
Psyche: a proof-search engine based on sequent
calculus with an LCF-style architecture

Stéphane Graham-Lengrand

CNRS - École Polytechnique, France

Abstract Psyche is a modular proof-search engine designed for either
interactive or automated theorem proving, and aiming at two things: a
high level of confidence about the output of the theorem proving process
and the ability to apply and combine a wide range of techniques. It ad-
dresses the first aim by adopting and extending the LCF architecture to
guarantee, using private types, not only the correctness but also the com-
pleteness of proof search. It addresses the second by offering a much more
appropriate API than just the primitives corresponding to the inference
rules of the logic in natural deduction: it uses instead a focused sequent
calculus for polarised classical logic. Finally, Psyche features the ability
to call decision procedures such as those used in Sat-Modulo-Theories
solvers. We therefore illustrate Psyche by using it for SMT-solving.

1 Psyche in brief

Psyche [11], the Proof-Search factorY for Collaborative HEurisics, is a modular
platform for automated or interactive theorem proving, built on an architecture
(similar to LCF) where a small kernel interacts with plugins and decision pro-
cedures:
– The kernel is based on a proof-search engine à la Prolog, offering an API

to perform incremental and goal-directed constructions of proof-trees in (a
standard but carefully chosen) Sequent Calculus.

– Psyche can produce proof objects (and print them in LATEX format).
– Plugins can be programmed to drive the kernel, using its API, through the

search space towards an answer provable or not provable; soundness of the
answer only relies on the kernel via the use of a private type for answers
(similar to LCF’s theorem type).

– Plugins can be interactive.
– Psyche offers a memoisation feature to help program efficient plugins.
– The kernel is parameterised by a procedure deciding the consistency of collec-

tions of literals with respect to a background theory, just as in SAT-modulo-
theories (SMT) solvers.

The current version 1.5 of Psyche features a kernel designed for propositional
logic modulo theories (same logic as that of DPLL(T ) used in SMT-solving),
and decision procedures for the empty theory and Linear Rational Arithmetic
(LRA). It is a program of about 4200 lines of OCaml 4.00, using hash-consing
in most data structures for efficiency.



2

2 Motivation

Psyche’s architecture is designed for the ambition of allowing various theorem
proving techniques (generic or problem-specific) to collaborate on a common
platform, whilst giving high confidence in the answers produced.

Interfacing the numerous techniques and tools available for theorem prov-
ing is legitimately receiving a lot of attention: Automated Theorem Provers,
SAT/SMT-solvers, Proof assistants, etc. While trust is already an issue even for
a tool running on its own, it becomes even more of an issue when different tools
interact. Proof-checking is one way of addressing this, being permissive in the
algorithms used for theorem proving, as long as they output some proof objects
that can be checked. Another way is the LCF-style [7], where only a small ker-
nel of primitives needs to be trusted, and anything smarter (e.g. the interaction
between sophisticated techniques) boils down to calls to the primitives.

In the context of proof-checking, a natural way to interact with different
(already implemented) techniques, is the black box approach, where an external
tool is called and its output is converted back into a proof that can be checked
by the system [2,3]. It is somewhat more surprising that, despite the highly
programmable possibilities of the LCF architecture, the most successful integ-
ration of automated reasoning techniques in an LCF-based proof assistant such
as Isabelle [8] seems to also use variants of the black box approach (as very
impressively demonstrated by Sledgehammer) [12,10].

Psyche aims at producing answers that are correct by construction, not hav-
ing to rely on proof-checking; it therefore adopts the LCF philosophy (although
it can produce proof objects), also because having a simple trusted kernel is a
convenient starting point for different techniques to collaborate. But the goal
here is to open the black boxes and program their algorithms directly with calls
to the kernel’s API, as plugins for Psyche.

Such a deeper level of integration opens up the perspective of interleaving the
use of different techniques: An external tool requires an input problem that it can
entirely treat; but implementing the steps of its algorithm as small progressions
in the search-space covered by the main system, allows more possibilities, such
as running the technique up-to-a-point, where a switch to another technique may
be appropriate (e.g. depending on newly generated goals).

The challenge is for the kernel to offer an appropriate API of proof-search or
proof-construction primitives, to allow the efficient implementation of theorem
proving techniques as plugins. Most LCF-style systems offer primitives corres-
ponding to the inference rules of Natural deduction, or a Hilbert-style system.
This is a very fine-grained level, that leaves most (if not all) of the work to the
plugin and makes its implementation cumbersome: these formalisms are more
about proof-construction than proof-search.

Psyche makes the choice of a bigger grain, and leaves to the kernel some real
proof-search computation, but where no decision needs to be made. For this we
use a focused sequent calculus LKp(T ) [4,5], which extends the logic programming
paradigm to polarised classical logic modulo a background theory T . Polarities
and Focusing [6,1] are tools that can be used to describe effective proof-search



3

strategies in Sequent Calculus, hugely narrowing the search-space offered by
Gentzen’s original rules. In our case, they also specify a sensible division of
labour between Psyche’s kernel and Psyche’s plugins, redesigning the standard
LCF-style API.

3 Overview and general architecture

The kernel contains the mechanisms for exploring the proof-search space in a
sound and complete way, taking into account branching and backtracking. It
has no strategy regarding the order in which branches are explored, and this
lack of intelligence makes its code rather short. If it reaches a proof, then that
proof is correct by construction, and if the entire search space is explored and
no proof is found, then the kernel correctly outputs that no proof exists.

The plugins then drive the kernel by specifying in which order the branches
of the search space should be explored and to which depth, something that is ex-
pected to depend on the kind of problem that is being treated. The quality of the
plugin is how fast it drives the kernel towards a answer Provable/NotProvable.

This already departs from the traditional LCF-style in that some actual
proof-search computation is performed in the kernel, not just atomic steps of
proof-construction:

prem1 . . . premn
name

conc

In traditional LCF, each inference rule of the
logic (as on the right-hand side) will give rise to
a primitive of the kernel’s API:
name: thm -> · · · -> thm -> thm

In Psyche’s kernel, such an inference rule will be wrapped in the kernel’s
unique API primitive:

machine: statement -> output
such that machine(conc) will trigger the recursive calls machine(prem_1),. . . ,
machine(prem_n).

Psyche’s general architecture is illustrated by its main top-level call (slightly
reworded for clarity):

Plugin.solve(Kernel.machine(Parser.parse input))
Psyche has a collection of parsers (currently one for DIMACS and one for SMT-
Lib2) and calls the appropriate one on Psyche’s input. The resulting abstract
syntax tree is fed to the kernel’s machine function that will initiate the search.
This produces a value of type output that is given to the plugin to work with,
so as to finally produce an answer provable or not provable. This could give the
impression that the plugin performs computation after the kernel has finished
its work, but this is not quite true, as illustrated by the nature of type output:

type output = Final of answer | Fake of coin -> output
which describes the kernel as a slot machine: when it is run, it outputs
– either a final answer provable or not provable
– or a fake output that represents unfinished computation: in order for com-

putation to continue, the plugin needs to “insert another coin in the slot
machine”; proof-search will then resume according to the inserted coin.



4

To summarise, the kernel performs proof-search as long as there is no decision
to be made (on which backtrack may later be needed), and when it hits such
a point, it stops and asks for another coin to indicate how to proceed next.
The plugin drives the kernel in the exploration of the proof-search space by
inserting carefully chosen coins, hoping that one day the machine will stop with
the jackpot: a value of the form Final(...).

Now while this architecture somewhat departs from LCF, it does share with
it the distrust of anything outside the kernel: when concerned with the soundness
of the answer (whichever it be), the plugin is here considered as an adversary,
so Psyche defines the type answer as abstract, i.e. a private type that only the
kernel can inhabit (just like the thm type of LCF). Psyche’s type
answer = Provable of statement*proof | NotProvable of statement

can be read by the plugin and the top-level if need be, but cannot be inhabited by
them. That way, a plugin cannot cheat about Psyche’s answer: the worst it can
do is to crash Psyche’s runs. In Psyche as in traditional LCF, inhabitation of
the abstract type (in case of Psyche, with a value of the form Provable(...))
explicitly or implicitly constructs a proof of the statement. But contrary to LCF,
Psyche also gives guarantees when the output is not provable: it can only occur
when the kernel has entirely explored the search-space unsuccessfully.

4 Psyche’s Kernel

As described above, the kernel’s API has the slot machine as its only primitive,
controlled by the coins that are inserted in it. In order for efficient plugins to
be conveniently programmed, the kernel’s primitive needs to accept a rather
expressive range of coins that can specify a smart exploration of the search-
space. This depends on the inference system that is used in the kernel for the
incremental and bottom-up construction of proof-trees, and on identifying the
inference rules that the kernel will perform automatically from those that will
pause computation and prompt the plugin for new directions.

For this, our sequent calculus LKp(T ) [4,5] describing classical logic modulo a
theory T uses polarities and focusing (see e.g. [1]). The connectives and literals
of classical logic are tagged with polarities: + and −. Polarities do not affect the
(classical) provability of formulae, but only the shape of proofs and therefore
the structure of the proof-search space. Focusing is the phenomenon whereby
the inference rules decomposing the connectives of the same polarity can be
chained without losing completeness (thus narrowing the search-space), see [5]
for a full description. But in brief, focusing organises the proof-search process as
an alternance between two kinds of phases: synchronous and asynchronous.
– An asynchronous phase decomposes the formulae of the sequent whose main

connective is negative, using invertible inference rules (the premises are prov-
able if the conclusion is): these represent no backtrack point in proof-search.

– A synchronous phase starts with the selection of a positive formula: the
formula and its sub-formulae are then decomposed recursively (before doing
anything else in the sequent) as long as these remain positive. When these
become negative, another asynchronous phase starts.



5

We use focusing to divide the labour between Psyche’s kernel and plugins:
The kernel applies the asynchronous steps automatically without any instruction
from the plugin, and then stops and asks for another coin describing the next
synchronous phase, where smart choices may have to be made (starting with the
selection of the positive formula to work on). An important consequence of this
division of labour is that every kernel call terminates, because the length of
each phase is bounded by the size of the formula(e) being decomposed.

The choice of polarities on connectives and literals affects the kernel-plugin in-
teraction. For instance the polarity of ∨ will determine whether it is decomposed

Γ ` Ai

Γ ` A1∨+A2

Γ ` A1, A2, Γ
′

Γ ` A1∨−A2, Γ
′

automatically by the kernel (second rule,
asynchronous) or with a smart choice by
the plugin (first rule, synchronous):

The code of the kernel is rather small (575 lines) and purely functional.
Continuation-Passing-Style (CPS) is used to minimise the use of the stack and
provide a natural way to represent the progression of the kernel within the search
space: the API function machine: statement->output
actually wraps the real (tail-)recursive function

search: statement->(output->’a)->’a
with the identity continuation. Continuations are heavily used for branching and
backtracking (e.g. when search applies a rule with several premises, it makes
a recursive call on one of the branches and stacks up the others in the passed
continuation; similarly when the plugin chooses to explore one branch, the kernel
records the other ones -forcing in the end the entire exploration of the search-
space), and naturally implement a slot machine waiting for its coin.

5 Plugins

A plugin is an OCaml module of a fixed module type declaring a function
solve: output->answer (again, answer is for the plugin an abstract type).

However, it is likey that the sophisticated strategies/heuristics that the plugin
is meant to implement rely on some clever choice of data-structures for formulae,
sets of formulae, sets of literals. So the plugin and the kernel have to agree
on those three data-structures that are communicated both ways during the
interaction. In Psyche 1.5, the kernel is parameterised by the data-structures,
and the plugin provides them.

We first tested Psyche’s architecture with a basic plugin Naive, which imple-
ments collections as lists and inserts the first available coin in the slot machine,
whenever asked. This works fine for small tautologies, printable on a screen.

But the first real aim was to capture in Psyche some propositional SAT and
SAT-Modulo-Theories solving techniques, making DPLL(T ) technology avail-
able in a generic proof-search framework like Psyche. For this we describe in [5]
how to see DPLL(T ), canonically expressed as a transition system [9], as a simple
bottom-up proof-construction mechanism in LKp(T ). More practically, every rule
of DPLL(T ) can be seen as the insertion of a particular coin in Psyche’s slot
machine. We implemented this as two different plugins for Psyche: DPLL_Pat



6

and DPLL_WL. These remain toy plugins, because, although it is now clear from [5]
how to perform each rule of DPLL(T ) in Psyche, we still have to decide which
rule to apply. This is where the two plugins differ: DPLL_Pat looks up the applic-
ability of DPLL(T )’s rules by using Patricia tries to implement sets of clauses,
while DPLL_WL looks it up using the technique of watched literals.

Just like DPLL(T )-based solvers are made efficient by using features such
as backjumping and lemma learning, our plugins are made more efficient by the
use of memoisation, which avoids re-doing, for some open branch, the same steps
as those used in a previously completed branch. Psyche 1.5 therefore offers a
memoisation module, to be used by plugins to record values of (the abstract)
type answer. And the kernel’s slot machine accepts from the plugin, as a special
coin carrying such a value, “here is an already found answer that also applies to
the current goal”. The kernel accepts the value as closing the current branch (one
way or another) without any proof-checking (since the abstract type ensures
the value came as an earlier output of the kernel); it only checks that the value
applies to the current goal. Now for a memoised answer Provable to be reusable
as often as possible, it is useful to prune the provable sequent, just before it is
tabled, from the formulae and literals that were not used in its proof. This is easy
to do for the complete proofs of LKp(T ) (eager weakening are applied a posteriori
by inspection of the inductive structure). Psyche’s kernel actually performs the
pruning on-the-fly whenever an inference is added to complete proofs, so that,
whenever it outputs Final(sequent,proof), the sequent is already pruned. This
is Psyche’s way of performing conflict analysis, a key process of SMT-solving.

6 Conclusion and perspectives

Psyche is run from the command-line, taking as input the indicated file(s)
or directory(ies) (or the standard input): psyche [OPTION]... [FILE/DIR]...
Version 1.5 is distributed with a DIMACS parser, which we used to test Psyche
on (propositional) SAT benchmarks, and an SMTLib2 parser (unmodified from
the Alt-Ergo prover), which we used to test it on QF_LRA benchmarks (making
use of the distributed simplex algorithm for LRA). The results are available on
Psyche’s website [11]. Since Psyche has no ambition to beat state-of-the-art
SAT- and SMT-solvers, it works well on small instances but its performance
starts declining between 20Kb and 100Kb of input problem size (of course this
is no appropriate measure of difficulty): There is no intrinsic problem of scalab-
ility, but the current plugins and decision procedures are illustrative toys (the
heuristics for applying DPLL(T ) rules in the current plugins are still basic, and so
is the decision procedure for LRA -e.g. it is not incremental). What we offer here
is a platform and its modularity: anyone with better (or different) heuristics or
decision procedures can simply write them as OCaml modules of our predefined
module types, and Psyche will seamlessly run with them, keeping the same
LCF-style guarantees. Moreover, nothing in Psyche’s proof-engine relies on the
input being sets of clauses, so Psyche might offer a convenient framework to
generalise the known techniques for the satisfiability of formulae in clausal form.



7

The short-to-medium term plans are as follows:
– kernel: handle existential variables and propagate first-order unifiers through

branching, construct and store proof-terms rather than whole proofs;
– theories: improve the procedure for LRA (e.g. making it incremental) and

implement other theories (Congruence Closure, LIA, bit vectors, etc);
– plugins: implement a user-interactive plugin asking which coins to insert,

improve the DPLL(T ) plugins to better handle non-clausal formulae, and
implement other theorem proving techniques as plugins: analytic tableaux,
clausal tableaux (e.g. connections) and resolution are all done in the theory.
In the long-term, we plan to investigate whether LKp(T ) may help mixing

first-order reasoning with theories (i.e. investigate instantiations in presence of a
theory), and prove Psyche’s correctness in a proof assistant (since the functional
kernel seems small enough and the plugins need not be certified).

Acknowledgements. Contributors of Psyche include S. Graham-Lengrand,
A. Mahboubi, A. Bernadet, M. Farooque, Damien Rouhling and M. Vegreville.

References
1. J. M. Andreoli. Logic programming with focusing proofs in linear logic. J. Logic

Comput., 2(3):297–347, 1992.
2. Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent

Théry, and Benjamin Werner. A modular integration of SAT/SMT solvers to Coq
through proof witnesses. In Proc. of the 1st Int. Conf. on Certified Programs and
Proofs (CPP’11), volume 7086 of LNCS, pages 135–150. Springer, December 2011.

3. Frédéric Besson, Pierre-Emmanuel Cornilleau, and David Pichardie. Modular SMT
proofs for fast reflexive checking inside Coq. In Jean-Pierre Jouannaud and Zhong
Shao, editors, Certified Programs and Proofs, volume 7086 of LNCS, pages 151–166.
Springer-Verlag, 2011.

4. Mahfuza Farooque and Stéphane Graham-Lengrand. Sequent calculi with proced-
ure calls. Technical report, Laboratoire d’Informatique de l’Ecole Polytechnique,
January 2013. http://hal.archives-ouvertes.fr/hal-00779199

5. Mahfuza Farooque, Stéphane Graham-Lengrand, and Assia Mahboubi. A bisim-
ulation between DPLL(T) and a proof-search strategy for the focused sequent
calculus, June 2013. Available on Psyche’s website [11].

6. Jean-Yves Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101, 1987.
7. Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a

mechanized logic of computation, volume 78 of LNCS. Springer-Verlag, 1979.
8. The Isabelle theorem prover. http://isabelle.in.tum.de/
9. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland proced-
ure to DPLL(T). J. of the ACM Press, 53(6):937–977, 2006.

10. Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience
with Sledgehammer, a practical link between automatic and interactive theorem
provers. In Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL
2010, volume 2 of EPiC Series, pages 1–11. EasyChair, 2012.

11. Psyche: the Proof-Search factorY for Collaborative HEuristics.
http://www.lix.polytechnique.fr/~lengrand/Psyche/

12. Tjark Weber. SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer (STTT), 13(5):419–429, 2011.

http://hal.archives-ouvertes.fr/hal-00779199
http://isabelle.in.tum.de/
http://www.lix.polytechnique.fr/~lengrand/Psyche/

	Psyche: a proof-search engine based on sequent calculus with an LCF-style architecture
	Stéphane Graham-Lengrand

