
Interpolating bit-vector arithmetic constraints in MCSAT
Stéphane Graham-Lengrand1 and Dejan Jovanović1

Computer Science Laboratory, SRI International, USA

Abstract
We present an interpolation mechanism for a fragment of bit-vector arithmetic. Given

a conjunction of constraints under one existential quantifier, and given an interpretation of
its free variables that falsifies it, we produce a quantifier-free interpolant of the constraints
and of the interpretation: the interpolant is implied by the constraints and it is still falsified
by the interpretation. The interpolant explains why the interpretation does not satisfy the
constraints. This can be used in an implementation of model-constructing satisfiability for
bit-vectors, reasoning about bit-vector arithmetic at the word level rather than at the bit
level.

1 Introduction
The interpolation mechanism we present here targets formulae of the form

A(~x) = ∃y(C1 ∧ · · · ∧ Cm) ,

with free variables ~x = x1, . . . , xn, and with C1, . . . , Cm being literals of a fragment of bit-vector
arithmetic, which we shall define below. The interpolation mechanism applies in presence of
a model Γ made of assignments x1 7→ v1, . . . , xn 7→ vn, and such that the evaluation of A in
model Γ, denoted [[A]]Γ, is false.

This situation typically arises when trying to solve an SMT-problem in the theory of bit-
vectors via the MCSAT approach [dMJ13]: Given some constraints to satisfy, assignments of
bit-vector values to bit-vector variables are successively guessed with the invariant that none
of the constraints evaluates to false given the assignments that have been made so far. If the
invariant can be maintained until all variables are assigned, then these assignments constitute
a model of the constraints, which in that case are satisfiable. On the contrary, if at one point
the invariant cannot be maintained, it means that, for a certain bit-vector variable y that
seeks a bit-vector value, every possible value makes one of the constraints evaluate to false.
Technically, this means that, for a subset {C1, . . . , Cm} of the constraints, the assignments
x1 7→ v1, . . . , xn 7→ vn made so far result in the existential formula ∃y(C1 ∧ · · · ∧Cm), a.k.a. A,
evaluating to false. This is the situation described above, and henceforth called a conflict, with
conflict variable y and conflict literals C1 ∧ · · · ∧ Cm.

When such a conflict happens, backtracking is needed so that other values can be picked for
x1, . . . , xn, with the hope that y can then be assigned a value without breaking the invariant.
Picking the same values again must of course be avoided (lest the algorithm loops forever), but
even different values could result in a conflict for the same “reason” the original values resulted
in a conflict. They too could be avoided, thus speeding up the search for a model satisfying
the constraints. Such a “reason” explains why the choice of values for x1, . . . , xn necessarily
makes A evaluate to false. Technically, the explanation produces new constraints on x1, . . . , xn
(without mentioning y) that future assignments will have to satisfy. We express the explanation
as a conflict clause of the form C ⇒ I, where C ⊆ {C1, . . . , Cm} is the core of the conflict. We
call the clause I above an interpolating clause as defined below.
Definition 1 (Interpolating clause). Let C(~x, y) be a set of bit-vector constraints, and let Γ be
a model for ~x. We call a clause I an interpolating clause for C at Γ, if (i) C ⇒ I is valid in
the bit-vector theory, (ii) I only contains variables ~x, and (iii) I evaluates to false in Γ.

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Conditions (i) and (ii) are equivalent to the fact that (∃yC)⇒ I is valid, so we also say that
I is an interpolant for ∃yC at Γ. If C is the whole set {C1, . . . , Cm}, I is an interpolant for A
at Γ. In MCSAT, the interpolating clause interpolates between the core constraints C, and the
current assignment in the trail. The application of MCSAT to the bit-vector theory has been
studied in [ZWR16], as well as in [GLJ17]. The latter puts forward the idea of basing conflict
analysis on interpolation mechanisms that are dedicated to specific fragments of the bit-vector
theory. The present work is an instance of this approach. In [JC16], quantifier elimination for
linear bit-vector arithmetic is investigated. Quantifier elimination, when given a formula A as
above, produces a quantifier-free formula F that is equivalent to A, whereas an interpolating
clause I is only implied by A, and dependent on the model Γ that drives its construction, which
we describe below. Connections with the procedures from [JC16] is left for future work.

Section 2 presents the preliminaries used for the interpolation mechanism, as well as a bird’s
eye view of it. Sections 3 and 4 present the two main stages of the interpolation algorithm.
Section 5 sketches a generalisation of the interpolation mechanism that can treat bit-vector
arithmetic constraints augmented with lower bits extraction operators.

2 Preliminaries and bird’s eye view of interpolation
In this paper it is useful to keep in mind that bit-vector arithmetic for bit-width w coincides with
arithmetic modulo 2w. There is an isomorphism between the domain of 2w bit-vector values
and Z/2wZ with addition and multiplication being associative and commutative operators.

The fragment of bit-vector arithmetic that the interpolation mechanism applies to is linear,
in that multiplication is only allowed with constants, and uses the following grammar:

Constraints (literals) C ::= a ¬a
Atoms a ::= tw1 ≤s tw2 tw1 ≤u tw2 tw1 ' tw2
Termsw tw ::= cw0 + Σni=1cwi · xwi

where ≤s and ≤u respectively denote signed and unsigned comparison, w is a bit-width, (xwi)ni=1
are bit-vector variables of bit-width w, and (cwi)ni=0 are bit-vector constants of bit-width w,
called coefficients. In what follows our notations will drop the bit-width superscript whenever
there is no ambiguity. The strict comparison literals t1 <s t2 and t1 <u t2 and the disequality
literal t1 6' t2 can be seen as abbreviating ¬(t2 ≤s t1), ¬(t2 ≤u t1) and ¬(t1' t2), respectively.
Without loss of generality we will assume that in a term c0 + Σni=1ci · xi, the variables are
pairwise distinct, and the only constant that may be equal to 0 is c0. Terms of bit-width w
are closed under bit-vector addition, subtraction, and multiplication by a constant. Given a
bit-vector variable x and a term t of bit-width w, we write cx(t) for the coefficient of x in t.
With the above convention, cx(t) is 0 if and only if x does not appear in t.

The interpolation mechansim we present applies to formulae of the form ∃y(C1 ∧ · · · ∧Cm)
where y is a bit-vector variable of bit-width w. The interpolant for that formula at model Γ
that our mechanism produces has the form (E1 ∨ · · · ∨Ep) , or equivalently E1 ∧ · · · ∧Ep ⇒ ⊥,
where E1,. . . , Ep are constraints from the grammar not mentioning y.

We can assume without loss of generality that all terms in the constraints (Ci)ni=1 have
bit-width w; indeed if one of the constraints, say C1, had a different bit-width, it could not
mention y, and therefore the formula is equivalent to C1 ∧∃y(C2 ∧ · · · ∧Cm), for which C1 ⇒ I
is an interpolant whenever I is an interpolant for ∃y(C2 ∧ · · · ∧ Cm).

However our interpolation mechanism only applies when constraints C1 ∧ · · · ∧Cm satisfy a
particular property with respect to y, described below.

2

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Definition 2. We say that a term t is y-friendly if cy(t) ∈ {−1, 0, 1}, and that an atom t1 ≤s t2,
t1 ≤u t2 or t1' t2 is y-friendly if t1 and t2 are y-friendly and cy(t1) · cy(t2) ∈ {0, 1}.1

Our interpolation mechanism applies to a formula A of the form ∃y(C1 ∧ · · · ∧ Cm) where
C1,. . . , Cm are literals over y-friendly atoms, and [[A]]Γ is false. Below is its general structure:
• For each Ci, 1 ≤ i ≤ m, we determine a forbidden interval Ii = [li; ui[, where li and ui
are terms not mentioning y, such that Ci ⇔ (y /∈ Ii). Hence, formula A is intuitively
equivalent to ∃y(y /∈ I1 ∧ · · · ∧ y /∈ Im), or equivalently ∃y(y /∈

⋃m
i=1 Ii), expressing the

fact that
⋃n
i=1 Ii does not cover the full domain of all 2w bit-vector values of bit-width w.

The fact that [[A]]Γ is false means that
⋃m
i=1[[Ii]]Γ does indeed cover the full domain.

• We produce a series of constraints E1,. . . , Ep which, collectively, express the fact that⋃m
i=1 Ii is a coverage of the full domain. The interpolant will be E1 ∧ · · · ∧Ep ⇒ ⊥: it is

implied by A, and evaluates to false in Γ.

3 Turning constraints into forbidden intervals
We now assume that we have a constraint C that we want to express as a forbidden interval
for y, of bit-width w. The first thing we do is focus on only one kind of atom, namely t1 ≤u t2.
The two other kinds of atoms are reduced to equivalent atoms of the above kind, using the
following rewrite rules:

t1 ≤s t2 ; t1 + 2w−1 ≤u t2 + 2w−1

t1' t2 ; t1 − t2 ≤u 0
Note that for any variable x (which may or may not be y), the original atom is x-friendly if
and only if the rewritten atom is.

Now we also rewrite the atom t1 ≤u t2 so that the coefficients of y on each side are either 0
or 1. If it is not, then we apply the following rewrite rule:

t1 ≤u t2 ; −(t2 + 1) ≤u −(t1 + 1)
We now produce an interval IC for a constraint C with (normalised) atom t1 ≤u t2. An

interval takes the form [l; u[, where the lower bound l and upper bound u are terms, with l
included and u excluded. The notion of interval used here is considered modulo 2w, i.e. is “cir-
cular” over the domain of 2w values, seen as Z/2wZ. For instance an interval [0b1111; 0b0001[,
with two constant bounds, is a perfectly valid interval containing two bit-vector values of width
4: 0b1111 and 0b0000. The semantics of an interval [l; u[is ambiguous when the semantics of l
coincides with that of u. By convention, we will fix it to be the full domain of 2n values, rather
than the empty domain, which we will denote ∅.

The rules for producing Ia or I¬a for a normalised atom a are given in Figure 1, where c1
and c2 are terms that do not mention y. Depending on whether the coefficients of y in t1 and
t2 are 0 or 1, there are four cases. The first three cases are actually split by a condition that
identifies when the natural lower bound and upper bound would coincide, in which case the
produced interval is either empty or full. The last two cases concern the situation where y does
not appear in the constraint. As explained above for constraints with a different bit-width than
w, constraints without y could also be taken out of formula A.

The interpolation mechanism looks at which line of the table applies, so that the condition
evaluates to true in the model Γ, and outputs the corresponding interval IC . The intuition is
that, given the value assignments in Γ and the constraint C to satisfy, y cannot be in IC .

1which is equivalent to cy(t1) · cy(t2) not being −1, except when the bit-width is 1, as then 1 = −1.

3

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Normalised atom a Forbidden interval that a (resp. ¬a) specifies for y
Ia I¬a Condition

c1 + y ≤u c2 + y
[−c2;−c1[[−c1;−c2[c1 6' c2 1
∅ [0; 0[c1' c2 2

c1 ≤u c2 + y
[−c2; c1 − c2[[c1 − c2;−c2[c1 6' 0 3

∅ [0; 0[c1' 0 4

c1 + y ≤u c2
[c2 − c1 + 1;−c1[[−c1; c2 − c1 + 1[c2 6' − 1 5

∅ [0; 0[c2' − 1 6

c1 ≤u c2
[0; 0[∅ c2 <u c1 7
∅ [0; 0[c1 ≤u c2 8

Figure 1: Creating the forbidden intervals

Example 1.
1.1 Assume C1 is literal ¬(x1 ≤u y) and Γ = {x1 7→ 0b0000}. Then line 4 of Figure 1 applies

(because of Γ), and IC1 is the full interval [0; 0[with condition x1' 0.
1.2 Assume C1 is ¬(y' x1), C2 is (x1 ≤u x3 + y), C3 is ¬(y − x2 ≤u x3 + y), and Γ =
{x1 7→ 0b1100, x2 7→ 0b1101, x3 7→ 0b0000}. Then by line 5, IC1 = [x1; x1 + 1[with trivial
condition (0 6' − 1), by line 3, IC2 = [−x3; x1 − x3[with condition (x1 6' 0), and by line
1, IC3 = [x2;−x3[with condition (−x2 6' x3).

The table is inspired by [JW16], Table 1. We leverage the approach for the purpose of
building interpolants, so in our case the expressions c1, c2, etc are not constants, but can have
variables (with values in model Γ). A rather cosmetic difference we make consists in working
with intervals that exclude their upper bound, as this makes the theoretic and implemented
treatment of those intervals simpler and more robust to the degenerate case of bit-width 1,
where 1 = −1. Another difference is that we take circular intervals, so that every constraint
corresponds to exactly one interval; as a result, we do not need the case analyses expressed by
the conditions of Table 1 in [JW16]. We do, however, make some new case analyses to detect
when a constraint leads to an empty or full forbidden interval, since such intervals will be
subject to a specific treatment when generating interpolants, as described in the next section.

4 Generating the interpolant
From constraints C1,. . . , Cm with free variables ~x, y we now have forbidden intervals IC1 ,. . . ,
ICm , more simply denoted I1,. . . , Im, and conditions c1, . . . , cm that are satisfied by Γ. As
said before, the fact that [[A]]Γ is false means that

⋃m
i=1[[Ii]]Γ is the full domain. The property

“
⋃m
i=1 Ii is the full domain” now needs to be expressed symbolically as a conjunction E1 ∧

· · · ∧ Ep of constraints from the grammar, expressing some property about model Γ that left
us no possible value to pick for y. In the context of MCSAT [dMJ13], we then backtrack
over the construction of Γ to try and build a different model; while attempting the new model
construction, we will avoid any model satisfying property E1 ∧ · · · ∧Ep, in order not to fall into
a conflict of the same nature as the one we just analysed. With different values for variables ~x
than those specified by Γ, the intervals

⋃m
i=1 Ii could cover the full domain in many different

ways. Here, we are trying to symbolically capture the way that Γ allows itmakes those intervals
a full coverage.

First, imagine that one of the intervals, say Ii0 , is the full interval [0; 0[. Then we define
p = 1 and E1 is simply the condition ci0 . The interpolant is therefore ci0 ⇒ ⊥.

4

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Algorithm 1 Extracting a covering sequence of intervals
1: function seq_extract({I1, . . . , Im}, Γ)
2: output← () . output initialised with the empty sequence of intervals
3: longest← longest({I1, . . . , Im}, Γ) . longest interval identified
4: baseline← longest.upper . where to extend the coverage from
5: while [[baseline]]Γ 6∈ [[longest]]Γ do
6: I ← furthest_extend(baseline, {I1, . . . , Im}, Γ)
7: output← output, I . adding I to the output sequence
8: baseline← I.upper . updating the baseline for the next interval pick
9: if [[baseline]]Γ ∈ [[output.first]]Γ then
10: return output . the circle is closed without the help of longest
11: return output, longest . longest is used to close the circle

Example 2.
2.1 In Example 1.1 where C1 is literal ¬(x1 ≤u y) and Γ = {x1 7→ 0b0000}, the interpolant

for ∃y ¬(x1 ≤u y) at Γ is (x1' 0)⇒ ⊥.
2.2 In contrast, Example 1.2 does not contain a full interval. The model Γ satisfies the three

conditions (0 6' −1), (x1 6' 0) and (−x2 6' x3), and respectively evaluates the three intervals
I1 = [x1; x1 + 1[, I2 = [−x3; x1 − x3[, and I3 = [x2;−x3[, as [[I1]]Γ = [0b1100; 0b1101[,
[[I2]]Γ = [0b0000; 0b1100[, and [[I3]]Γ = [0b1101; 0b0000[. Note how

⋃3
i=1[[Ii]]Γ is the full

domain.

In case none of the intervals are full (as in Example 2.2), a sequence Iπ(1), . . . , Iπ(q) of
intervals can be extracted from the set {I1, . . . , Im}, such that the sequence [[Iπ(1)]]Γ, . . . , [[Iπ(q)]]Γ
of concrete intervals leaves no “hole” between an interval of the sequence and the next, and goes
round the full circle of domain Z/2wZ. The sequence forms a circular chain of linking intervals,
and the produced constraints E1, . . . , Ep will express the fact that the intervals do link up with
each other, e.g. the upper bound of a link belongs to the next link.

4.1 Generating the sequence of intervals
In practice we can identify, given Γ, such a covering sequence Iπ(1), . . . , Iπ(q) by applying a
coverage algorithm like Algorithm 1, where:
• longest({I1, . . . , Im}, Γ) returns an interval among {I1, . . . , Im} whose concrete version

[[I]]Γ has maximal length;
• I.upper denotes the upper bound of an interval I (remember it is excluded from I);
• furthest_extend(a, {I1, . . . , Im}, Γ) returns an interval I among {I1, . . . , Im} that fur-
thest extends a according to Γ (technically, an interval I that≤u-maximises [[I.upper− a]]Γ
among those intervals I such that [[a]]Γ ∈ [[I]]Γ).

• output.first denotes the first element of a sequence output;
We stop with the first interval I that closes the circle, in that its concrete upper bound

[[I.upper]]Γ belongs to [[longest]]Γ (it may or may not close the circle without the help of [[longest]]Γ,
hence the final if...then...else). Note that

⋃m
i=1[[Ii]]Γ is not the full domain if and only if one of

the calls furthest_extend(a, {I1, . . . , Im}, Γ) fails.

Remark 1. The reason why we identify an interval of maximal length is to obtain a minimal
coverage of the full domain: otherwise the last interval added to the sequence could include some

5

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

of the first ones; removing those from the sequence would still produce a covering sequence.2

4.2 Generating the constraints for the interpolant
From now on we assume without loss of generality that the covering sequence of intervals is
I1, . . . , Iq. We now produce the symbolic constraints that express the property that the covering
has no hole and is circular. We take p = q and for each i between 1 and q, Ei expresses “the
upper bound of Ii belongs to Ii+1”.3 A naive way to express it would be to take Ei to be
(li+1 ≤u ui <u ui+1). That would fail to capture the possibility that the intervals overflow.4
Instead, we take Ei to be (ui − li+1 <u ui+1 − li+1).5

Then the interpolant for A at Γ is E1 ∧ · · · ∧ Eq ⇒ ⊥.

Example 3. For Example 2.2, Algorithm 1 identifies [[I2]]Γ as the longest concrete interval,
and produces the coverage sequence I1, I3, I2, i.e. [x1; x1+1[, [x2;−x3[, [−x3; x1−x3[. We ex-
press the properties (x1+1) ∈ I3, (−x3) ∈ I2, and (x1 − x3) ∈ I1 as the three constraints
E1 = ((x1+1−x2 <u −x3−x2)), E3 = (0 <u x1), and E2 = (−x3 <u 1). The interpolant is

((x1+1−x2 <u −x3−x2)) ∧ (0 <u x1) ∧ (−x3 <u 1)⇒ ⊥.

5 Generalisation with lower bits extraction
In this section we generalise the approach to a bigger fragment of the bit-vector theory.

5.1 Preliminaries
The original goal was to be able to treat bit-vector comparison predicates ≤u,≤s, ' when the
arguments t1 and t2 have different bit-widths w1 and w2: if for instance w1 < w2 then t1 has to
be cast into a bit-vector of width w2 by using a 0-extension or a sign-extension, so that it can
be compared with t2 on w2 bits. With bit-vectors, the 0-extension of t1 with m bits, denoted
0-extendm(t1), adds m zeros to the most significant bits of t1, while the sign-extension of t1 with
m bits, denoted ±-extendm(t1), adds m replicas of t1’s sign bit in front of it. Mathematically,
they correspond to two injections of Z/2w1Z into Z/2w1+mZ: 0-extension corresponds to the
identity function from [0; 2w1 [to [0; 2w1+m[, while sign-extension corresponds to the identity
function from [−2w1−1; 2w1−1[to [−2w1+m−1; 2w1+m−1[.

2The issue does not occur in MCSAT as currently implemented, where we have an extra piece of information,
namely that the original constraints C1, . . . , Cm form a core of the conflict: if one of them, say C1, is removed,
then ∃y(C2 ∧ · · · ∧ Cm) evaluates to true in Γ. Given that each interval Im exactly captures its constraint Ci,
it means that none of the concrete intervals [[I1]]Γ, . . . , [[Im]]Γ is empty and all of them are needed, so that the
sequence must be of length m and is just an ordering of the set of intervals. Moreover if one of the intervals is
full, then it must be the only interval. Still, the algorithm above allows us to produce the ordering.

3(i+1) is to be understood modulo q, i.e. q + 1 = 1, capturing the circularity property.
4A particular case could be made for the interval(s) that overflow(s), expressing the linking property differ-

ently, but that would actually give a particular role to the constant 0 in the circular domain Z/2wZ. This would
weaken the interpolant, in the sense that it would rule out fewer models that fail to satisfy A “for the same rea-
son” Γ does. Indeed, imagine another model Γ′ falsifying A and leading to concrete intervals [[I1]]Γ′ , . . . , [[Im]]Γ′

that only differ from [[I1]]Γ, . . . , [[Im]]Γ in that all bounds are shifted by a common constant. The interpolant
that gives a special role to 0 may not rule out Γ′, whereas the interpolant we produce does.

5It may look strange that, in that interpolant, none of the interval conditions ci play a role. Indeed,
the fact that Γ satisfies ci is a condition under which y 6∈ Ii is equivalent to Ci. However, the constraint
(ui−1 − li <u ui − li) that ends up in the interpolant supersedes condition ci: it implies that 0 <u ui − li and
therefore that ui 6' li; this is exactly what condition ci expresses: the fact that the two bounds are not allowed
to coincide. Except for the degenerate case in which one of I1, . . . , Im is the full interval, which we have treated
separately, the intervals {I1, . . . , Iq} can never be empty or full, should E1, . . . , Eq be satisfied.

6

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

0-extensions and sign-extensions do not have very good properties with respect to addition
and multiplication in arithmetic modulo, as for instance 0-extendm(a+ b) is in general different
from 0-extendm(a) + 0-extendm(b) (and similarly for ±-extendm(a + b) and for multiplication).

What does have very nice properties with respect to arithmetic modulo is lower bits extrac-
tion: in this section we denote the extraction of the m lower bits of t as t〈m〉,6 where t has
bit-width at least m. Indeed, (a + b)〈m〉' a〈m〉+ b〈m〉 and (a · b)〈m〉' a〈m〉 · b〈m〉.

In a satisfiability problem, 0-extensions and sign-extensions can be expressed in terms of
lower bits extraction: For a term t of bit-width w, a term 0-extendm(t) in the input of a
satisfiability problem can be replaced by a variable x during pre-processing, with constraints
t' x〈m〉 and x <u 2w added to the problem; a term ±-extendm(t) can be replaced by a variable
x during pre-processing, with constraints t' x〈m〉 and x + 2w−1 <u 2w added to the problem.

5.2 Adapting the grammar and the production of forbidden intervals
In order to treat lower bits extraction, we can use the distributivity laws that it satisfies over
+ and ·, and extend the grammar from Section 2 by changing the grammar for terms to:

Termsw tw ::= cw0 + Σni=1cwi · (x
wi
i 〈w〉)

where xwi
i ranges over bit-vector variables of width wi and w ≤ wi.

Note that the grammar is still closed under addition and multiplication by a constant, and
is now also closed under lower bits extraction. But it is now no longer true that, in the formula
∃y(C1 ∧ · · · ∧ Cm) for which we seek an interpolant, all atoms have the same bit-width. Let
w be the bit-width of y. Given any constraint C among C1, . . . , Cm, let wC be the bit-width
of C, with wC ≤ w. The generation of an interval IC from constraint C occurs exactly as in
Section 3, using Figure 1 but with y〈wC〉 now playing the role of y. Provided the condition in
the relevant line of Figure 1 is met, C ⇔ (y〈wC〉) 6∈ IC .

5.3 Adapting the generation of the interpolant
The generation of the interpolant, however, needs to be refined, as now the intervals {I1, . . . , Im}
live in domains of different bit-widths and concern different lower bits extracts of y. Again, in
case one of the intervals Ii0 is the full interval for its domain Z/2wi0Z, then none of the other
intervals are needed and we produce the interpolant as in Section 4. Otherwise, the intervals
need to complement each other, despite the fact that they concern different bit-widths.

Otherwise, we adapt the procedure described in Sections 4.1 and 4.2 in order to produce
the constraints E1, . . . , Eq that the interpolant E1 ∧ · · · ∧ Eq ⇒ ⊥ is made of.

First, we group the intervals into different layers characterised by their bit-widths: an
interval that originates from a conflict literal C of bit-width wC , has its two bounds of bit-
width wC and forbids values for y〈wC〉; it will henceforth be called a wC-interval. We order
the groups of intervals by decreasing bit-widths w1 > w2 > · · · > wj , as shown in Figure 2.

Then we adapt Algorithm 1 from Section 4.1 into an algorithm handling different bit-widths,
namely Algorithm 2. The first difference (a minor one) concerns the algorithm’s output: instead
of producing a covering sequence of intervals, and then in a second pass turning that sequence
into the interpolant’s constraints (as described in Section 4.2), Algorithm 2 directly outputs the
interpolant’s constraints E1, . . . , Eq. Hence, output is a set of constraints. The second difference
concerns the alorithm’s input (besides the model Γ): while Algorithm 1 takes as input a set S of
intervals {I1, . . . , Im}, Algorithm 2 takes the sequence of sets (S1, . . . ,Sj) of intervals grouped

6The more traditional (but longer) notation for it is usually t[(m−1):0] or t[0:(m−1)].

7

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Bit-width w1 > w2 > · · · > wj
Interval layer w1-intervals w2-intervals . . . wj-intervals

S1 = {I1.1, I1.2, . . .} S2 = {I2.1, I2.2, . . .} . . . Sj = {Ij.1, Ij.2, . . .}
Forbidding
values for y〈w1〉 y〈w2〉 . . . y〈wj〉

Figure 2: Intervals collected from C1 ∧ · · · ∧ Cm

by (decreasing) bit-widths as described in Figure 2. In case only one bit-width is involved, the
sequence is the singleton (S1) and Algorithm 2 degenerates into Algorithm 1.

We now describe the internal mechanics of the algorithm. We know that, given all intervals
forbidding values for different lower bits extracts of y, every value for y is ruled out. But
for one particular bit-width wi, the union of the wi-intervals in model Γ does not necessarily
cover the full domain Z/2wiZ (i.e.

⋃
I∈Si

[[I]]Γ may be different from Z/2wiZ). The coverage
can leave “holes”, and values in that hole are ruled out by constraints of other bit-widths.
Algorithm 2 proceeds with bit-widths in decreasing order, starting with w1. For every hole that⋃
I∈S1

[[I]]Γ leaves uncovered, it must determine how intervals of smaller bit-widths can cover
it. Algorithm 2 is thus a recursive algorithm that calls itself on smaller bit-widths to cover the
holes that the current layer leaves uncovered (termination of that recursion is thus trivial).

At every call, Algorithm 2 has the same structure as Algorithm 1, using the same variables
longest and baseline and the same sub-routines longest(_,_) and furthest_extend(_,_,_).
In contrast to Algorithm 1, the call to furthest_extend(baseline,S1, Γ) is not guaranteed to
succeed (as [[baseline]]Γ could be in an uncovered hole), were it not guarded by the condition
that there is at least one interval in S1 that covers baseline in Γ (line 6). In that case the al-
gorithm proceeds as Algorithm 1, and when output is extended with (baseline ∈ I) (line 8), the
added constraint is expressed as described in Section 4.2, namely as ((baseline− l) <u (u− l)),
where I = [l; u[. In the opposite case, a hole has been discovered, and the extent of the hole is
determined by calling a new sub-routine next_covered_point(baseline,S1, Γ) (line 11); this
call outputs the lower bound next of an interval in S1 that ≤u-minimises [[next− baseline]]Γ.

If the hole is bigger than 2w2 (i.e. 2w2 ≤u [[next−baseline]]Γ), then the intervals of the
next layers (starting with w2-intervals) need to rule out every possible value for y〈w2〉, and
the w1-intervals were not needed for the coverage of layer w1. So the algorithm returns the
output of a recursive call on bit-width w2 (line 17). If on the contrary the hole is smaller
(i.e. [[next−baseline]]Γ <u 2w2), then interval [baseline; next[in domain Z/2w1Z is projected as
an interval [baseline〈w2〉; next〈w2〉[in domain Z/2w2Z and needs to be covered by the intervals
of bit-width w2 and smaller. This is performed by a recursive call of the procedure on bit-
width w2 (line 14); the fact that only the hole [baseline〈w2〉; next〈w2〉[needs to be covered by
the recursive call, rather than the full domain Z/2w2Z, is implemented by adding to S2 in the
recursive call the complement [next〈w2〉; baseline〈w2〉[of [baseline〈w2〉; next〈w2〉[. The result of
the recursive call is added to the output variable, as well as the fact that the hole must be small.

The final interpolant is (
∧
E∈output E)⇒ ⊥.7

Example 4. Consider a variant of Example 1.2 with the constraints C1, C2, C3, C4 presented
on the first line of Figure 3, and model Γ = {x1 7→ 0b1100, x2 7→ 0b1101, x3 7→ 0b0000}. The
second line is obtained from Figure 1, with the conditions on the third line being satisfied in Γ.

7Note that Algorithm 2 here does not apply the same optimisation as Algorithm 1 (line 9-11), which detects
when the use of interval longest is unnecessary, but it could also be done (at the cost of a more complex figure).

8

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

Algorithm 2 Producing the interpolating constraints with multiple bit-widths
1: function cover((S1, . . . ,Sj), Γ)
2: output← ∅ . output initialised with the empty set of constraints
3: longest← longest(S1, Γ) . longest interval identified
4: baseline← longest.upper . where to extend the coverage from
5: while [[baseline]]Γ 6∈ [[longest]]Γ do
6: if ∃I ∈ S1, [[baseline]]Γ ∈ [[I]]Γ then
7: I ← furthest_extend(baseline,S1, Γ)
8: output← output ∪ {baseline ∈ I} . adding linking constraint
9: baseline← I.upper . updating the baseline for the next interval pick
10: else . there is a hole in the coverage of Z/2w1Z by intervals in S1
11: next← next_covered_point(baseline,S1, Γ) . the hole is [baseline; next[
12: if [[next]]Γ − [[baseline]]Γ <u 2w2 then
13: I ← [next〈w2〉; baseline〈w2〉[. it is projected on w2 bits and complemented
14: output← output ∪ (next−baseline <u 2w2) ∪ cover(((S2 ∪ I),S3, . . . ,Sj), Γ)
15: baseline← next . updating the baseline for the next interval pick
16: else . intervals of bit-widths ≤ w2 must forbid all values for y〈w2〉
17: return cover((S2, . . . ,Sj), Γ) . S1 was not needed
18: return output ∪ {baseline ∈ longest} . adding final linking constraint

Constraint C
C1 C2 C3 C4

¬(y' x1) (x1 ≤u x3 + y) (y〈2〉 ≤u x2〈2〉) (y〈1〉' 0)
Forbidden
interval IC

[x1; x1 + 1[[−x3; x1 − x3[[x2〈2〉+ 1; 0[[1; 0[

Condition c (0 6' − 1) (x1 6' 0) (x2〈2〉 6' − 1) (0 6' − 1)
Concrete

interval [[IC]]Γ
[0b1100; 0b1101[[0b0000; 0b1100[[0b10; 0b00[[0b1; 0b0[

Bit-width wi w1 = 4 w2 = 2 w3 = 1
Interval layer Si S1 = {IC1 , IC2} S2 = {IC3} S3 = {IC4}

Forbidding
values for y y〈2〉 y〈1〉

Figure 3: Example with multiple bit-widths

Algorithm 2 identifies IC2 as the longest among S1 in model Γ. The next interval among S1
covering (x1−x3) in Γ is IC1 , so (x1−x3) ∈ IC1 is added as an interpolant constraint E1. Then
x1+1 is not covered in Γ by any interval in S1: it starts a hole that spans up to −x3. The hole
[x1+1;−x3[has length 0b0011 <u 22 in Γ, so (−x3−x1−1 <u 22) is added as an interpolant
constraint E2 and a recursive call is made on S ′2 = {IC3 , I} and S3 = {IC4}, where I =
[−x3〈2〉; x1〈2〉+1[. The longest interval among S ′2 in Γ is IC3 , and it upper bound 0b00 is covered
in Γ by I, so 0b00 ∈ I is added as an interpolant constraint E3. Then x1〈2〉+1 is not covered in
Γ by any interval in S ′2: it starts a hole that spans up to x2〈2〉+1. The hole [x1〈2〉+1; x2〈2〉+1[
has length 0b01 <u 21 in Γ, so (x2〈2〉−x1〈2〉 <u 21) is added as an interpolant constraint E4
and a recursive call is made on S ′3 = {IC4 , I ′} where I ′ = [x2〈1〉+1; x1〈1〉+1[. Intervals IC4

and I ′ finally cover Z/2Z, with (x1〈1〉+1) ∈ IC4 and 0b0 ∈ I ′ added as interpolant constraints
E5 and E6. Coming back from the recursive calls, (x2〈2〉+1) ∈ IC3 and then −x3 ∈ IC2 are
added as interpolant constraints E7 and E8. The interpolant is

∧8
i=1 Ei ⇒ ⊥.

9

Interpolating bit-vector arithmetic constraints in MCSAT Stéphane Graham-Lengrand and Dejan Jovanović

6 Conclusion
The interpolation mechanism presented in this paper (including for constraints with lower bits
extraction) has been implemented in the MCSAT part of the Yices SMT-solver [Dut14]. The
handling of 0-extensions and sign-extensions, which are present in numerous benchmarks of the
SMTLib library [BST10], is not yet implemented; however, preliminary experimental results al-
ready show that our technique can perform very well on some benchmarks that can be difficult to
address by other techniques. For instance the QF_BV/pspace/ndist.*.smt2 benchmarks, are all
solved in less than a second in our experimentation, as are the QF_BV/pspace/shift1add.*.smt2
benchmarks. Note that on benchmarks that are not entirely in the bit-vector fragment described
in this paper, our interpolation mechanism needs to collaborate with other interpolation mech-
anisms. Improving the way in which different interpolation mechanisms can collaborate for
conflict analysis in MCSAT is one of our ongoing research directions. The treatment of the
QF_BV/pspace/shift1add.*.smt2 benchmarks is in fact an example of collaboration between
the interpolation mechanism described in this paper, and that which we implemented for the
fragment of bit-vector arithmetic consisting of extraction, concatenation, and equalities, and
which we described in [GLJ17]. Further extensions of the scope of application of our inter-
polation method constitute future research directions, possibly by incorporating some of the
quantifier elimination techniques described in [JC16].

Acknowledgments The research presented in this paper has been supported in part by NSF grant
1816936, and by DARPA project N66001-18-C-4011. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF, DARPA, or the U.S. Government. We wish to
thank the anonymous reviewers for their constructive comments, and for pointing out [JC16].

References
[BST10] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB),

2010. www.SMT-LIB.org.
[dMJ13] L. M. de Moura and D. Jovanovic. A model-constructing satisfiability calculus. In R. Gia-

cobazzi, J. Berdine, and I. Mastroeni, editors, Proc. of the 14th Int. Conf. on Verification,
Model Checking, and Abstract Interpretation (VMCAI’13), volume 7737 of LNCS, pages 1–12.
Springer-Verlag, 2013.

[Dut14] B. Dutertre. Yices 2.2. In A. Biere and R. Bloem, editors, Proc. of the 26th Int. Conf.
on Computer Aided Verification (CAV’14), volume 8559 of LNCS, pages 737–744. Springer-
Verlag, 2014.

[GLJ17] S. Graham-Lengrand and D. Jovanović. An MCSAT treatment of bit-vectors. In M. Brain
and L. Hadarean, editors, 15th Int. Work. on Satisfiability Modulo Theories (SMT 2017),
2017.

[JC16] A. K. John and S. Chakraborty. A layered algorithm for quantifier elimination from linear
modular constraints. Formal Methods in System Design, 49(3):272–323, 2016.

[JW16] M. Janota and C. M. Wintersteiger. On intervals and bounds in bit-vector arithmetic. In
T. King and R. Piskac, editors, Proc. of the 14th Int. Work. on Satisfiability Modulo Theories
(SMT’16), volume 1617 of CEUR Workshop Proceedings, pages 81–84. CEUR-WS.org, 2016

[ZWR16] A. Zeljic, C. M. Wintersteiger, and P. Rümmer. Deciding bit-vector formulas with mcsat. In
N. Creignou and D. L. Berre, editors, Proc. of the 19th Int. Conf. on Theory and Applications
of Satisfiability Testing (RTA’06), volume 9710 of LNCS, pages 249–266. Springer-Verlag,
2016.

10

www.SMT-LIB.org

	Introduction
	Preliminaries and bird's eye view of interpolation
	Turning constraints into forbidden intervals
	Generating the interpolant
	Generating the sequence of intervals
	Generating the constraints for the interpolant

	Generalisation with lower bits extraction
	Preliminaries
	Adapting the grammar and the production of forbidden intervals
	Adapting the generation of the interpolant

	Conclusion

