated by 𝐽 . Formally, 𝑅𝑎 is the relation defined by the
union of three sets:
{(ℳ1(𝑖),ℳ1(𝑡[𝑖])) | select(𝑡, 𝑖) ∈ 𝐺(𝐽), ℳ1(𝑡) = 𝑎}
{(ℳ1(𝑖),ℳ1(𝑢)) | store(𝑡, 𝑖, 𝑢) ∈ 𝐺(𝐽), ℳ1(store(𝑡, 𝑖, 𝑢)) = 𝑎, ℳ1(𝑖) ∈ 𝐼len𝑌 (𝑎)}
{(ℳ1(𝑖),ℳ1(𝑡[𝑖])) | store(𝑡, 𝑗, 𝑢) ∈ 𝐺(𝐽), select(𝑡, 𝑖) ∈ 𝐺(𝐽),

ℳ1(store(𝑡, 𝑗, 𝑢)) = 𝑎, ℳ1(𝑖) ̸=ℳ1(𝑗)}.
In other words, ℛ𝑎 is dictated by the terms in 𝐺(𝐽) where either select is applied
to an array term that ℳ1 interprets as 𝑎 or the application of store forms an array
term that ℳ1 interprets as 𝑎. Since 𝐺(𝐽) is finite, ℛ𝑎 is finite. Also, ℛ𝑎 is a
functional relation from 𝐼ℳ to 𝑉 ℳ, because otherwise ℐArrL could expand 𝐽 by
rules (18)-(19). Let 𝜑𝑌 (𝑎) be the total function that is identical to ℛ𝑎 where ℛ𝑎

is defined, and maps every 𝑒 ∈ 𝐼ℳ1 where ℛ𝑎 is undefined to 𝑔𝑛(𝑒) ∈ 𝑉 ℳ1 for
𝑛 = len𝑌 (𝑎). Let 𝜓𝑌 (𝑎) be the restriction of 𝜑𝑌 (𝑎) to 𝐼𝑛. Since ℛ𝑎 is finite, 𝜑𝑌 (𝑎)
differs from 𝑔𝑛 by finitely many updates. Hence 𝜓𝑌 (𝑎) differs from 𝑓𝑛 by finitely
many updates, so that it is in 𝑋𝑛. The second step is to show that 𝜓𝑌 is injective
and in the same context define diff 𝑌 . The injectivity of 𝜓𝑌 will allow us to define
𝜓, len, 𝜑, and diff as extensions of 𝜓𝑌 , len𝑌 , 𝜑𝑌 , and diff 𝑌 .

2. Injectivity of 𝜓𝑌 and definition of diff 𝑌 :
By way of contradiction, suppose that there are two elements 𝑎, 𝑏 ∈ 𝑌 such that
𝑎 ̸= 𝑏 and 𝜓𝑌 (𝑎) = 𝜓𝑌 (𝑏). Since 𝜓𝑌 (𝑎) is a function in𝑋𝑛 for 𝑛 = len𝑌 (𝑎) and 𝜓𝑌 (𝑏)
is a function in 𝑋𝑚 for 𝑚 = len𝑌 (𝑏), the equality 𝜓𝑌 (𝑎) = 𝜓𝑌 (𝑏) means that 𝑋𝑛 and
𝑋𝑚 have non-empty intersection. Since the collection (𝑋𝑛)𝑛∈𝐿ℳ is pairwise disjoint,
it must be 𝑛 = 𝑚. Since 𝑎, 𝑏 ∈ 𝑌 , we have 𝑎 = ℳ1(𝑡) and 𝑏 = ℳ1(𝑢) for some
terms 𝑡, 𝑢 ∈ 𝐺(𝐽). This means thatℳ1 |= 𝑡 ̸≃ 𝑢. By (†) 𝐽 assigns values to 𝑡 and 𝑢,



and therefore it also assigns a truth value b to 𝑡≃ 𝑢, because otherwise an equality
inference could expand 𝐽 . Also, ((𝑡≃ 𝑢)←b) ∈ 𝐽𝒯1 by definition of theory view.
Since ℳ1 |= 𝑡 ̸≃ 𝑢 and ℳ1 |= 𝐽𝒯1 , the truth value b must be false, or, equivalently,
(𝑡 ̸≃ 𝑢) ∈ 𝐽 . Moreover by Lemma 1, len(𝑡) and len(𝑢) are also in 𝐺(𝐽), and 𝐽 assigns
them values by (†). Thus, 𝐽 assigns a truth value b′ to len(𝑡)≃ len(𝑢) and so does
𝐽𝒯1 . Since len𝑌 (𝑎) = len𝑌 (𝑏), by definition of len𝑌 we have lenℳ1(𝑎) = lenℳ1(𝑏).
Since ℳ1 |= 𝐽𝒯1 , the truth value b′ must be true (i.e., (len(𝑡)≃ len(𝑢)) ∈ 𝐽).
By rule (21), also 𝑡[diff(𝑡, 𝑢)] ̸≃ 𝑢[diff(𝑡, 𝑢)] is in 𝐽 (*) and hence in 𝐽𝒯1 . Since
ℳ1 |= 𝐽𝒯1 , it follows that ℳ1(𝑡[diff(𝑡, 𝑢)]) ̸= ℳ1(𝑢[diff(𝑡, 𝑢)]). Now we define
diff 𝑌 . By (*) diff(𝑡, 𝑢) ∈ 𝐺(𝐽). Model ℳ1 sees diff(𝑡, 𝑢) as a variable in fvΣ1(𝐽),
since diff is a Σ1-foreign symbol. For all 𝑎, 𝑏 ∈ 𝑌 , if 𝑎 ̸= 𝑏 and len𝑌 (𝑎) = len𝑌 (𝑏), let
diff 𝑌 (𝑎, 𝑏) =ℳ1(diff(𝑡, 𝑢)), and let diff 𝑌 (𝑎, 𝑏) be arbitrary otherwise. We resume
the proof of the injectivity of 𝜓𝑌 . By rule (22), also Adm(diff(𝑡, 𝑢), len(𝑡)) is in 𝐽
and hence in 𝐽𝒯1 . Since ℳ1 |= 𝐽𝒯1 , it follows that ℳ1(diff(𝑡, 𝑢)) is an admissible
index (i.e., it is in 𝐼𝑛 for 𝑛 = lenℳ1(𝑎)). By definition of 𝜓𝑌 (𝑎) (based on ℛ𝑎) for
a generic 𝑎, we have:

𝜓𝑌 (𝑎)(ℳ1(diff(𝑡, 𝑢))) =ℳ1(𝑡[diff(𝑡, 𝑢)])
𝜓𝑌 (𝑏)(ℳ1(diff(𝑡, 𝑢))) =ℳ1(𝑢[diff(𝑡, 𝑢)]).

Since the two right hand sides are different, the two left hand sides are also different,
so that 𝜓𝑌 (𝑎) ̸= 𝜓𝑌 (𝑏), a contradiction.

3. Definition of 𝜓, len, 𝜑, and diff :
• Since 𝜓𝑌 is an injective function from 𝑌 to ⨄︀

𝑛∈𝐿ℳ 𝑋𝑛, we can extend it to a
bijection 𝜓 from (𝐼 𝐿⇒ 𝑉 )ℳ to ⨄︀

𝑛∈𝐿ℳ 𝑋𝑛 which have the same cardinality.
• For all 𝑎 ∈ (𝐼 𝐿⇒ 𝑉 )ℳ let len(𝑎) be the unique 𝑛 in 𝐿ℳ such that 𝜓(𝑎) is in
𝑋𝑛. Note that for 𝑎 ∈ 𝑌 we have len(𝑎) = len𝑌 (𝑎).

• For all 𝑎 ∈ (𝐼 𝐿⇒ 𝑉 )ℳ, if 𝑎 ∈ 𝑌 let 𝜑(𝑎) = 𝜑𝑌 (𝑎); otherwise, let 𝜑(𝑎) be
the function that agrees with 𝜓(𝑎) on 𝐼𝑛, where 𝑛 = len(𝑎), and with 𝑔𝑛

everywhere else.
• For all 𝑎, 𝑏 ∈ (𝐼 𝐿⇒ 𝑉 )ℳ, if 𝑎, 𝑏 ∈ 𝑌 let diff (𝑎, 𝑏) = diff 𝑌 (𝑎, 𝑏); otherwise,

if 𝑎 = 𝑏 or (𝑎 ̸= 𝑏 and len(𝑎) ̸= len(𝑏)), let diff (𝑎, 𝑏) be arbitrary. If 𝑎 ̸= 𝑏
and len(𝑎) = len(𝑏) = 𝑛, let diff (𝑎, 𝑏) = 𝑗 for any index 𝑗 ∈ 𝐼𝑛 such that
𝜓(𝑎)(𝑗) ̸= 𝜓(𝑏)(𝑗), where at least one such 𝑗 exists, because 𝑎 ̸= 𝑏 implies
𝜓(𝑎) ̸= 𝜓(𝑏) by injectivity of 𝜓.

4. How ℳ interprets len, diff , select, and store for all array sorts 𝐼 𝐿⇒ 𝑉 :
• For all 𝑎 ∈ (𝐼 𝐿⇒ 𝑉 )ℳ let lenℳ(𝑎) = len(𝑎) ∈ 𝐿ℳ;
• For all 𝑎, 𝑏 ∈ (𝐼 𝐿⇒ 𝑉 )ℳ let diffℳ(𝑎, 𝑏) = diff (𝑎, 𝑏) ∈ 𝐼ℳ;
• For all pairs (𝑎, 𝑒)∈(𝐼 𝐿⇒ 𝑉 )ℳ×𝐼ℳ let selectℳ(𝑎, 𝑒) = 𝜑(𝑎)(𝑒) ∈ 𝑉 ℳ;
• For all triples (𝑎, 𝑒, 𝑣) ∈ (𝐼 𝐿⇒ 𝑉 )ℳ×𝐼ℳ×𝑉 ℳ we define storeℳ(𝑎, 𝑒, 𝑣) by

considering two cases with len(𝑎) = 𝑛:
– If 𝑒 ̸∈ 𝐼𝑛: let storeℳ(𝑎, 𝑒, 𝑣) = 𝑎;
– If 𝑒 ∈ 𝐼𝑛: let 𝑓 be the function from 𝐼𝑛 to 𝑉 ℳ that maps 𝑒 to 𝑣 and



every other 𝑗 ∈ 𝐼𝑛 to 𝜓(𝑎)(𝑗) ∈ 𝑉 ℳ; function 𝑓 is in 𝑋𝑛 as it differs from
𝜓(𝑎) ∈ 𝑋𝑛 by one update; since 𝜓 is a bijection, take 𝜓−1(𝑓) which is in
(𝐼 𝐿⇒ 𝑉 )ℳ and set storeℳ(𝑎, 𝑒, 𝑣) = 𝜓−1(𝑓);

Part (ii) of Definition 5 for equality follows by induction on the term structure.

The claim holds also if ArrL+ is the trivial extension. The proof is similar, except
that non-Boolean terms are not assigned ArrL-values. Leading-theory-completeness is
preserved if ℐArrL is enriched with rules obtained from those deriving ⊥ by removing the
last premise and adding its flip as conclusion (see [2, Lemma 2]).

6. Completeness of CDSAT in the Nondisjoint Case
In this section we show that CDSAT is complete also in the case of nondisjoint theories
sharing predicates. Let a predicate-sharing union of theories be a union 𝒯∞ of theories
𝒯1, . . . , 𝒯𝑛, such that the signatures are disjoint or share predicate symbols, and there
exists a leading theory, say 𝒯1, which has all sorts and all shared symbols in its signature.

As a consequence of generalizing leading-theory-compatibility to a predicate-sharing
union, the concept of model-describing assignment from [1, Def. 19] is generalized accord-
ingly. Preliminarly, given an assignment 𝐻, the set 𝒱sh(𝐻) of the shared terms in 𝐻
contains the left-hand sides of pairs in 𝐻 and all their subterms that are shared variables
or foreign terms for any theory [1, Def. 18]. An assignment 𝐻 is model-describing if (1)
there exists a 𝒯 +

1 [𝒱 ]-model ℳ1 such that ℳ1 |= 𝐻𝒯1 (assuming fvΣ1(𝐻𝒯1) ⊆ 𝒱 ), and
(2) for all 𝑘, 2≤ 𝑘≤𝑛, the theory view 𝐻𝒯𝑘

is leading-theory-compatible with 𝒯𝑘 sharing
𝒱sh(𝐻). Note how the generic assignment 𝐽 and the generic set 𝑁 of shared terms of
Definition 5 are replaced by 𝐻𝒯𝑘

and 𝒱sh(𝐻).
The core of the proof of completeness is to show that a model-describing assignment is

globally endorsed [1, Thm. 4]. The generalization of that statement to a predicate-sharing
union, below, requires generalizing its proof.

Theorem 2. In a predicate-sharing union of theories, if an assignment 𝐻 is model-
describing, there exists a 𝒯 +

∞ [fv(𝐻)]-model ℳ such that ℳ |=𝐺 𝐻.

Proof: The proof is structured in eight short parts like that of [1, Thm. 4]. In order to
accommodate shared predicates it suffices to modify Parts (2) and (3). Therefore, we
reproduce Parts (1), (2), and (3), referring the reader to the proof of [1, Thm. 4] for the
remaining ones.

1. Existence of a leading-theory model ℳ1: by the hypothesis that 𝐻 is model-
describing, there exists a 𝒯 +

1 [𝒱1]-model ℳ′
1, with fvΣ1(𝐻𝒯1) ⊆ 𝒱1, such that

ℳ′
1 |= 𝐻𝒯1 . Note that for all 𝑘, 1≤ 𝑘≤𝑛, fvΣ𝑘

(𝐻𝒯𝑘
) = fvΣ𝑘

(𝐻) ⊆ fvΣ𝑘
(𝒱sh(𝐻))

(*). Thus, we have fvΣ1(𝐻) ⊆ 𝒱1, but there may be terms in fvΣ1(𝒱sh(𝐻)) that are
not in 𝒱1. Therefore, we pick arbitrary elements in the domains of ℳ′

1 to interpret
terms in fvΣ1(𝒱sh(𝐻))∖𝒱1, if any, and we extendℳ′

1 into a 𝒯 +
1 [fvΣ1(𝒱sh(𝐻))]-model

ℳ1 such that ℳ1 |= 𝐻𝒯1 .



2. Existence of the other 𝒯𝑘-modelsℳ𝑘: by the hypothesis that 𝐻 is model-describing,
for all 𝑘, 2≤ 𝑘≤𝑛, there exists a 𝒯 +

𝑘 [𝒱𝑘]-model ℳ𝑘 where fvΣ𝑘
(𝐻𝒯𝑘

∪ 𝒱sh(𝐻)) ⊆
𝒱𝑘 and hence fvΣ𝑘

(𝒱sh(𝐻)) ⊆ 𝒱𝑘 by (*), with the following properties: (i)
ℳ𝑘 |= 𝐻𝒯𝑘

, (ii) for all sorts 𝑠 ∈ 𝑆𝑘, there exists a bijection 𝑓𝑘
𝑠 from domain

𝑠ℳ𝑘 to domain 𝑠ℳ1 , such that for all shared predicates 𝑝 ∈ 𝐹𝑘 ∩ 𝐹1 with
𝑝 : (𝑠1× · · ·×𝑠𝑚)→prop: (iii) for all terms 𝑢1, . . . , 𝑢𝑚 ∈ 𝒱sh(𝐻) of sorts 𝑠1, . . . , 𝑠𝑚,
ℳ1(𝑝(𝑢1, . . . , 𝑢𝑚)) =ℳ𝑘(𝑝(𝑢1, . . . , 𝑢𝑚)), and (iv) for all inhabitants 𝑣1, . . . , 𝑣𝑚 of
𝑠ℳ𝑘

1 , . . . , 𝑠ℳ𝑘
𝑚 , 𝑝ℳ𝑘(𝑣1, . . . , 𝑣𝑚) = 𝑝ℳ1(𝑓𝑘

𝑠1(𝑣1), . . . , 𝑓𝑘
𝑠𝑚

(𝑣𝑚)).
3. Bijection between any ℳ𝑘 and ℳ1:

For all 𝑘, 1≤ 𝑘≤𝑛, we construct a collection of bijections 𝜑𝑠
𝑘 : 𝑠ℳ𝑘 → 𝑠ℳ1 indexed

by 𝑠 ∈ 𝑆𝑘, that satisfies the same properties as the (𝑓𝑘
𝑠 )𝑠∈𝑆𝑘

collection, but also
satisfies the additional property 𝜑𝑠

𝑘(ℳ𝑘(𝑡)) =ℳ1(𝑡) for all shared terms 𝑡 ∈ 𝒱𝑠
sh(𝐻)

of sort 𝑠.
Let 𝑌 𝑠

1 (resp. 𝑌 𝑠
𝑘 ) be the (finite) subset of 𝑠ℳ1 (resp. 𝑠ℳ𝑘) consisting of those

inhabitants of the form ℳ1(𝑡) (resp. ℳ𝑘(𝑡)) for some term 𝑡 in 𝒱sh(𝐻).
For a family (𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
of bijections satisfying the conditions of leading-theory

compatibility, let Ψ(𝑓𝑘
𝑠 )𝑠∈𝑆𝑘

be the (finite) number of terms 𝑡 in 𝒱sh(𝐻) such that
𝑓𝑘

𝑠 (ℳ𝑘(𝑡)) ̸=ℳ1(𝑡). We aim at producing a family (𝜑𝑠
𝑘)𝑠∈𝑆𝑘

with Ψ(𝜑𝑠
𝑘)𝑠∈𝑆𝑘

= 0.
We define a transformation Φ such that, if Ψ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
> 0, then Ψ(Φ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
) <

Ψ(𝑓𝑘
𝑠 )𝑠∈𝑆𝑘

.
Assume 𝑓𝑘

𝑠 (ℳ𝑘(𝑡)) ̸= ℳ1(𝑡). Let 𝑣1 = 𝑓𝑘
𝑠 (ℳ𝑘(𝑡)) and let 𝑣𝑘 = (𝑓𝑘

𝑠 )−1(ℳ1(𝑡)).
The family Φ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
is the family that updates (𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
by replacing 𝑓𝑘

𝑠 by 𝑔𝑘
𝑠 ,

where 𝑔𝑘
𝑠 (𝑣𝑘) = 𝑣1, 𝑔𝑘

𝑠 (ℳ𝑘(𝑡)) = ℳ1(𝑡), and for every other 𝑣, 𝑔𝑘
𝑠 (𝑣) = 𝑓𝑘

𝑠 (𝑣).
Hence, Ψ(Φ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
) < Ψ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
. Also note that Φ(𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
satisfies the same

properties (from leading-theory compatibility) as (𝑓𝑘
𝑠 )𝑠∈𝑆𝑘

does.
We keep applying Φ to the family (𝑓𝑘

𝑠 )𝑠∈𝑆𝑘
from the leading-theory compatibil-

ity, until we obtain a family (𝜑𝑠
𝑘)𝑠∈𝑆𝑘

that also satisfies the additional property
𝜑𝑠

𝑘(ℳ𝑘(𝑡)) =ℳ1(𝑡) for all shared terms 𝑡 ∈ 𝒱𝑠
sh(𝐻) of sort 𝑠.

The rest of the proof is as in [1, Thm. 4].

Given a predicate-sharing union of theories 𝒯1, . . . , 𝒯𝑛, a collection of theory modules
ℐ1, . . . , ℐ𝑛 for 𝒯1, . . . , 𝒯𝑛 is complete, if module ℐ1 is complete for the leading theory, and
modules ℐ𝑘’s, 2≤ 𝑘≤𝑛, are leading-theory-complete. With this assumption, one shows
the generalized version of [1, Thm. 3], where an assignment 𝐻 is in ℬ if (𝑡←c) ∈ 𝐻
implies 𝑡 ∈ ℬ.

Theorem 3. In a predicate-sharing union of theories equipped with a complete collection
of theory modules and a stable global basis ℬ, for all input assignments 𝐻 in ℬ, whenever
a CDSAT derivation from 𝐻 halts in a state Γ other than unsat, Γ is model-describing.

Proof: The proof is the same as that of [1, Thm. 3] because the CDSAT transition system
is unchanged.

Theorems 2 and 3 directly entail the completeness of CDSAT for predicate-sharing
unions, which subsumes the completeness property for disjoint unions [1, Thm. 5].



Theorem 4 (Completeness). In a predicate-sharing union of theories equipped with a
complete collection of theory modules and a stable global basis ℬ, for all input assignments
𝐻 in ℬ, whenever a CDSAT derivation from 𝐻 halts in a state Γ other than unsat, there
exists a 𝒯 +

∞ [fv(Γ)]-model ℳ such that ℳ |=𝐺 Γ and hence ℳ |=𝐺 𝐻 (as 𝐻 ⊆ Γ).

7. Discussion
The equality-sharing method (aka Nelson-Oppen scheme) yields a decision procedure for
the satisfiability of a conjunction of literals in a union of theories, by combining the
respective decision procedures for the component theories [7]. The integration of the
equality-sharing method in the CDCL(𝒯 ) transition system1 yields a decision procedure
for the satisfiability of a quantifier-free formula in a union of theories [11, 12]. The
theories are required to be disjoint and stably-infinite, where a theory 𝒯 is stably-infinite
if every 𝒯 -satisfiable formula has a 𝒯 -model with countably infinite domain.

Polite theory combination (e.g., [13, 14, 15, 16]) extends the equality-sharing method
so as to combine a non-stably-infinite theory with a polite theory. Politeness is a stronger
cardinality requirement than stable infiniteness, and in general the theories are still
required to be disjoint. However, polite theory combination was generalized [5] to the
nondisjoint case represented by the theories of absolutely free data structures with bridging
functions, which are polite [5]. The theory of arrays with extensionality is polite [13], but
arrays are not an absolutely free data data structure with constructors and selectors.

Another approach to the problem of reasoning in a union of theories consists of
applying a superposition-based inference system to the axioms and the target formula. If
superposition is a decision procedure for each of the component theories, it is a decision
procedure for their union, provided the theories are disjoint and variable-inactive [17].
The latter property implies stable-infiniteness. The theory of arrays with extensionality is
decidable by superposition [18] and is variable-inactive [17]. This approach was extended
to unions of theories that share a theory of counter arithmetic [19, 20]. However, there
are theories, such as arithmetic or bitvectors, that do not lend themselves to reasoning
by generic theorem proving.

Therefore, the CDCL(Γ + 𝒯 ) transition system2 integrates a superposition-based
inference system (the Γ parameter) in the CDCL(𝒯 ) transition system, with the model-
based theory combination version [22] of equality sharing. The resulting method can reason
in a union of theories comprising both built-in and axiomatized theories, provided the
theories are disjoint and either stably-infinite (for the built-in theories) or variable-inactive
(for the axiomatized theories). CDCL(Γ+𝒯 ) is a semidecision procedure in general, but
it may yield decision procedures by employing speculative axioms [21]. A survey of the
methods mentioned up to here appeared [23].

MCSAT [24] offered for the first time a transition system that composes the transitions

1The original name is DPLL(𝒯 ) [8], but the recent literature uses CDCL(𝒯 ), since the DPLL (Davis-
Putnam-Logemann-Loveland) [9] and CDCL (Conflict-Driven Clause Learning) [10] procedures have
been recognized as distinct.

2Here too the original name is DPLL(Γ+𝒯 ) [21] and the renaming follows that of DPLL(𝒯 ).



for CDCL with those for another conflict-driven decision procedure. CDSAT [1, 2]
generalized MCSAT to generic unions of disjoint theories, accommodating both conflict-
driven and non-conflict-driven decision procedures. Stable infiniteness is not required,
because an agreement on the cardinalities of shared sorts is reached via a leading theory.
Equality sharing is covered as a special case with a leading theory that assigns countably
infinite cardinality to the interpretation of all sorts other than prop.

Here we presented an extension of CDSAT to the nondisjoint case, motivated by the
problem of enriching the theory of arrays with extensionality with a notion of length of
an array. Previous approaches considered this problem in the case where the indices of
an array form an interval in a linearly ordered set.

The theory of arrays in [25] assumes that the indices are integers, and defines the
bounded equality of two arrays as having equal elements at all indices between a lower
bound and an upper bound. The resulting axiomatization belongs to the array property
fragment, whose decision procedure reduces the problem to reasoning about uninterpreted
functions, LIA, and the theory of the array elements [25].

The theory of arrays with MaxDiff [6] is parametrized with respect to a theory of indices
that is required to extend the theory of linear orderings with an element 0. LIA, LRA, and
the theory IDL of integer difference logic (i.e., the theory with 0, successor, predecessor,
and the ordering), satisfy this requirement. The theory of arrays with MaxDiff features a
symbol ⊥ for the undefined element and a symbol 𝜖 for the array that has element ⊥ at
all indices. The axioms impose that an array has element ⊥ at all indices smaller than 0,
and that diff(𝑎, 𝑏) is the largest index where 𝑎 and 𝑏 differ and 0 otherwise. Thus, the
length of an array 𝑎 is given by diff(𝑎, 𝜖). The theory of arrays with MaxDiff and the
theory of indices need to share the symbols for the element 0 and for the ordering.

Our approach is more general. The theory ArrL of arrays with extensionality and
abstract length features an abstract admissibility predicate Adm for array indices. This
predicate can be interpreted in such a way that the indices of an array form an interval
in a linearly ordered set, but it does not have to. Thanks to this abstraction, ArrL
only needs to share the symbol Adm with another theory and with the leading theory
(these two theories may coincide, but they do not have to). Thus, it suffices to extend
CDSAT to allow the theories to share predicate symbols other than equality. This requires
only minimal changes to the CDSAT framework of definitions and none to the CDSAT
transition system itself. We proved that CDSAT is complete for predicate-sharing unions.

Directions for future work include developing the abstract approach of this paper to
handle in CDSAT a version of theory ArrL enriched with a concatenation operator, the
theories of finite maps and dynamic arrays or vectors (cf. Sect. 3), and other theories
made nondisjoint by bridging functions. An implementation of CDSAT is under way.
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