
Call-by-Value λ-calculus and LJQ

Roy Dyckhoff and Stéphane Lengrand
School of Computer Science,
University of St Andrews,

St Andrews, Fife,
KY16 9SX, Scotland.

{rd,sl}@dcs.st-and.ac.uk

19th April 2007

Abstract

LJQ is a focused sequent calculus for intuitionistic logic, with a simple re-
striction on the first premiss of the usual left introduction rule for implication.
In a previous paper we discussed its history (going back to about 1950, or be-
yond) and presented its basic theory and some applications; here we discuss in
detail its relation to call-by-value reduction in lambda calculus, establishing
a connection between LJQ and the CBV calculus λC of Moggi. In particular,
we present an equational correspondence between these two calculi forming
a bijection between the two sets of normal terms, and allowing reductions in
each to be simulated by reductions in the other.

Keywords: lambda calculus, call-by-value, sequent calculus, continuation-
passing, semantics

1 Introduction
Proof systems for intuitionistic logic are well-known to be related to compu-
tation. For example, a system of uniform proofs for Horn logic is a coherent
explanation of proof search in pure Prolog, as argued by (e.g.) [17]; likewise,
natural deduction corresponds under the Curry-Howard correspondence to
the ordinary typed λ-calculus, with beta-reduction, i.e. to the classic model
of computation for typed functional programs.

Similarly, the sequent calculus can also be related to computation via the
process of cut-elimination. In particular, two intuitionistic sequent calculi LJT
and LJQ, presented in Herbelin’s thesis [10] and based on earlier work [14], [2]
by Joinet et al, feature cut-elimination systems in connection with call-by-
name (CBN) and call-by-value (CBV) semantics, respectively.

Such semantics apply to functional programming [20] and concern the
choice of evaluating an argument after or (resp.) before being passed to a
function.

The λ-calculus is so pure a model for functional programs that any compu-
tation is, in a sense defined in [20], call-by-name. This relates to the sequent
calculus LJT whose notion of focus [1] establishes a close connection with nat-
ural deduction, of which the λ-calculus is a proof-term language. The cut-free
proofs of LJT are in 1-1 correspondence with the normal natural deductions;
LJT has a well-developed theory of proof-reduction with strong normalisation
[11, 5, 3] that relates to the normalisation of the simply-typed λ-calculus. Note
that LJT itself can be given with proof-terms, which help formalising such con-
nections directly with call-by-name (i.e. unrestricted) λ-calculus; these terms
are meaningful even in an untyped setting.

1

Likewise, LJQ (as presented in [4]) is a focused sequent calculus, captur-
ing a simple restriction on proofs significant for structural proof theory and
automated reasoning. In [10], LJQ is related to Lorenzen dialogues, but the
suggested connection with call-by-value semantics has never, as far as we are
aware, been formalised as a relation between cut-elimination in LJQ and nor-
malisation in a call-by-value (λ-)calculus.

Addressing this issue raises the questions of what call-by-value λ-calculus
is, and what cut-elimination process specific to LJQ is to be used. These ques-
tions have very satisfying answers for CBN and LJT(c.f. [11, 5, 3]); extending
(for implicational logic) the brief discussion in [4], the present paper

• formalises, by means of a proof-term calculus, a cut-elimination system
specific to LJQ and its particular notion of focus,

• optimises a CBV λ-calculus due to Moggi [18], so that it satisfies finer
semantical properties and thus better connects to LJQ,

• proves the confluence of the obtained calculi and relates them by using
notions of abstract rewriting such as equational equivalences.

The logical inspiration for this investigation is strong, but once proof-terms
are considered, all results in this paper hold even in an untyped framework.

Call-by-value λ-calculus

Recall that CBV λ-calculus partially (and only partially) captures the com-
mon convention, in implementation of functional languages, that arguments
are evaluated before being passed to functions. The fundamental ideas are
explored by Plotkin in [20], where a calculus λV is introduced; its terms are
exactly those of λ-calculus and its reduction rule βV is merely β-reduction
restricted to the case where the argument is a value V , i.e. a variable or an
abstraction.

βV (λx.M) V −→ M{x = V }
Clearly, in the fragment λEvalArg of λ-calculus where all arguments are

values, βV = β. Hence, applying CBN- (general β) or CBV- (βV) reduction
is the same, a property that is called strategy indifference; therefore, in the
context of λEvalArg, we will not distinguish βV from β.

Using the notion of continuation, of which a history can be found in [22],
the (CBN) λ-calculus can be encoded [20] into λEvalArg with a continuation-
passing-style (CPS) translation in a way such that two terms are β-equivalent
if and only if their encodings are β-equivalent.

Similarly, for the CBV calculus λV, two CPS-translations into λEvalArg can
be defined: Reynolds’ [21, 23] and Fischer’s [7, 8]. Both are sound, in that
in each case any two βV-equivalent λ-terms are mapped to two β-equivalent
terms, but they are both incomplete in that the β-equivalence in λEvalArg is
bigger than needed (see e.g. [20]).

This problem is solved by Moggi’s calculus λC [18]; this extends λV with
a let _ = _ in _ constructor and new reduction rules, such as:

letV let x = V in M −→ M{x = V }
In particular, with the use of this new constructor, an application cannot be a
normal form if one of its components is not a value. Both the aforementioned
CPS-translations on λV can be extended to λC, in a way such that they are
both sound and complete.

Thus, equivalence in the extended CBV λ-calculus λC of Moggi can be
modelled by equivalence in λEvalArg; but (as we show below) this modelling
does not extend to modelling of reductions. Our more refined analysis, pre-
sented in this paper, of the CBV λ-calculus λC considers how reductions, rather
than equivalence, are modelled by CPS-translations. Here the crucial concept
is that of a reflection, i.e. a reduction-preserving encoding that makes one
calculus isomorphic to a sub-calculus of another. Already in [25], a refined

2

Reynolds translation is proved to form a reflection in λC of its target calculus
λRCPS.

However, [25] states that a particular refined Fischer translation cannot be
a reflection. We show here that a different (and more natural) refined version
of the Fischer translation that does form a reflection of its target calculus λFCPS
in (a minor variation of) λC.

We leave the discussion about the different refinements for section 3.1. The
minor variation of λC consists of the replacement of rule βV with the following:

B (λx.M) N −→ let x = N in M

This change is justified for three reasons:

• It does not change the equational theory of λC.

• Splitting βV into B followed by letV seems more atomic and natural, with
only one rule controlling whether a particular sub-term is a value or not.

• This variation makes our refined Fischer translation a reflection in λC of
its target calculus.

From the reflection result we can also prove that our version of λC is
confluent (Theorem 1), using the confluence of λFCPS.

In summary, then, we are able to show that a minor variation of Moggi’s
calculus λC is a natural candidate as the canonical CBV λ-calculus, admitting
two CPS-translations each of which not merely models equivalences but also
models reductions. We turn now to using this as a basis for considering the
properties of LJQ -as a CBV sequent calculus (analogous to the use of CBN
λ-calculus in relation to the properties of LJT as a CBN sequent calculus, viz.
strong normalisation, confluence and simulation of β-reduction).

LJQ

The history of LJQ goes back to Vorob’ev [26] (detailing ideas published in
1952), who showed (his Theorem 3) that, in a minor variant of Gentzen’s
calculus LJ for intuitionistic logic, one may, without losing completeness, re-
strict instances of the left rule L⊃ for implication to those in which, if the
antecedent A of the principal formula A⊃B is atomic, then the first premiss is
an axiom. Much later, Hudelmaier [12] showed that one could further restrict
this rule to those instances where the first premiss was either an axiom or
the conclusion of a right rule; the result was proved in his thesis [12] and
described in [13] as folklore. The same result is mentioned by Herbelin in [10]
as the completeness of a certain calculus LJQ, described simply as LJ with the
last-mentioned restriction.

Following our approach in [4], we formalise such a restriction on LJ as a
focussed calculus with two forms of sequent, ordinary sequents and focussed
sequents. We also use proof-terms, so that LJQ becomes the typing system
of a calculus called λQ with two syntactic categories, that of (ordinary) terms
and that of values. These are respectively typed by ordinary sequents and
focussed sequents.

Letting Γ range over environments (i.e. finite functions from variables to
formulae), we have the ordinary sequent Γ ⇒ M :A to express the deducibility
(as witnessed by the term M) of the formula A from the assumptions Γ, and
the focussed sequent Γ → M :A to impose the restriction that the last step in
the deduction is by an axiom or a right rule (i.e. with the succedent formula
principal).

The rules of the calculus are then as presented below, in Sect. 4. For ex-
ample, the rule L⊃ has, as conclusion and second premiss, ordinary sequents,
but as first premiss a focussed sequent, capturing the restriction on proofs
discussed by Hudelmaier (given that the focussed sequents are exactly the
axioms or the conclusions of right introduction rules).

3

λQ can be considered independently from typing, while its notion of re-
duction (not necessarily representing proof transformations) still expresses
the call-by-value operational semantics of the calculus. This is revealed by
continuation-passing style translations [22] and relates to Moggi’s call-by-value
calculus λC [18], modified as outlined above.

The connection between λQ and λC can be summarised as follows: There
are encodings from λQ to λC and from λC to λQ such that

• they form a bijection between cut-free terms (a.k.a. normal forms) of λQ

and normal forms of λC,

• they form an equational correspondence between λQ and λC,

• the reductions in λQ are simulated by those of λC,

• the reductions in λC are simulated by those of λQ.

Thus, LJQ can be considered as a sequent calculus version of a canonical
CBV λ-calculus (our modified Moggi calculus λC) in the same way that LJT
has been shown [3] to be a sequent calculus version of the CBN λ-calculus.

Structure of the paper

Section 2 is a preliminary section that presents the main tools that are used
to relate λQ to λC. Section 3.1 presents Plotkin’s CBV λV-calculus [20] and
the CPS-translations from λV. Section 3.2 identifies the target calculi λRCPS
and λFCPS, and proves the confluence of λFCPS. Section 3.3 presents Moggi’s
calculus λC [18] extending λV, introducing the aforementioned variant, and
in section 3.4 we prove that the Fischer translation forms a reflection in (our
slightly modified version of) λC of λFCPS. In section 4 we present (at last) the
calculus λQ, including its reduction system. Section 5 investigates the CBV
semantics of λQ, via an adaptation of the Fischer CPS-translation. Section 6
combines the results of the previous sections to express the connection between
λQ and λC. Section 7 concludes with directions for further work.

2 Preliminary notions
In this section we recall some concepts (mainly from [16]) about reduction
relations, especially notions used to relate one calculus to another.

Definition 1 (Simulation) Let R be a total function from a set A to a set
B, respectively equipped with the reduction relations →A and →B.

→B weakly simulates →A through R if for all M, M ′ ∈ A, M →A M ′

implies R(M) →∗
B R(M ′).

The notion of strong simulation is obtained by replacing R(M) →∗
B R(M ′)

by R(M) →+
B R(M ′) in the above definition, but in this paper we only deal

with weak simulation and thus abbreviate it as “simulation”.
We now define some more elaborate notions based on simulation, such as

equational correspondence [24], Galois connection and reflection [16]. A useful
account of these notions, with intuitive explanations, can be found for instance
in [25]. In the following definition and in the rest of the paper, we write f · g
for the functional composition that maps an element M to g(f(M)).

Definition 2 (Galois connection, reflection & related notions)
Let A and B be sets respectively equipped with the reduction relations →A
and →B. Consider two mappings f : A −→ B and g : B −→ A.

• f and g form an equational correspondence between A and B if the
following conditions hold:

– If M →A N then f(M) ↔∗
A f(N)

– If M →B N then g(M) ↔∗
A g(N)

4

– f · g ⊆↔A
– g · f ⊆↔B

• f and g form a Galois connection from A to B if the following conditions
hold:

– →B simulates →A through f

– →A simulates →B through g

– f · g ⊆→∗
A

– g · f ⊆←∗
B

• f and g form a pre-Galois connection fromA to B if in the four conditions
above we remove the last one.

• f and g form a reflection in A of B if the following conditions hold:

– →B simulates →A through f

– →A simulates →B through g

– f · g ⊆→∗
A

– g · f = IdB

Note that saying that f and g form an equational correspondence be-
tween A and B only means that f and g extend to a bijection between ↔A-
equivalence classes of A and ↔B-equivalence classes of B. If f and g form an
equational correspondence, so do g and f ; it is a symmetric relation, unlike
(pre-)Galois connections and reflections.

A Galois connection provides both an equational correspondence and a
pre-Galois connection. A reflection provides a Galois connection. Also note
that if f and g form a reflection then g and f form a pre-Galois connection.

The notions of equational correspondence, pre-Galois connection, Galois
connection, and reflection are transitive notions, in that, for instance, if f
and g form a reflection in A of B and f ′ and g′ form a reflection in B of C
then f · f ′ and g · g′ form a reflection in A of C (and similarly for equational
correspondences, pre-Galois connection and Galois connections).

These notions based on simulation can then be used to infer, from the
confluence of one calculus, the confluence of another calculus. This technique
is also known as the Interpretation Method [9].

Theorem 1 (Confluence by simulation) If f and g form a pre-Galois
connection from A to B and →B is confluent, then →A is confluent.

Proof: The proof is graphically represented in Fig. 1. 2

3 Call-by-value λ-calculus
In this section we present some new developments in the theory of CBV λ-
calculus.

3.1 λV & CPS-translations
We present the λV-calculus of [20]:

Definition 3 (λV) The syntax of λV is the same as that of λ-calculus, al-
though it is elegant to present it by letting values form a syntactic category
of their own:

V, W, . . . ::= x | λx.M
M, N, . . . ::= V | M N

V, W, . . . stand for values, i.e. variables or abstractions.

5

∗
A ##GG

GG
GG

GG
G

∗
A{{wwwwwwww

f

®¶

∗A

»»

f

®¶

f

®¶ ∗ A

§§

∗
B ##GG

GG
GG

GG
G

∗
B{{wwwwwwww

∗
B ##GG

GG
GG

GG
G

g

®¶

∗
B{{wwwwwwww

g

®¶
g

®¶

∗
A ##GG

GG
GG

GG
G

∗
A{{ww

ww
ww

ww
w

Figure 1: Confluence by simulation

We obtain the reduction rules of λV by restricting β-reduction to the cases
where the argument is a value and restricting η-reduction to the cases where
the function is a value:

βV (λx.M) V −→ M{x = V }
ηV λx.V x −→ V if x 6∈ FV(V)

In presence of βV, the following rule has the same effect as ηV:

η′V λx.y x −→ y if x 6= y

Definition 4 (λEvalArg) λEvalArg is the fragment of λ-calculus where all argu-
ments are values, hence given by the following syntax:

V, W, . . . ::= x | λx.M
M, N, . . . ::= V | M V

Remark 2 (Strategy indifference) In the λEvalArg fragment, βV = β, so
applying CBN- (general β) or CBV- (βV) reduction is the same.

Note that the situation is different for η-conversion in λEvalArg, since ηV 6= η.
The fragment λEvalArg is stable under βV/β-reduction and under ηV-reduction,
but not under η-reduction.

We can encode λV into λEvalArg by using the notion of continuation and
defining Continuation Passing Style translations (CPS-translations). There
are in fact two variants of the CBV CPS-translation: Reynolds’ [21, 23] and
Fischer’s [7, 8], presented in Fig. 2.

Note that the two translations only differ in the order of arguments in
x y k / x k y and λx.λk.R(M) k / λk.λx.F(M) k.

As mentioned in the introduction, both translations map βV-equivalent
terms to β/βV-equivalent terms (soundness), but the converse fails (incom-
pleteness) (see e.g. [20]).

A more refined analysis is given by looking at the reduction rather than
just equivalence. Note that the two translations above introduce many fresh
variables, but bind them, often leading to new redexes and potential redexes
not corresponding to redexes in the original terms. Some of these get in the
way of simulating β-reduction of the original terms. However, they can be
identified as administrative, so that the translations above can be refined by

6

R(V) = λk.k RV(V)
R(M N) = λk.R(M) (λx.R(N) (λy.x y k))

RV(x) = x
RV(λx.M) = λx.λk.R(M) k

Reynolds’ translation

F(V) = λk.k FV(V)
F(M N) = λk.F(M) (λx.F(N) (λy.x k y))

FV(x) = x
FV(λx.M) = λk.λx.F(M) k

Fischer’s translation

Figure 2: CBV CPS-translations, from λV to λEvalArg

reducing these redexes. The precise definition of which redexes are adminis-
trative is crucial, since this choice might or might not make the refined Fischer
translation a Galois connection or a reflection (Definition 2), as we shall see
in section 3.4. In Fig. 3 we give the refinement for a particular choice of ad-
ministrative redexes. In this figure, K ranges over λ-terms. We shall see that,
for the inductive definition to work, it is sufficient to restrict the range of K
to particular terms called continuations.

V :RK = K V R

M N :RK = M :Rλx.(x N :RK) if M is not a value
V N :RK = N :Rλy.(V y :RK) if N is not a value
V V ′ :RK = V R V ′R K

xR = x

(λx.M)R = λx.λk.(M :Rk)

Reynolds

V :FK = K V F

M N :FK = M :Fλx.(x N :FK) if M is not a value
V N :FK = N :Fλy.(V y :FK) if N is not a value
V V ′ :FK = V F K V ′F

xF = x

(λx.M)F = λk.λx.(M :Fk)

Fischer

Figure 3: Refined CBV CPS-translations, from λVto λEvalArg

We first prove that the refined translations are indeed obtained by reduc-
tion of the original ones.

Lemma 3

1. RV(V) −→∗
β V R and R(M) K −→∗

β M :RK

2. FV(V) −→∗
β V F and F(M) K −→∗

β M :FK

Proof: For each point the two statements are proved by mutual induction
on V and M . The interesting case is for M = M1 M2, which we present with
the Fischer translation (the case of Reynolds is very similar): F(M1 M2) K =
F(M1) (λx.F(M2) (λy.x K y)) −→β M1 :F (λx.N :F (λy.x K y)) by induction
hypothesis.

• If neither M1 nor M2 are values, this is also
M1 M2 :FK.

7

• If M1 is a value and M2 is not, this is also
(λx.M2 :F (λy.x K y)) M1

F −→β M2 :F (λy.M1
F K y) = M1 M2 :FK.

• If M1 is not a value but M2 is, this is also
M1 :F (λx.(λy.x K y) M2

F) −→β M1 :F (λx.x K M2
F) = M1 M2 :FK.

• If both M1 and M2 are values, this is also
(λx.(λy.x K y) M2

F) M1
F −→∗

β M1
F K M2

F = M1 M2 :FK.

2

Remark 4 Note that K is a sub-term of M :RK and M :FK with exactly
one occurrence1, so for instance if x ∈ FV(K) \FV(M) then x has exactly one
free occurrence in M :RK and M :FK. Hence, the variables introduced by the
translations and denoted by k, which we call the continuation variables, are
such that the set of those that are free in the scope of a binder λk. is exactly
{k}, with exactly one occurrence (only one of them can be free at a time).

In other words, in a term (which is a α-equivalence class of syntactic terms,
i.e. a set) there is always a representative that always uses the same variable
k. Note that K does not need to range over all λ-terms for the definition of
the refined translations to make sense, but only over constructs of the form k
or λx.M , with x 6= k.

In that case, note that if we call continuation redex any β-redex binding a
continuation variable (i.e. any redex of the form (λk.M) N), then the refined
Reynolds translation considers all continuation redexes to be administrative
and has thus reduced all of them, while the refined Fischer translation leaves
a continuation redex in the construct (λx.M) V :FK = (λk.λx.M :Fk) K V F ,
which is thus not administrative.

This choice is different from that of [25] which, as for the Reynolds transla-
tion, considers all continuation redexes to be administrative. With that choice
the authors establish negative results about the refined Fischer translation as
we shall discuss in section 3.4.

We can now identify the target calculi of the refined translations, i.e. the
fragments of λ-calculus reached by them, and look at their associated notions
of reduction.

3.2 The CPS calculi λRCPS & λFCPS
From the refined Reynolds and Fischer translations we get the target frag-
ments of λ-calculus described in Fig. 4.

• M, N, . . . denote (CPS-)programs,

• V, W, . . . denote (CPS-)values,

• K, K′, . . . denote continuations.

M,N ::= K V | V W K
V, W ::= x | λx.λk.M

with k ∈ FV(M)
K ::= k | λx.M

M, N ::= K V | V K W
V, W ::= x | λk.λx.M

with k ∈ FV(λx.M)
K ::= k | λx.M

Reynolds: λRCPS Fischer: λFCPS

Figure 4: Target calculi

Note that values have no free occurrence of continuation variables while
programs and continuations have exactly one. Also note that x ranges over an
infinite set of variables, while for every term it is always possible to find a rep-
resentative (i.e. a syntactic term) that uses a paricular continuation variable
k. In fact we could have a constructor with arity 0 to represent this variable

1In some sense the construction _ :F_ is linear in its second argument.

8

and a constructor with arity 1 for λk._, but treating k as a variable allows
the use of the implicit substitution of k.

The fragments are stable under the reductions in Fig. 5 and are sufficient to
simulate βV and ηV through the CPS-translations, as we shall see in section 3.4.
We write λRCPSβ (resp. λFCPSβ) for system βV1, βV2 and λRCPSβη (resp. λFCPSβη)
for system βV1, βV2, ηV1, ηV2 in λRCPS (resp. λFCPS).

βV1 (λx.M) V −→ M{x = V }
βV2 (λx.λk.M) V K −→ M{x = V }{k = K}
ηV1 λx.λk.V x k −→ V if x 6∈ FV(V)
ηV2 λx.K x −→ K if x 6∈ FV(K)

Reynolds

βV1 (λx.M) V −→ M{x = V }
βV2 (λk.λx.M) K V −→ (λx.M{k = K}) V
ηV1 λk.λx.V k x −→ V if x 6∈ FV(V)
ηV2 λx.K x −→ K if x 6∈ FV(K)

Fischer

Figure 5: Reduction rules for λRCPS & λFCPS

Note the difference between the case of Reynolds and that of Fischer
in the rule βV2. Reynolds-βV2 must perform two βV-reduction steps, since
(λk.M{x = V }) K is not a program of the fragment. Fischer-βV2 performs
only one βV-reduction step, (λx.M{k = K}) V being a valid program. It could
obviously reduce further to M{k = K}{x = V } as for the case of Reynolds,
but leaving this second step as a βV1-reduction has nice properties: this split
of reduction into two atomic βV-steps makes the refined Fischer translation
(as defined here) a reflection.

A good account of the refined Reynolds translation as a reflection can
be found in [25], so here we study similar properties for the refined Fischer
translation, building on earlier work [24] that established results of equational
correspondence. Moreover, Fischer’s approach helps establish connections be-
tween CBV-λ-calculus and LJQ from section 4.

We now establish the confluence of λFCPS. The confluence of λFCPSβ is
straightforward, since every case of β-reduction in λFCPS is covered by either
βV1 or βV2, so it is a particular case of the confluence of β-reduction in λ-
calculus.

For λFCPSβη we use the confluence of β, η-reduction in λ-calculus, but un-
fortunately the language of λFCPS is not stable under β, η. Fig. 6 shows its
closure λ+

CPS under β, η. Such a closure is used for instance in [24].

M, N ::= K V
V, W ::= x | λk.K
K ::= k | λx.M | V K

Figure 6: Grammar of λ+
CPS

First, note that we no longer have β = βV. Second, this grammar is indeed
stable under β, η; all the cases are:

(λx.M) V −→β M{x = V }
(λk.K) K′ −→β K{k = K′}
λk.V k −→η V
λx.K x −→η K if x 6∈ FV(K)

We can then take β, η as the reductions of λ+
CPS, and derive from the

confluence of λ-calculus that β and η are confluent in λ+
CPS.

Note that λ+
CPS is the smallest language that includes that of λFCPS and that

is stable under β, η: Fig. 7 defines a mapping ⇑ from λ+
CPS onto λFCPS such that

9

⇑ M −→η M . Our convention for parentheses assumes that ⇑ applies to the
smallest expression on its right-hand side.

⇑ (k V) = k ⇑ V
⇑ ((λx.M) V) = (λx. ⇑ M) ⇑ V
⇑ (W K V) =⇑ W ⇑ K ⇑ V
⇑ x = x
⇑ λk.k = λk.λx.k x
⇑ λk.λx.M = λk.λx. ⇑ M
⇑ λk.V K = λk.λx. ⇑ V ⇑ K x
⇑ k = k
⇑ λx.M = λx. ⇑ M
⇑ (V K) = λx. ⇑ V ⇑ K x

Figure 7: Projection of λ+
CPS onto λFCPS

Remark 5 Note that ⇑ M −→η M , ⇑ V −→η V , ⇑ K −→η K and if M ,
V , K are in λFCPS then ⇑ M = M , ⇑ V = V , ⇑ K = K.

We can now prove the following:

Theorem 6 (⇑ is a Galois connection) The identity IdλFCPS
and the map-

ping ⇑ form a Galois connection from λFCPS, equipped with λFCPSβη, to λ+
CPS,

equipped with βV (and also with only λFCPSβ and β).

Proof: Given Remark 5, it suffices to check the simulations:

• For the simulation of η by λFCPSβη through ⇑, we check all cases:

⇑ λk.λx.k x = λk.λx.k x = ⇑ λk.k
⇑ λk.λx.(λy.M) x = λk.λx.(λy. ⇑ M) x −→ηV2 λk.λy. ⇑ M = ⇑ λk.λy.M
⇑ λk.λx.V K x = λk.λx. ⇑ V ⇑ K x = ⇑ λk.V K
⇑ λk.V k = λk.λx. ⇑ V k x −→ηV1 ⇑ V

⇑ λx.k x = λx.k x −→ηV2 k = ⇑ k
⇑ λx.(λy.M) x = λx.(λy. ⇑ M) x −→ηV2 λy. ⇑ M = ⇑ λy.M
⇑ λx.V K x = λx. ⇑ V ⇑ K x = ⇑ V K

For the simulation of β by λFCPSβη through ⇑, we must first check:

⇑ M{x =⇑ V } =⇑ M{x = V } ⇑ M{k =⇑ K} −→∗
βV1 ⇑ M{k = K}

⇑ W{x =⇑ V } =⇑ W{x = V } ⇑ W{k =⇑ K} −→∗
βV1 ⇑ W{k = K}

⇑ K′{x =⇑ V } =⇑ K′{x = V } ⇑ K′{k =⇑ K} −→∗
βV1 ⇑ K′{k = K}

The left-hand side equalities and the right-hand side equalities are re-
spectively proved by mutual induction on terms, with the following in-
teresting case:

⇑ (k V){k =⇑ K} = ⇑ K ⇑ V {k =⇑ K}
by i.h. −→∗

βV1 ⇑ K ⇑ V {k = K}
−→∗

βV1 ⇑ (K V {k = K})
= ⇑ (k V){k = K}

The penultimate step is justified by the fact that ⇑ K ⇑ V −→∗
βV1 ⇑

(K V) (it is an equality for K = k or K = λx.M and one βV1-reduction
step for K = W K′).
We now checks all cases for β-reduction. The last step for the simulation
of the β-reduction of a value is an equality if K′{k = K} = k′ and one
βV1-step otherwise.

10

⇑ ((λx.M) V) = (λx. ⇑ M) ⇑ V
−→βV1 ⇑ M{x =⇑ V }
= ⇑ M{x = V }

⇑ ((λk.k) K V) = (λk.λx.k x) ⇑ K ⇑ V
−→∗

βV2,βV1 ⇑ K ⇑ V
−→∗

βV1 ⇑ (K V)
⇑ ((λk.λx.M) K V) = (λk.λx. ⇑ M) ⇑ K ⇑ V

−→βV2 (λx. ⇑ M){k =⇑ K} ⇑ V
−→∗

βV1 ⇑ ((λx.M{k = K}) V)
⇑ ((λk.W K ′) K V) = (λk.λx. ⇑ W ⇑ K′ x) ⇑ K ⇑ V

−→∗
βV2,βV1 ⇑ W ⇑ K′{k =⇑ K} ⇑ V

−→∗
βV1 ⇑ (W (K′{k = K}) V)

⇑ λk′.(λk.K′) K = λk′.λx. ⇑ (λk.K ′) ⇑ K x
−→∗

βV2,βV1 λk′.λx. ⇑ (K′{k = K}) x as above
−→∗

βV1 ⇑ λk′.K′{k = K}
⇑ ((λk.K ′) K) = λx. ⇑ (λk.K′) ⇑ K x

−→∗
βV2,βV1 λx. ⇑ (K′{k = K}) x as above

−→ηV2 ⇑ K′{k = K}

• The fact that β, η simulate βV1, βV2, ηV1, ηV2 through IdλFCPS
is trivial,

since the latter are particular cases of the former.

2

Corollary 7 (Confluence of λFCPS) λFCPSβ and λFCPSβη are confluent.

Proof: The first system is confluent as it is the entire β-reduction relation
in λFCPS, the second system is confluent by Theorem 6 and Theorem 1. 2

3.3 Moggi’s λC-calculus
Both the refined Reynolds translation and the refined Fischer translations
suggest to extend λV with a construct let _ = _ in _ with the following
semantics:

(let x = M in N) :RK = M :Rλx.(N :RK)
(let x = M in N) :FK = M :Fλx.(N :FK)

and with the following rules:

M N −→ let x = M in (x N) if M is not a value
V N −→ let y = N in (V y) if N is not a value

Indeed, for both refined translations, a redex of these rules and its reduced
form are mapped to the same term.

This extension is related to Moggi’s monadic λ-calculus [19], which sug-
gests additional rules, thus forming the CBV-calculus λC [18]2 defined as fol-
lows:

Definition 5 (λC) The terms of λC are given by the following grammar:

V, W, . . . ::= x | λx.M
M, N, P, . . . ::= V | M N | let x = M in N

The reduction system of λC is given in Fig. 8.
Again, η-reduction can be added:

ηlet let x = M in x −→ M
ηV λx.(V x) −→ V if x 6∈ FV (V)

2A detailed presentation of these ideas can also be found in [25].

11

βV (λx.M) V −→ M{x = V }
letV let x = V in M −→ M{x = V }
let1 M N −→ let x = M in (x N)

(M not a value)
let2 V N −→ let y = N in (V y)

(N not a value)
assoc let y = (let x = M in N) in P −→ let x = M in (let y = N in P)

Figure 8: Rules of λC

And again, in presence of βV , rule ηV has the same effect as the following
one:

η′V λx.(y x) −→ y if x 6= y

For various purposes described in the introduction, here we also consider a
slight variation of λC, in which reduction is refined by replacing the reduction
rule βV with the following:

B (λx.M) N −→ let x = N in M

This allows the split of the rule βV into two steps: B followed by letV. Note
that in B we do not require N to be a value. Such a restriction will only apply
when reducing let x = N in M by rule letV.

System λCβ is B, letV, let1, let2, assoc and λCβη is λCβ , ηlet, ηV.
In [24] it is shown that, in effect, Fischer’s translation forms an equational

correspondence between (Moggi’s original) λC and λFCPS. In [25], Sabry and
Wadler establish not only that Reynolds’ translation form an equational cor-
respondence between (Moggi’s original) λC and λRCPS, but the refined Reynolds
translation actually forms a reflection.

3.4 The refined Fischer translation is a reflection
In [25], Sabry and Wadler also establish that for a particular definition of
administrative redex (namely, every β-redex with a binder on the continua-
tion variable k is administrative), the refined Fischer translation cannot be a
reflection, and from λC to λFCPS it cannot even be a Galois connection.

Here we show that our (different) choice of administrative redex for the
Fischer translation (given in Fig. 3) makes it a reflection of λFCPS in our version
of λC, where the rule βV is decomposed into two steps as described above. This
will also bring λC closer to LJQ.

Lemma 8

1. (M :FK){k = K′} = M :FK{k = K′}
2. (M :FK){x = V F} = M{x = V } :FK{x = V F} and WF{x = V F} =

(W{x = V })F .
3. If K −→λFCPSβ

K′ then M :FK −→λFCPSβ
M :FK′

(and similarly for −→λFCPSβη
).

Proof: Straightforward induction on M for the first and third points and
on M and W for the second. 2

12

Theorem 9 (Simulation of λC in λFCPS) The reduction relation −→λCβ

(resp. −→λCβη) is simulated by −→λFCPSβ
(resp. −→λFCPSβη

) through the
refined Fischer translation.

Proof: By induction on the size of the term being reduced: We check all
the root reduction cases, relying on Lemma 8:

((λx.M) V) :FK = (λk.λx.(M :Fk)) K V F

(Lemma 8.1) −→βV2 (λx.(M :FK)) V F

= (let x = V in M) :FK
((λx.M) N) :FK = N :Fλy.(λk.λx.(M :Fk)) K y
(N not a value) (Lemma 8) −→∗

βV2,βV1 N :Fλx.(M :FK)
= (let x = N in M) :FK

(let x = V in M) :FK = (λx.M :FK) V F

−→βV1 (M :FK){x = V F}
(Lemma 8.2) = (M{x = V }) :FK

(M N) :FK = M :Fλx.(x N :FK)
(M not a value) = (let x = M in x N) :FK
(V N) :FK = N :Fλx.(V x :FK)
(N not a value) = (let x = N in V x) :FK
(let y = (let x = M in N) in P) :FK = M :Fλx.(N :Fλy.(P :FK))

= (let x = M in (let y = N in P)) :FK

(let x = M in x) :FK = M :Fλx.K x
(Lemma 8.3) −→ηV2 M :FK

(λx.V x)F = λk.λx.V F k x
−→ηV1 V F

The contextual closure is straightforward as well: only the side-condition
“N is not a value” can become false by reduction of N . In that case if N −→λCβ

V we have
N M :FK = N :Fλx.(x M :FK)

by i.h. −→∗
λFCPSβ

V :Fλx.(x M :FK)

= (λx.(x M :FK)) V F

−→βV1 V M :FK

as well as:
W N :FK = N :Fλx.(W x :FK)

by i.h. −→∗
λFCPSβ

V :Fλx.(W x :FK)

= (λx.(W x :FK)) V F

−→βV1 W V :FK

and also if M is not a value:

M N :FK = M :Fλx.(x N :FK)
by i.h. −→∗

λFCPSβ
M :Fλx.(x V :FK)

= M V :FK

and similarly with −→λFCPSβη
instead of −→λFCPSβ

. 2

Definition 6 (The Fischer reverse translation)
We define a translation from λFCPS to λC:

(k V)Fback = V Fback

((λx.M) V)Fback = let x = V Fback in MFback

(W k V)Fback = WFback V Fback

(W (λx.M) V)Fback = let x = WFback V Fback in MFback

xFback = x

(λk.λx.M)Fback = λx.MFback

13

Lemma 10
1. (W{x = V })Fback = WFback{x = V Fback} and

(M{x = V })Fback = MFback{x = V Fback}.
2. let x = MFback in NFback −→∗

λCβ
(M{k = λx.N})Fback (if k ∈ FV(M)).

Proof: The first point is straightforward by induction on W , M . The second
is proved by induction on M :

let x = (k V)Fback in NFback

= let x = V Fback in NFback

= ((k V){k = λx.N})Fback

let x = ((λy.P) V)Fback in NFback

= let x = (let y = V Fback in PFback) in NFback

−→assoc let y = V Fback in let x = PFback in NFback

by i.h. −→∗
λCβ

let y = V Fback in (P{k = λx.N})Fback

= ((λy.P{k = λx.N}) V)Fback

let x = (W k V)Fback in NFback

= let x = WFback V Fback in NFback

= (W (λx.N) V)Fback

= ((W k V){k = λx.N})Fback

let x = (W (λy.P) V)Fback in NFback

= let x = (let y = WFback V Fback in PFback) in NFback

−→assoc let y = WFback V Fback in let x = PFback in NFback

by i.h. −→∗
λCβ

let y = WFback V Fback in (PFback{k = λx.N})
= (W (λy.PFback{k = λx.N}) V)

Fback

= ((W (λy.P) V){k = λx.N})Fback

2

Theorem 11 (Simulation of λFCPS in λC) The reduction relation −→λFCPSβ

(resp. −→λFCPSβη
) is simulated by −→λCβ (resp. −→λCβη) through Fback.

Proof: By induction on the size of the term being reduced: We check all
root reduction cases, relying on Lemma 10:

((λx.M) V)Fback = let x = V Fback in MFback

−→letV MFback{x = V Fback}
(Lemma 10) = (M{x = V })Fback

((λk.λx.M) k′ V)
Fback

= (λx.MFback) V Fback

−→B let x = V Fback in MFback

= ((λx.M{k = k′}) V)
Fback

((λk.λx.M) (λy.N) V)Fback

= let y = (λx.MFback) V Fback in NFback

−→B let y = (let x = V Fback in MFback) in NFback

= let y = ((λx.M) V)Fback in NFback

(Lemma 10) −→λCβ (((λx.M) V){k = λy.NFback})Fback

(λk.λx.V k x)Fback = λx.V Fback x

−→ηV V Fback

((λx.K x) V)Fback −→λCβ (K V)Fback by simulation of βV1

(W (λx.k x) V)Fback= let x = WFback V Fback in x

−→ηlet WFback V Fback

= (W k V)Fback

(W (λx.(λy.M) x) V)Fback

= let x = WFback V Fback in let y = x in MFback

−→letV let y = WFback V Fback in MFback

= (W (λy.M) V)Fback

14

2

Lemma 12 V −→∗
λCβ

V FFback and M −→∗
λCβ

(M :Fk)Fback.

Proof: By induction on the size of V , M . The cases for V (V = x and
V = λx.M) are straightforward, as is the case of M = V . For
M = (let x = N ′ in N) we have:

M = (let x = N ′ in N)

−→λCβ (let x = (N ′ :Fk)
Fback in (N :Fk)Fback) by i.h.

−→λCβ ((N ′ :Fk){k = λx.N :Fk})Fback (Lemma 10)
= (N ′ :Fλx.(N :Fk))

Fback (Lemma 8)
= ((let x = N ′ in N) :Fk)

Fback

The cases for M = M1 M2 are as follows:

M1 M2 −→λCβ let y = M1 in y M2

(M1 not a value) −→∗
λCβ

let y = (M1 :Fk)Fback in (y M2 :Fk)Fback by i.h.
−→∗

λCβ
(M1 :Fλy.(y M2 :Fk))Fback (Lemma 10)

= ((M1 M2) :Fk)Fback

V M2 −→λCβ let y = M2 in V y

(M2 not a value) −→∗
λCβ

let y = (M2 :Fk)Fback in (V y :Fk)Fback by i.h.
−→∗

λCβ
(M2 :Fλy.(V y :Fk))Fback (Lemma 10)

= ((V M2) :Fk)Fback

V W −→∗
λCβ

V FFback
WFFback by i.h.

= (V F k WF)
Fback

= (V W :Fk)Fback

2

Lemma 13 V = V FbackF and M = MFback :Fk.

Proof: Straightforward induction on V , M . 2

Now we can prove the following:

Theorem 14 (The refined Fischer translation is a reflection)
The refined Fischer translation and Fback form a reflection in λC of λFCPS.

Proof: This theorem is just the conjunction of Theorem 9, Theorem 11,
Lemma 12 and Lemma 13. 2

Corollary 15 (Confluence of λC) λCβ and λCβη are confluent.

Proof: By Theorem 14 and Theorem 1. 2

4 A Term Calculus for LJQ: λQ

LJQ was described in [4]; here we show it only as the typing system of a term
calculus λQ (called λLJQ in [4]). We then establish a connection between λQ

and the (modified) call-by-value λ-calculus λC of Moggi discussed above.
The terms of this calculus are given by the following grammar:

V, V ′ ::= x | λx.M | C1(V, x.V ′)
M, N, P ::= [V] | x(V, y.N) | C2(V, x.N) | C3(M, x.N)

The terms Ci(−,−.−) are explicit substitutions, typed by Cut rules, and are
to be distinguished from the meta-notation M{x = N} standing for “M with

15

Ax
Γ, x : A → x : A

Γ → V : A
Der

Γ ⇒ [V] : A

Γ, x : A ⇒ M : B
R⊃′

Γ → λx.M : A⊃B

Γ, x :A⊃B → V :A Γ, x :A⊃B, y :B ⇒ N :C
L⊃′

Γ, x : A⊃B ⇒ x(V, y.N) : C

Γ → V :A Γ, x :A → V ′ :B
C1

Γ → C1(V, x.V ′) : B

Γ → V : A Γ, x : A ⇒ N : B
C2

Γ ⇒ C2(V, x.N) : B

Γ ⇒ M : A Γ, x : A ⇒ N : B
C3

Γ ⇒ C3(M, x.N) : B

Figure 9: LJQ with terms

x replaced by N ”. Binding occurrences of variables are those immediately fol-
lowed by “.”. Contexts Γ are finite mappings from variables to formulae/types,
represented in the usual way.

Note that the grammar has two syntactic categories: values and terms.
They provide proof-terms for focussed or unfocussed sequents of LJQ, respec-
tively. This can be seen in the typing rules shown in Fig. 9, which connect
the above grammar to the focused sequent calculus LJQ of [4]. A naive ex-
planation of the different meanings of the two types of arrow was given in the
introduction.

This typing system is as given in [4]. Compared to other presentations,
such as in [10], it omits non-implicational connectives, uses proof terms, uses
two kinds of sequent, has the formula A⊃B in the second premiss of L⊃′ and
uses context-sharing cut rules.

C3([λx.M], y.y(V, z.P)) −→ C3(C3([V], x.M), z.P) if y /∈ FV(V) ∪ FV(P)
C3([x], y.N) −→ N{y = x}
C3(M, y.[y]) −→ M
C3(z(V, y.P), x.N) −→ z(V, y.C3(P, x.N))
C3(C3([V]′, y.y(V, z.P)), x.N) −→ C3([V ′], y.y(V, z.C3(P, x.N)))

if y /∈ FV(V) ∪ FV(P)
C3(C3(M, y.P), x.N) −→ C3(M, y.C3(P, x.N))

if the redex is not one of the previous rule
C3([λy.M], x.N) −→ C2(λy.M, x.N)

if N is not an x-covalue (see below)
C1(V, x.x) −→ V
C1(V, x.y) −→ y
C1(V, x.λy.M) −→ λy.C2(V, x.M)
C2(V, x.[V ′]) −→ [C1(V, x.V ′)]
C2(V, x.x(V ′, z.P)) −→ C3([V], x.x(C1(V, x.V ′), z.C2(V, x.P)))
C2(V, x.x′(V ′, z.P)) −→ x′(C1(V, x.V ′), z.C2(V, x.P))
C2(V, x.(C3(M, y.P))) −→ C3(C2(V, x.M), y.C2(V, x.P))

N is an x-covalue iff N = [x] or N is of the form x(V, z.P) with x 6∈ FV(V)∪FV(P)

Figure 10: LJQ-reductions

The reduction rules for the calculus are shown in Fig. 10. This reduction
system has the following properties:

16

1. It reduces any term that contains an explicit substitution;

2. It satisfies the Subject Reduction property;

3. It is confluent;

4. It is Strongly Normalising;

5. A fortiori, it is Weakly Normalising.

As a corollary of 1, 2 and 5, we have the admissibility of Cut. It is inter-
esting to see in the proof of Subject Reduction how these reductions transform
the proof derivations and to compare them to those used in inductive proofs
of Cut-admissibility such as that of [4].

The reduction system here is more subtle, because we are interested not
only in its weak normalisation but also in its strong normalisation and its con-
nection with call-by-value λ-calculus. Indeed, the first reduction rule, breaking
a cut on an implication into cuts on its direct sub-formulae, is done with C3,
although the use of C2 would seem simpler. The reason is that we use C3 to
encode each β-redex of λ-calculus and C2 to simulate the evaluation of its sub-
stitutions. Just as in λ-calculus, where substitutions can be pushed through
β-redexes, so may C2 be pushed through C3, by use of the penultimate rule
of Fig. 10 (which is not needed if the only concern is cut-admissibility).

In the rest of this paper we investigate the relation between λQ and CBV
λ-calculus by means of simulation techniques introduced in Sect. 2. In par-
ticular we investigate the semantics of λQ using continuation-passing style
translations, from which we infer the confluence of λQ. All the results about
λQ presented hereafter can be considered independently from typing.

We leave the normalisation results about typed λQ for another paper, since
the proofs require a slightly different framework.

5 The CPS-semantics of λQ

5.1 From λQ to λCPS

We can adapt Fischer’s translation to λQ so that reductions in λQ can be sim-
ulated. The (refined) Fischer CPS-translation of the terms of λQ is presented
in Fig. 11.

[V] : K = K V †

(x(V, y.M)) : K = x (λy.(M : K)) V †

C3(W,x.x(V, y.M)) : K = W † (λy.(M : K)) V † if x 6∈ FV(V) ∪ FV(M)
(C3(N,x.M)) : K = N : λx.(M : K) otherwise
(C2(V, x.M)) : K = (M : K){x = V †}
x† = x

(λx.M)† = λk.λx.(M : k)
(C1(V, x.W))† = W †{x = V †}

Figure 11: The (refined) Fischer translation from λQ

Now we prove the simulation of λQ by λFCPS, and for that we need the
following remark and lemma.

Remark 16 FV(M : K) ⊆ FV(M) ∪ FV(K) and FV(V †) ⊆ FV(V).

Lemma 17

1. (M : K){k = K′} = M : K{k = K′}.
2. M : λx.(P : K) −→∗

βV1 C3(M, x.P) : K if x 6∈ FV(K).

17

3. (V {x = y})† = V †{x = y}, and
M{x = y} : K = (M : K){x = y}, provided x 6∈ FV(K).

4. If x 6∈ FV(K), then M : λx.K x −→βV1 M : K.

5. (M : K){x = V †} = (M : K{x = V †}){x = V †}
Proof:

1. By induction on M .

2. The interesting case is the following:

W : λx.(x(V, y.M) : K) = (λx.x (λy.(M : K)) V †) W †

−→βV1 W † (λy.(M : K)) V †

= (C3(W, x.x(V, y.M))) : K

when x 6∈ FV(V) ∪ FV(M).

3. By structural induction on V, M .

4. By induction on M . The translation propagates the continuation λx.K x
into the sub-terms of M until it reaches a value, for which
[V] : λx.K x = (λx.K x) V † −→βV1 K V = [V] : K.

5. By induction on M . The term M : K only depends on K in that K is a
sub-term of M : K, affected by the substitution.

2

Theorem 18 (Simulation of λQ)

1. If M −→λQ M ′ then for all K we have M : K −→∗
λFCPSβ

M ′ : K.

2. If W −→λQ W ′ then we have W † −→∗
λFCPSβ

W ′†.

Proof: By simultaneous induction on the derivation of the reduction step,
using Lemma 17. 2

5.2 A restriction on λFCPS: λf
CPS

The (refined) Fischer translation of λQ is not surjective on the terms of λCPS,
indeed we only need the terms of Fig. 12, which we call λf

CPS.

M,N ::= K V | V (λx.M) W
V, W ::= x | λk.λx.M k ∈ FV(M)
K ::= k | λx.M

Figure 12: λf
CPS

Note that λf
CPS is stable under βV1, βV2, but not under ηV1 and ηV2.

However we can equip λf
CPS with the reduction system of Fig. 13. Note that

βV1 is the same as for λFCPS and βV3 is merely rule βV2 with the assumption
that the redex is in λf

CPS, while rule ηV3 combines ηV2 and ηV1 in one step.
We write λf

CPSβ for system βV1, βV2 and λf
CPSβη for system βV1, βV2, ηV1, ηV2

in λf
CPS.

(λx.M) V −→βV1 M{x = V }
(λk.λx.M) (λy.N) V −→βV3 (λx.M{k = λy.N}) V

λk.λx.V (λz.k z) x −→ηV3 V if x 6∈ FV(V)

Figure 13: Reduction rules of λf
CPS

We can now project λFCPS onto λf
CPS, as shown in Fig. 14.

18

↑ (K V) =↑ K ↑ V
↑ (W k V) =↑ W (λx.k x) ↑ V
↑ (W (λx.M) V) =↑ W ↑ (λx. ↑ M) ↑ V
↑ x = x
↑ λk.λx.M = λk.λx. ↑ M
↑ k = k
↑ λx.M = λx. ↑ M

Figure 14: Projection of λFCPS onto λf
CPS

Remark 19 Note that, in λFCPS, ↑ M −→ηV2 M , ↑ V −→ηV2 V , ↑ K −→ηV2

K and if M , V , K are in λf
CPS then ↑ M = M , ↑ V = V , ↑ K = K.

Theorem 20 (Galois connection from λf
CPS to λFCPS) The identity Id

λf
CPS

and the mapping ↑ form a Galois connection from λf
CPS, equipped with λf

CPSβη,
to λFCPS, equipped with λFCPSβη, (and also with only λf

CPSβ and λFCPSβ).

Proof: Given Remark 19, it suffices to check the simulations.

• For the simulation of λFCPSβη by λf
CPSβη through ↑, we use a straight-

forward induction on the derivation of the reduction step, using the
following fact:

↑ M{x =↑ V } =↑ M{x = V } ↑ M{k =↑ K} −→∗
βV1 ↑ M{k = K}

↑ W{x =↑ V } =↑ W{x = V } ↑ W{k =↑ K} −→∗
βV1 ↑ W{k = K}

↑ K′{x =↑ V } =↑ K′{x = V } ↑ K′{k =↑ K} −→∗
βV1 ↑ K′{k = K}

↑ M{k =↑ λx.k x} −→∗
βV1 ↑ M

↑ W{k =↑ λx.k x} −→∗
βV1 ↑ W

↑ K′{k =↑ λx.k x} −→∗
βV1 ↑ K′

• The fact that βV1, βV2, ηV1, ηV2 simulate βV1, βV3, ηV3 through Id
λf
CPS

is straightforward.

2

Corollary 21 (Confluence of λf
CPS) λf

CPSβ and λf
CPSβη are confluent.

Proof: By Theorem 20 and Theorem 1. 2

5.3 From λf
CPS to λQ

Definition 7 (The Fischer reverse translation)
We now encode λf

CPS into λQ.

(k V)back = [V back]

((λx.M) V)back = C3(V
back, x.Mback)

(y (λx.M) V)back = y(V back, x.Mback)

((λk.λz.N) (λx.M) V)back = C3(λz.Nback, y.y(V back, x.Mback))

xback = x

(λk.λx.M)back = λx.Mback

Lemma 22

1. C2(V
back, x.W back) −→∗

λQ
(W{x = V })back and

C2(V
back, x.Mback) −→∗

λQ
(M{x = V })back.

2. C3(M
back, x.Nback) −→∗

λQ
(M{k = λx.N})back (if k ∈ FV(M)).

Proof: By induction on W , M . 2

19

Theorem 23 (Simulation of λf
CPS in λQ)

The reduction relation −→
λ

f
CPSβ

is simulated by −→λQ through (_)back.

Proof: By induction on the derivation of the reduction step, using Lemma 22.
2

Lemma 24 (Composition of the encodings)

1. V −→∗
λCβ

V †back and M −→∗
λCβ

(M : k)back.

2. V = V back† and M = Mback : k.

Proof: By structural induction, using Lemma 22 for the first point. 2

Now we can prove the following:

Theorem 25 (The refined Fischer translation is a reflection)
The refined Fischer translation and (_)back form a reflection in λQ of λf

CPS
(equipped with λf

CPSβ).

Proof: This theorem is just the conjunction of Theorem 18, Theorem 23,
and Lemma 24. 2

Corollary 26 (Confluence of λQ-reductions) λQ is confluent.

Proof: By Theorem 25 and Theorem 1. 2

6 Connection with Call-by-Value λ-calculus
We have established three connections:

• a reflection in λQ of λf
CPS,

• a Galois connection from λf
CPS to λFCPS,

• a reflection in λC of λFCPS (in section 3.4).

By composing the first two connections, we have a Galois connection from λQ

to λFCPS, and together with the last one, we have a a pre-Galois connection
from λQ to λC. The compositions of these connections also form an equational
correspondence between λQ to λC. These facts imply the following theorem:

Theorem 27 (Connections between λQ and λC)
Let us write V \ for (↑ (V F))

back and M] for (↑ (M :Fk))back.
Let us write V [for (V †)

Fback and M [for (M : k)Fback.

1. For any terms M and N of λC, if M −→λCβ N then M] −→∗
λQ

N].

2. For any terms M and N of λQ, if M −→λQ N then M [−→∗
λCβ

N [.

3. For any term M of λC, M ←→∗
λCβ

M][.

4. For any term M of λQ, M −→∗
λQ

M []
.

Proof: By composition of the reflections and Galois connection. 2

20

Corollary 28 (Equational correspondence between λQ and λC)

1. For any terms M and N of λQ, M ←→∗
λQ

N if and only if M [←→∗
λCβ

N [.

2. For any terms M and N of λC, M ←→∗
λCβ

N if and only if M] ←→∗
λQ

N].

We can give the composition of encodings explicitly. We have for instance
the following theorem:

Theorem 29 (From λQ to λC) The following equations hold, for the encod-
ing from λQ to λC:

x\ = x

(λx.M)\ = λx.M]

V] = [V \]

(let y = x V in P)] = x(V \, y.P])

(let y = (λx.M) V in P)] = C3(λx.M], z.z(V \, y.P]))

(let z = V N in P)] = (let y = N in (let z = V y in P))]

if N is not a value
(let z = M N in P)] = (let x = M in (let z = x N in P))]

if M is not a value
(let z = (let x = M in N) in P)] = (let x = M in (let z = N in P))]

(let y = V in P)] = C3(V
], y.P])

(M N)] = (let y = M N in y)]

Proof: By structural induction, unfolding the definition of the encodings on
both sides of each equation. 2

In fact, we could take this set of equalities as the definition of the direct
encoding of λC into λQ. For that it suffices to check that there is a mea-
sure that makes this set of equations a well-founded definition. We now give
this measure, given by an encoding of the terms of λC into first-order terms
equipped with a Lexicographic Path Ordering (LPO) [15].

Definition 8 (An LPO for λC) We encode λC into the first-order syntax
given by the following term constructors and their precedence relation:

ap(_,_) Â let(_,_) Â ii(_,_) Â i(_) Â ?

The precedence generates a terminating LPO >> as defined in [15]. The en-
coding is given in Fig. 15. We can now consider the (terminating) relation
induced by >> through the reverse relation of the encoding as a measure for
λC.

x = ?

λx.M = i(M)
let x = M1 M2 in N = let(ii(M1, M2), N)
let x = M in N = let(M, N) otherwise
M N = ap(M, N)

Figure 15: Encoding of λC into the first-order syntax

Remark 30 let(M, N)>>let x = M in N or let(M, N) = let x = M in N .

In the other direction, we have:

21

Theorem 31 (From λC to λQ) The following properties hold, for the en-
coding from λC to λQ:

x[= x

(λx.M)[= λx.M [

C1(V, x.V ′)[
= V ′[{x = V [}

[V][= V [

(x(V, y.M))[= let y = x V [in M [

C3(N, x.M)[∗
λCβ

←− let x = N [in M [

C2(V, x.M)[= M [{x = V [}

Proof: By structural induction, unfolding the definition of the encodings on
each side and using Lemma 10. 2

Remark 32 Note from Theorem 31 and Theorem 29 that if M is a cut-free
term of λQ, M []

= M . Also note that we do not have an equality in the
penultimate line but only a reduction. This prevents the use of this theorem
as a definition for the encoding from λQ to λC, although refining this case (with
different sub-cases) could lead to a situation like that of Theorem 29 (with a
measure to find for the set of equations to form a well-formed definition).

The connection between λQ and λC suggests to restricts λC by always
requiring (a series of) application(s) to be explicitly given with a contina-
tion, i.e. to refuse a term of λC such as λx.M1 M2 M3 but only accept
λx.let y = M1 M2 M3 in y. The refined Fisher translation of λC, on that
particular fragment, directly has λf

CPS as its target calculus, and the equa-
tional correspondence between λC d λQ would then also become a pre-Galois
connection from the former to the latter. The fragment is not stable under
rule ηlet, and corresponds to the terms of λC in some notion of ηlet-long normal
form.

This restriction can be formalised with the syntax of a calculus given in [6]:

M, N, P ::= x | λx.M | let x = E in M
E ::= M | E M

In fact, this calculus is introduced in [6] as a counterpart, in natural deduction,
of a proof-term calculus for an unrestricted sequent calculus (i.e. not specific to
the restriction of either LJT or LJQ). The calculus of [6] in natural deduction
should thus allow the identification of CBN and CBV reductions as particular
sub-reduction systems. Notions corresponding to the restrictions of LJT and
LJQ should then capture both the traditional λ-calculus and (the ηlet-long
normal forms of) λC, respectively.

7 Conclusion
In this paper we investigated the call-by-value λ-calculus, and defined
continuation-passing-style translations (and their refinements) in the style of
Reynolds and Fischer. We have identified the target calculi and proved con-
fluence of that of Fischer. We then presented Moggi’s λC-calculus and proved
that a decomposition of its main rule into two steps allowed the refined Fischer
translation to form a reflection. Such a decomposition brings λC closer to the
sequent calculus LJQ.

Indeed, we established new results about LJQ, in connection with Moggi’s
λC-calculus. We have introduced a proof-term syntax for LJQ, together with
reduction rules expressing cut-elimination. Such a calculus, called λQ, can be
considered independently from typing and still have a call-by-value semantics
given by an adaptation of the Fischer CPS-translation. It relates to λC by
two encodings that form both an equational correspondence and a pre-Galois

22

connection. In particular, the reductions in one calculus are simulated by
those of the other.

As mentioned in section 4, we leave the proof of strong normalisation of
λQ for another paper, since the result pertains to a typed framework and thus
involves some more specific machinery (the typing system was given here to
help the intuition about proof-terms).

Further work includes refining the encodings and/or cut-reduction system
of λQ, so that the two calculi can be related by a Galois connection or a
reflection.

Another promising direction for further work is given by the calculus
from [6] in natural deduction that encompass both the traditional (CBN) λ-
calculus and (a minor variant of) the CBV λC-calculus, with a very strong
connection with sequent calculus as a whole (rather than either LJT or LJQ).

References
[1] Jean-Marc Andreoli. Logic programming with focusing proofs in linear

logic. J. Logic Comput., 2(3):297–347, 1992.

[2] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Lkq and
lkt: sequent calculi for second order logic based upon dual linear de-
compositions of classical implication. In Jean-Yves Girard, Yves Lafont,
and Laurent Regnier, editors, Proc. of the Work. on Advances in Lin-
ear Logic, volume 222 of London Math. Soc. Lecture Note Ser., pages
211–224. Cambridge University Press, 1995.

[3] R Dyckhoff and C Urban. Strong normalization of Herbelin’s explicit
substitution calculus with substitution propagation. J. Logic Comput.,
13(5):689–706, 2003.

[4] Roy Dyckhoff and Stéphane Lengrand. LJQ, a strongly focused calcu-
lus for intuitionistic logic. In A. Beckmann, U. Berger, B. Loewe, and
J. V. Tucker, editors, Proc. of the 2nd Conf. on Computability in Europe
(CiE’06), volume 3988 of LNCS, pages 173–185. Springer-Verlag, July
2006.

[5] Roy Dyckhoff and Luis Pinto. Cut-elimination and a permutation-free
sequent calculus for intuitionistic logic. Studia Logica, 60(1):107–118,
1998.

[6] José Espírito Santo. Unity in structural proof theory and structural
extensions of the λ-calculus. Manuscript, July 2005.

[7] Michael J. Fischer. Lambda calculus schemata. In Proc. of the ACM
Conf. on Proving Assertions about Programs, pages 104–109. SIGPLAN
Notices, Vol. 7, No 1 and SIGACT News, No 14, January 1972.

[8] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic Com-
putation, 6(3/4):259–288, December 1993.

[9] Thérèse Hardin. Résultats de confluence pour les règles fortes de la logique
combinatoire catégorique et liens avec les lambda-calculs. Thèse de doc-
torat, Université de Paris VII, 1987.

[10] H. Herbelin. Séquents qu’on calcule. Thèse de doctorat, Université Paris
VII, 1995.

[11] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style
sequent calculus structure. In Leszek Pacholski and Jerzy Tiuryn, editors,
Computer Science Logic, 8th Int. Work. , CSL ’94, volume 933 of LNCS,
pages 61–75. Springer-Verlag, September 1994.

[12] J. Hudelmaier. Bounds for Cut Elimination in Intuitionistic Logic. PhD
thesis, Universität Tübingen, 1989.

23

[13] Jörg Hudelmaier. An o(n log n)-space decision procedure for intuitionistic
propositional logic. J. Logic Comput., 3(1):63–75, 1993.

[14] J-.B. Joinet. Étude de la Normalisation du Calcul des Séquents Classique
à Travers la Logique Linéaire. PhD thesis, University of Paris VII, 1993.

[15] Samuel Kamin and Jean-Jacques Lévy. Attempts for generalizing the
recursive path orderings. Handwritten paper, University of Illinois, 1980.

[16] Austin Melton, David A. Schmidt, and George Strecker. Galois connec-
tions and computer science applications. In David Pitt, Samson Abram-
sky, Axel Poigné, and David Rydeheard, editors, Proc. of a Tutorial and
Work. on Category Theory and Computer Programming, volume 240 of
LNCS, pages 299–312, New York, NY, USA, November 1986. Springer-
Verlag.

[17] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Ann. Pure Appl.
Logic, 51:125–157, 1991.

[18] Eugenio Moggi. Computational lambda-calculus and monads. Report
ECS-LFCS-88-66, University of Edinburgh, Edinburgh, Scotland, Octo-
ber 1988.

[19] Eugenio Moggi. Notions of computation and monads. Inform. and Com-
put., 93:55–92, 1991.

[20] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. The-
oret. Comput. Sci., 1:125–159, 1975.

[21] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proc. of the ACM annual Conf. , pages 717–740, 1972.

[22] John C. Reynolds. The discoveries of continuations. LISP and Symbolic
Computation, 6(3–4):233–247, 1993.

[23] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. Higher-Order and Symbolic Computation, 11(4):363–
397, 1998.

[24] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation-passing style. Lisp Symb. Comput., 6(3-4):289–360, 1993.

[25] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans.
Program. Lang. Syst., 19(6):916–941, 1997.

[26] Nikolaj Nikolaevic Vorob’ev. A new algorithm for derivability in the
constructive propositional calculus. Amer. Math. Soc. Transl., 94(2):37–
71, 1970.

24

