
Resource operators for λ-calculus

Delia Kesner1 and Stéphane Lengrand1,2

1 PPS, CNRS and Université Paris 7, France
2 School of Computer Science, University of St Andrews, United Kingdom.

Abstract We present a simple term calculus with an explicit control of erasure and
duplication of substitutions, enjoying a sound and complete correspondence with the
intuitionistic fragment of Linear Logic’s proof-nets. We show the operational behaviour
of the calculus and some of its fundamental properties such as confluence, preservation of
strong normalisation, strong normalisation of simply-typed terms, step by step simulation
of β-reduction and full composition.

1 Introduction

The Curry-Howard paradigm, according to which the terms/types/reduction of a
term calculus respectively correspond to the proofs/propositions/normalisation of
a logical system, has already shown its numerous merits in the computer science
community. Such a correspondence gives a double reading of proofs as programs
and programs as proofs, so that insight into one aspect helps the understanding
of the other.

A typical example of the Curry-Howard correspondence is obtained by tak-
ing the simply typed λ-calculus [Chu41] as term calculus and Natural Deduction
for Intuitionistic Logic as logical system. Both formalisms can be decomposed in
the following sense: on the one hand the evaluation rule of λ-calculus, known as
β-reduction, can be decomposed into more elementary operations by implement-
ing (higher-order) substitution as the interaction between (and the propagation
of) erasure, duplication and linear substitution operators. On the other hand
Linear Logic [Gir87] decomposes the intuitionistic logical connectives into more
elementary connectives, such as the linear implication and the exponentials, thus
providing a more refined and controlled use of resources (formulae) than that of
Intuitionistic Logic.

We show that there is a deep connection between these two elementary de-
compositions. In order to relate them, we bridge the conceptual gap between
the term syntax formalism and that of proof-nets [Gir87] that we use to denote
proofs in Linear Logic. Visually convenient to manipulate, proof-nets retain from
the structure of a proof the part that is logically relevant, thus giving geometric
insight into proof transformations. However, they are quite cumbersome in proof
formalisations, owing to a certain lack of proof techniques and corresponding
proof assistants. On the other hand, term notation is more convenient to for-
malise and carry out detailed proofs of properties, and also when one wants to
implement them via some proof-assistant [Coq,HOL].

Several works [DCK97,DCKP00,Abr93,vO01,FM99] have already explored
the relation between these two approaches, but none of them has pushed the
formalism far enough to obtain a computational counterpart to proof-nets that
is sound and complete with respect to the underlying logical model.

In this paper, we present a calculus called λlxr with erasure, duplication and
linear substitution operators, which can be seen as a λ-calculus with explicit
substitutions. Its simply-typed version can be considered, via the Curry-Howard
paradigm, as a functional computational counterpart to the intuitionistic frag-
ment of proof-nets. The major features of this calculus are

• Simple syntax and intuitive operational semantics via reduction rules and
equations;

• Sound and complete correspondence with the proof-nets model, where the
equations and reductions of terms have a natural correspondence with those
of proof-nets;

• Full composition of explicit substitutions;
• Nice properties such as confluence, preservation of strong normalisation, strong

normalisation for Curry-style simply-typed terms, and step by step simulation
of β-reduction.

Explicit control of resources and Proof-nets

Much work on explicit substitutions has been done in the last 15 years, for
example [ACCL91,BBLRD96,BR95,KR95]. In particular, an unexpected result
was given by Melliès [Mel95] who has shown that there are β-strongly normal-
isable terms in λ-calculus that are not strongly normalisable when evaluated by
the reduction rules of an explicit version of the λ-calculus, such as for exam-
ple λσ [ACCL91] or λσ⇑ [HL89]. In other words, λσ and λσ⇑ do not enjoy the
property known as Preservation of Strong Normalisation (PSN) [BBLRD96].

This phenomenon shows a flaw in the design of these calculi with explicit
substitutions in that they are supposed to implement their underlying calculus
without losing its good properties such as strong normalisation of simply-typed
terms. However, there are many ways to avoid Melliès’ counter-example in order
to recover the PSN property. One of them is to simply forbid the substitution op-
erators to cross lambda-abstractions [LM99,For02]; another consists of avoiding
composition of substitutions [BBLRD96]; another one imposes a simple strategy
on the calculus with explicit substitutions to mimic exactly the calculus without
explicit substitutions [GL98]. The first solution leads to weak lambda calculi, not
able to express strong beta-equality, which is used for example in implementations
of proof-assistants [Coq,HOL]. The second solution is drastic as composition of
substitutions is needed in implementations of HO unification [DHK95] or func-
tional abstract machines [HMP96]. The last one exploits very little of the notion
of explicit substitutions because they can be neither composed nor even delayed.

2

In order to cope with this problem David and Guillaume [DG01] defined a
calculus with labels, called λws, which allows controlled composition of explicit
substitutions without losing PSN. These labels can be also seen as special an-
notations induced by a logical weakening rule. But the λws-calculus has a com-
plicated syntax and its named version [DCKP00] is even less readable. On the
positive side we should mention that λws-calculus has very nice properties as it is
confluent (or Church-Rosser) and enjoys PSN. Also, it can be shown [DCKP03]
that there is a simple translation preserving reduction from simply-typed λws

into the proof-nets of Linear Logic. This translation gives at the same time a
proof of strong normalisation for simply-typed λws-terms. Moreover, the trans-
lation reveals a natural semantics for composition of explicit substitutions, and
also suggests that explicit erasure and duplication operators can be added to the
calculus without losing termination. These are the main ideas constituting the
starting point of the calculus called λlxr that we present in this paper.

The operators of λlxr have thus a nice logical interpretation in the typed case:
the linear substitution operator is cut , the duplication operator is contraction,
the erasure operator is weakening. From the point of view of implementation,
this can be read as the fact that substitution, duplication and erasure can be
controlled.

Instead of translating a term syntax into proof-nets, we extract a term calculus
from proof-nets, thus defining a simple and natural syntax involving not only
reduction rules but also equations. Every term equation of λlxr can be seen as
a computational counterpart to an equality between proof-nets and, vice versa,
every proof-net equality can be naturally read back as an equality between λlxr-
terms.

It is then not surprising that we obtain a full correspondence between typed
λlxr and the Intuitionistic fragment of Linear Logic’s proof-nets in the sense
that the interpretation is not only sound but also complete (in contrast to the
translation from λws to proof-nets, which is only sound).

Weakening and Garbage Collection

The erasure/weakening operator has an interesting computational behaviour in
calculi such as λws and λlxr that we illustrate via an example. Let us denote by
W () the weakening operator, so that a λlxr-term whose variable x is used to
weaken the term t is written Wx(t), that is, we explicitly annotate that the vari-
able x does not appear free in the term t. Then, when evaluating the application
of a term λx.Wx(t) to another term u, a linear substitution operator 〈x\u〉 is cre-
ated and the computation will continue with Wx(t)〈x\u〉. Then, the weakening
operator will be used to prevent the substitution 〈x\u〉 from going into the term
t, thus making more efficient the propagation of a substitution with respect to
the original term.

3

Another interesting feature of our system is that weakening operators are al-
ways pulled out to the top-level during λlxr-reduction. Moreover, free variables are
never lost during computation because they get marked as weakening operators.
Indeed, if t β-reduces to t′, then its λlxr-interpretation reduces to that of t′ where
weakening operators are added at the top level to keep track of the variables
that are lost during the β-reduction step. Thus for example, when simulating
the β-reduction steps (λx.λy.x) u z−→∗

β u, the lost variable z will appear in the
result of the computation by means of a weakening operator at the top level, i.e.
as Wz(u) (where u is the interpretation of u in λlxr), thus preparing the situation
for an efficient garbage collection on z.

The weakening operator can thus be seen as a tool for handling garbage collec-
tion. For instance, it is worth noticing that the labels of the λws-calculus cannot
be pulled out to the top-level as in λlxr. Also, free variables may be lost during
λws-computation. Thus, garbage collection within λws does not offer the advan-
tages existing in λlxr.

Composition

From a rewriting point of view this calculus can be viewed as the first term calcu-
lus that is confluent (or Church-Rosser) and strongly normalising on typed terms,
simulates β-reduction step by step, and has PSN as well as full composition. Thus,
λlxr gives a human-readable formalism between the abstract λ-calculus and the
graph presentations given for example by sharing graphs [Gue99]. By simulation
of β-reduction step by step we mean that every β-reduction step in λ-calculus
induces a non-empty λlxr-reduction sequence. By full composition we mean that
we can compute the application of an explicit substitution to a term, no matter
which substitution remains non-evaluated within that term. In other words, full
composition means that the explicit substitution operator of the calculus imple-
ments exactly a notion of meta-substitution defined on the same calculus, that
is, on terms having weakening, contraction and linear substitution operators. In
particular, in a term t〈y\u〉〈x\v〉, the external substitution is not blocked by the
internal one and can be further evaluated without ever requiring any preliminary
evaluation of t〈y\u〉. In other words, the application of the substitution 〈x\v〉 to
the term t can be evaluated independently from that of 〈y\u〉. A more technical
explanation of the concept of full composition appears in Section 2.

Related work

Besides the λws-calculus [DG01] and its encoding in linear logic [DCKP00] already
mentioned, other computational meanings of logic via the use of operators have
already been proposed.

Herbelin [Her94] proposes a term calculus with applicative terms and explicit
substitutions which corresponds to the Gentzen-style sequent calculus LJT. A

4

similar approach to intuitionistic logic is also studied in [VW01]. In a very differ-
ent spirit, [CK99] relates the pattern matching operator in functional program-
ming to the cut elimination process in sequent calculus for intuitionistic logic.

Abramsky [Abr93] gives computational interpretations for intuitionistic and
classical Linear Logic which are based on sequents rather than proof-nets. But
he gives no equalities between terms reflecting the irrelevance of some syntac-
tic details appearing in sequent poofs. Many other term calculi based on se-
quents rather than proof-nets have been proposed for Linear Logic, as for exam-
ple [GdR00,BBdH93,RR97,Wad93,OH06].

An axiomatisation of sharing graphs by means of higher-order term syntax is
proposed by Hasegawa [Has99] who investigates categorical models of the term
calculi thus obtained. The proof-nets that we use in this paper go beyond his
general treatment in that they have a particular semantics with extra equations
and reduction rules. Our point in this paper is to relate them to a resource-aware
λ-calculus, while the case studies in [Has99] are those of Ariola and Klop’s cyclic
lambda calculi and Milner’s action calculi.

A related approach was independently developed by V. van Oostrom (avail-
able in course notes written in Dutch [vO01]), where operators for contraction
and weakening are added to the λ-calculus to define a fine control of duplication
and erasing. We show here how the same operators allow a fine control of com-
position when using linear substitution operators, although the proofs of some
fundamental properties, such as PSN and confluence, become harder. An overview
on optimal sharing in functional programming languages, and its connection with
linear logic can be found in [AG98].

Another approach is taken in [FM99], where a calculus with contraction, weak-
ening and linear substitution operators is defined in order to study the notion
of closed reduction in λ-calculus. Although reduction rules take enormous advan-
tage of the fact that some subterms are closed (i.e. without free variables), which
greatly simplifies the definition of reduction, no deep relation with proof-nets is
exploited and no equalities appear at the level of terms.

Our completeness proof is inspired by [Lau03], where polarised proof-nets are
proposed as a sound and complete model of the λµ calculus [Par92]. Finally, a
revised version of the calculus λws with names is developed in [Pol04].

Structure of the paper

The rest of the paper is organised as follows. Section 2 presents the syntax and
operational semantics of the λlxr-calculus. Section 3 defines the model of the
calculus and establishes soundness and completeness. Section 4 shows the relation
between λ-calculus and λlxr-calculus by giving mutual translations from one to
the other. In Section 5 we establish the main operational properties of λlxr. Finally
we conclude and give some ideas for further work.

5

2 The calculus λlxr

2.1 The linear syntax of λlxr

We present in this section the syntax of the untyped λlxr-calculus as well as the
notions of congruence and reduction between terms.

The syntax for raw terms, given by the following grammar, is extremely sim-
ple 3 and can be just viewed as an extension of that of λx [BR95]. We assume
that we have a set of variables, denoted x, y, z, . . ., that is in bijection with the
natural numbers and is thus equipped with a total order.

t ::= x | λx.t | t t | t〈x\t〉 | Wx(t) | Cy|z
x (t)

Terms are thus trees, so we shall only use parentheses to remove any ambiguity
when writing them as strings.

The term λx.t is called an abstraction, t u an application, and t〈x\u〉 a closure.
The term constructors W (), C | () and 〈 \ 〉 are respectively called weakening,
contraction and linear substitution operators.

Definition 1 (Term Size). We define the size of a term t, written |t|, as follows:

|x| = 1, |λx.t| = |Wx(t)| = |Cy|z
x (t)| = |t|+ 1, and |tv| = |t〈x\v〉| = |t|+ |v|+ 1.

Definition 2. We write FV(t) to denote the set of free variables of a term t
defined by induction on |t| as follows:

FV(x) := {x} FV(t〈x\u〉) := (FV(t) \ {x}) ∪ FV(u)
FV(λx.t) := FV(t) \ {x} FV(t u) := FV(t) ∪ FV(u)

FV(Wx(t)) := FV(t) ∪ {x} FV(Cy|z
x (t)) := (FV(t) \ {y, z}) ∪ {x}

The terms λx.t and t〈x\u〉 thus bind x in t. The term Cy|z
x (t) binds y and z in

t. From this notion of binding we obtain the correspoding notion of α-equivalence.
Note that the syntax could equivalently be given as a HRS [Nip91], with

a type V for variables and a type T for (raw)-terms, and six typed constants
corresponding to the six term constructors above:

var: V → T sub: (V → T) → (T → T)
abs: (V → T) → T app: T → (T → T)
weak: V → (T → T) cont: V → ((V → (V → T)) → T)

For instance the λlxr-term Cy|z
x (t1 t2 t3)〈x\λx′.x′〉 would be represented as the

HRS-term sub(x.cont(x, y.z.app(app(t1, t2), t3)), abs(x′.var(x′))).
The consequent notions of free and bound variables and α-equivalence coincide

with ours.
We say that a term is linear if it satisfies the following: in every subterm,

every variable has at most one free occurrence, and every binder binds a variable

3 In contrast to λws with names [DCKP00,DCKP03], where terms affected by substitutions have a
complex format t[x, u, Γ, ∆]

6

that does have a free occurrence (and hence only one). This condition can be
formally expressed as follows.

Definition 3 (Linear terms). A term t is said to be linear if t linear can be
derived from the following rules:

x linear

t, v linear x ∈ FV(t) FV(t) \ {x} ∩ FV(v) = ∅
t〈x\v〉 linear

t linear x ∈ FV(t)

λx.t linear

t, v linear FV(t) ∩ FV(v) = ∅
t v linear

t linear x 6∈ FV(t)

Wx(t) linear

t linear x, y ∈ FV(t) x 6= y z 6∈ FV(t) \ {x, y}
Cx|y

z (t) linear

For instance, the terms Wx(x) and λx.x x are not linear. However, the latter

can be represented in the λlxr-calculus by the linear term λx.Cy|z
x (y z). More

generally, every λ-term can be represented by a linear λlxr-term (cf. Section 4).
Note that being linear is a property of α-equivalent classes, i.e. given two α-
equivalent terms, either both are linear or both are not.

Notice 1 Using α-equivalence we can now consider Barendregt’s convention that
no variable is free and bound in a term, without loss of generality.

2.2 Congruence and meta-notations

As mentioned in the introduction, β-reduction can be decomposed into cut-
elimination steps in proof-nets, when the latter are considered modulo some
equations [DCG99]. Similarly, some equations handling the operators of λlxr equip
our calculus with a fine-grained notion of rewriting modulo, which allows the de-
composition of β-reduction as well, but also in the untyped case (cf. Section 4).
Presented in Figure 1, these equations are also, in the typed case, at the center
of the correspondence with the proof-nets modulo (cf. Section 3).

The reader may notice that the equation Ac needs the side condition (x 6=
y, v), while Pcs needs (x 6= y); but they can always be satisfied by Barendregt’s
convention.

The equations Ac and Cc express the internal associativity and commutativity
of contraction, when seen as a binary operation merging two “wires” labelled
with its two bound variables into one labelled by its free variable. The equations
Pc, Pw, Ps express the permutability of independent contractions, weakenings,
and substitutions, respectively. The point of the equation Pcs, expressing the
permutability between independent contraction and substitution, is discussed in
the next sub-section.

7

Cx|v
w (Cz|y

x (t)) ≡Ac
Cz|x

w (Cy|v
x (t))

Cy|z
x (t) ≡Cc

Cz|y
x (t)

Cy′|z′
x′ (Cy|z

x (t)) ≡Pc
Cy|z

x (Cy′|z′
x′ (t)) if x 6= y′, z′ & x′ 6= y, z

Wx(Wy(t)) ≡Pw
Wy(Wx(t))

t〈x\u〉〈y\v〉 ≡Ps
t〈y\v〉〈x\u〉 if y /∈ FV(u) & x /∈ FV(v)

Cy|z
w (t)〈x\u〉 ≡Pcs

Cy|z
w (t〈x\u〉) if x 6= w & y, z 6∈ FV(u)

Figure 1. Congruence equations for λlxr-terms

We define the relation≡ as the smallest congruence on terms (i.e. a symmetric,
reflexive, transitive, context-closed relation [Ter03]) that contains the equations
of Figure 1. It can easily be proved that ≡ preserves free variables and linearity.
Since we shall deal with rewriting modulo the congruence ≡, it is worth noticing
that ≡ is decidable. More than that, each congruence class contains finitely many
terms. Indeed, two congruent terms have clearly the same size, so it is easy to
see by induction on this size that the congruence rules generate finitely many
possibilities to pick up a representative of the class.

We use Φ, Υ , Σ, Ψ , Ξ, Ω, . . . to denote finite lists of variables (with no
repetition). The notation Φ, Ψ denote the concatenation of Φ and Ψ , and we
always suppose in that case that no variable appears in both Φ and Ψ . The
following renaming operation will be also used when necessary to ensure linearity.

Definition 4 (Renaming Operation). If Φ = x1, . . . , xn and Ψ = y1, . . . , yn

are two lists, we define the renaming operation of Φ by Ψ on a term t, writ-
ten RΦ

Ψ (t), as the capture-avoiding simultaneous substitution of yi for every free
occurrence of xi in t where i ∈ 1 . . . n.

Thus for instance Rx,y
x′,y′(Cy|z

w (x (y z))) = Cy|z
w (x′ (y z)) (y is not replaced since the

occurence is bound). We remark that for any permutation π of 1 . . . n, we have

RΦ
Ψ (t) = Rπ(Φ)

π(Ψ)(t).

We use the notation Wx1,...,xn(t) for Wx1(. . .Wxn(t)) and Cy1,...,yn|z1,...,zn
x1,...,xn (t) for

Cy1|z1
x1 (. . . Cyn|zn

xn (t)), where x1, . . . , xn, y1, . . . , yn, z1, . . . , zn are all disctinct vari-

ables. In the case of the empty list, we define W∅(t) = t and C∅|∅∅ (t) = t.
As in the case of the renaming operator, for any permutation π of 1 . . . n, we

have WΨ (t) ≡ Wπ(Ψ)(t) and CΨ |Υ
Φ (t) ≡ Cπ(Ψ)|π(Υ)

π(Φ) (t). Moreover, we have

CΨ |Υ
Φ (t) ≡ CΥ |Ψ

Φ (t) and CΨ |Υ
Φ (CΣ|Ψ

Ψ (t)) ≡ CΣ|Ψ
Φ (CΨ |Υ

Ψ (t)).

Notice 2 Sometimes we use a set of variables, e.g. S, in places where lists are
expected, as in WS(u), CΦ|Ψ

S (t), RS
Φ(t) or Φ := S. The intended list is obtained

by ordering S according to the total order that we have on the set of variables.
These notations introduce no ambiguity and are much more legible.

8

2.3 Operational semantics

Reduction rules and Reduction relations The reduction relation of the
calculus is the relation generated by the reduction rules in Figure 2 modulo the
congruence relation in Figure 1, as described below in detail.

B (λx.t) u −→ t〈x\u〉

System x

Abs (λy.t)〈x\u〉 −→ λy.t〈x\u〉
App1 (t v)〈x\u〉 −→ t〈x\u〉 v x 6∈ FV(v)
App2 (t v)〈x\u〉 −→ t v〈x\u〉 x 6∈ FV(t)
Var x〈x\u〉 −→ u
Weak1 Wx(t)〈x\u〉 −→ WFV(u)(t)
Weak2 Wy(t)〈x\u〉 −→ Wy(t〈x\u〉) x 6= y

Cont Cy|z
x (t)〈x\u〉 −→ CΨ |Υ

FV(u)(t〈y\RFV(u)
Ψ (u)〉〈z\RFV(u)

Υ (u)〉)
where Ψ, Υ are fresh

Comp t〈y\v〉〈x\u〉 −→ t〈y\v〈x\u〉〉 x 6∈ FV(t) \ {y}

System r

WAbs λx.Wy(t) −→ Wy(λx.t) x 6= y
WApp1 Wy(u) v −→ Wy(uv)
WApp2 u Wy(v) −→ Wy(uv)
WSubs t〈x\Wy(u)〉 −→ Wy(t〈x\u〉)

Merge Cy|z
w (Wy(t)) −→ Rz

w(t)

Cross Cy|z
w (Wx(t)) −→ Wx(Cy|z

w (t)) x 6= y, x 6= z

CAbs Cy|z
w (λx.t) −→ λx.Cy|z

w (t)

CApp1 Cy|z
w (t u) −→ Cy|z

w (t) u y, z 6∈ FV(u)

CApp2 Cy|z
w (t u) −→ t Cy|z

w (u) y, z 6∈ FV(t)

CSubs Cy|z
w (t〈x\u〉) −→ t〈x\Cy|z

w (u)〉 y, z 6∈ FV(t) \ {x}

Figure 2. Reduction rules for λlxr-terms

We will use xr to denote the set of rules x∪r and Bxr to denote the set {B}∪xr.

Now, let i be a set of rules (like B, x, xr, or Bxr). The basic reduction relation
−→ib is the contextual closure of the relation formed by instances of the rules in
the set i. Moreover, since we have a congruence relation on terms, we denote by
−→i the reduction relation modulo this congruence [Ter03], that is, t −→i t′ if
and only if there exist two terms u and u′ such that t ≡ u −→ib u′ ≡ t′. Hence,
the most general reduction relation of our calculus is −→Bxr (i.e. generated by
the rules of Bxr), often written −→

λlxr (i.e. pertaining to the calculus λlxr).

9

For any reduction relation −→j , we denote by −→n
j the nth composition of

−→j , we denote by −→+
j the transitive closure (union of all −→n

j for n ≥ 1),
we denote by −→∗

j the reflexive and transitive closure (union of all −→n
j for

n ≥ 0) and by ←→∗
j the reflexive, transitive and symmetric closure.

General properties In order to avoid variable capture, the rules Abs and CAbs
need the side-conditions (y 6∈ FV(u)) and (x 6= y, z) respectively, which are
satisfied if Barendregt’s convention is respected, so they can always be satisfied
by α-equivalence, so their nature is different from that of the other side-conditions
appearing on the right-hand side of Figure 2. The rules should be understood in
the prospect of applying them to linear terms. Indeed, linearity is preserved by
the reduction relation, which satisfies the following properties:

Lemma 1 (Preservation Properties). Let t be a linear term and t −→
λlxr t′.

1. The set of free variables is preserved, i.e. FV(t) = FV(t′).
2. Linearity is preserved, i.e. t′ is linear.

Proof. By using the fact that the congruence preserves free variables and linearity,
the two properties have to be satisfied by the basic reduction relation. This can
be checked by a straightforward simultaneous induction on the reduction step
and case analysis.

For instance in rule Cont, it is the introduction of the lists of fresh variables
Ψ and Υ that ensures the linearity of terms.

In contrast to λ-calculus where the set of free variables may decrease dur-
ing reduction, preservation of free variables (Lemma 1-1) holds in λlxr thanks
to the weakening operator. This coincides with the property called “interface
preserving” [Laf90] in interaction nets. It is also worth noticing that the set of
bound variables of a term may either increase (cf. rule Cont) or decrease (cf. rules
Var, Merge, Weak1, . . .).

The fact that linearity is preserved by congruence and reduction (Lemma 1-2)
is a minimal requirement of the system.

Notice 3 From now on we only consider linear terms.

Role of the rules The B-rule is a key rule of λlxr in that it reduces what
is considered in the λ-calculus as a β-redex, and creates a linear substitution
operator, as in λx [BR95] but respecting the linearity constraints.

System x propagates and eliminates linear substitution operators, and dupli-
cation and erasure are controlled by the presence of contraction and weakening
(rules Cont and Weak1 respectively). Contraction and weakening can thus be seen
as resource operators also called respectively duplication and erasure operators.
Note that this only makes sense if the linearity constraints are satisfied; in this
case a construct such as y〈x\t〉 is forbidden.

10

Lemma 2. t is a x-normal form if and only if t has no closure.

Proof. We first remark that if t has no closure, then clearly no x-rule can be
applied. Conversely, for each linear substitution operator applied to a non-closure
term there is a reduction rule.

An important property is that reducing terms by system xr implements an
appropriate notion of meta-substitution on all λlxr-terms,whereas in λx the notion
of meta-substitution thus implemented applies only to closure-free ones. Thus,
for example, x〈x′\y λz.z〉〈y\λz.z〉 does not reduces to x〈x′\(λz.z) λz.z〉 in λx
but it does in λlxr thanks to our the notion of composition. We thus say that
λlxr enjoys the full composition property, as explicit substitution operators of the
calculus implement exactly a notion of meta-substitution defined on the same
calculus, that is, on terms having weakening, contraction and linear substitution
operators.

Note that when linearity constraints are not considered, four cases may occur
when composing two explicit substitutions as in t〈y\v〉〈x\u〉: either (1) x ∈
FV(t) ∩ FV(v), or (2) x ∈ FV(t) \ FV(v), or (3) x ∈ FV(v) \ FV(t), or (4)
x /∈ FV(t) ∪ FV(v).

In calculi like λws [DG01] only cases (1) and (3) are considered by the re-
duction rules, thus only yielding partial composition. Because of the linearity
constraints of λlxr, cases (1) and (4) have to be dealt with by the introduction
of a contraction for case (1) and a weakening for case (4). Those operators will
interact with external substitutions by the use of rules (Weak1) and (Cont), re-
spectively. Case (3) is treated by rule (Comp), and case (2) by the congruence rule
Ps. More precisely, the congruence rule can be applied to swap the substitutions,
thus allowing the evaluation of the external substitution 〈x\u〉 without forcing
the internal one to be evaluated first. Indeed, all cases (1)-(4) are treated in λlxr,
thus yielding a full notion of composition of substitutions.

The linearity constraints are essential for composition: if they are not taken
into account, the composition rule Comp causes failure of the PSN and strong
normalisation properties [BG99]. Hence, it is because of the presence of weaken-
ings and contractions, combined with the linearity constraints, that the notion of
composition in λlxr is full. Thus, λlxr turns out to be the first term calculus with
linear substitution operators having full composition and preserving β-strong
normalisation (Corollary 3).

Respectively viewed as duplication and erasure operators, contraction and
weakening play a very special role with respect to optimisation issues. In a
term, the further down a contraction Cy|z

x () lies, the later a linear substitu-
tion operator on x will be duplicated in its propagation process by system x.
Symmetrically, the further up a weakening Wx() lies, the sooner a substitution
on x, called a void substitution, will be erased. For instance, if y, z ∈ FV(t2),

we have Cy|z
x (t1 t2 t3)〈x\λx′.x′〉−→5

x t1 t2〈y\λx′.x′〉〈z\λx′.x′〉 t3 but

11

(t1 Cy|z
x (t2) t3)〈x\λx′.x′〉−→3

x t1 t2〈y\λx′.x′〉〈z\λx′.x′〉 t3, so t1 Cy|z
x (t2) t3 is in a

sense more optimised than Cy|z
x (t1 t2 t3). Symmetrically, we have

(t1 Wx(t2) t3)〈x\λx′.x′〉−→3
x t1 t2 t3 but Wx(t1 t2 t3)〈x\λx′.x′〉−→1

x t1 t2 t3, so
Wx(t1 t2 t3) is in a sense more optimised than t1 Wx(t2) t3.

System r optimises terms by pushing down contractions and pulling up weak-
enings, so that they reach canonical places in λlxr-terms (also using Weak2 and
the left to right direction of the equation Pcs). Such a place for a contraction

Cy|z
x () is just above an application or a closure, with y and z in distinct sides

(i.e. Cy|z
x (t u) or Cy|z

x (t〈x′\u〉) with y ∈ FV(t) and z ∈ FV(u) or vice versa). The
canonical place for a weakening Wx() is either at the top-level of a term or just
below a binder on x (i.e. λx.Wx(t) or Wx(t)〈x\u〉).

For closure-free terms, these constructs are just Cy|z
x (t u) (with y ∈ FV(t)

and z ∈ FV(u) or vice versa) and either λx.Wx(t) or Wx(t) at the top-level.
In that case, the rules CSubs and WSubs and the right to left direction of the
equation Pcs are not needed to place contractions and weakenings in canonical
places. Removing these rules and orienting Pcs from left to right as a rule of
system x would yield a system for which most of the results of this paper would
hold (but not optimising as much terms with closures); in particular, x would
still eliminate linear substitution operators and implement the same notion of
implicit substitution and β-reduction could still be simulated (cf. Theorem 7).

2.4 Termination of xr

It is clear that rule B will be used to simulate β-reduction. The rules of system
xr handle the operators that we have introduced, and a minimal requirement for
those rules is to induce a terminating system. We shall also see in Section 5 that
xr is confluent.

The use of resource operators allows us to derive information about the
number of times that a substitution can be duplicated along a sequence of xr-
reductions. Indeed, this will happen when a substitution meets a contraction that
concerns the substituted variable. This idea inspires the notion of multiplicity of
the substituted variable:

Definition 5 (Multiplicity). Given a free variable x in a (linear) term t, the
multiplicity of x in t, written Mx(t), is defined by induction on terms as follows.
Supposing that x 6= y, x 6= z, x 6= w,

Mx(x) := 1 Mx(t〈y\u〉) := Mx(t) if x ∈ FV (t) \ {y}
Mx(λy.t) := Mx(t) Mx(t〈y\u〉) := My(t) · (Mx(u) + 1) if x ∈ FV (u)
Mx(Wx(t)) := 1 Mx((t u)) := Mx(t) if x ∈ FV (t)
Mx(Wy(t)) := Mx(t) Mx((t u)) := Mx(u) if x ∈ FV (u)

Mx(Cz|w
x (t)) := Mz(t) +Mw(t) + 1

Mx(Cz|w
y (t)) := Mx(t)

12

Roughly, this notion corresponds to the number of occurrences of a variable
in a λlxr-term when translated to its corresponding λ-term free from linearity
constraints and resource operators (see Section 4 for details), but we add a twist
to this concept (+1 in the second case for closure and the first case for contraction
in the definition above), so that the following notion of term complexity, which
weighs the complexity of a sub-term in a substitution with the multiplicity of the
substituted variable, is decreased by reductions (Lemma 3).

Definition 6 (Term complexity). We define the notion of term complexity by
induction on terms as follows:

S(x) := 1 S(t〈x\u〉) := S(t) +Mx(t) · S(u)
S(λx.t) := S(t) S(t u) := S(t) + S(u)

S(Wx(t)) := S(t) S(Cy|z
x (t)) := S(t)

Remark 1. The notions of multiplicity and term complexity are invariant under
conversion by ≡.

We have now to show that the term complexity does not increase during xr-
reduction. In particular, the term complexity strictly decreases for some rules and
it remains equal for others. This relies on the fact that the multiplicities cannot
increase.

Lemma 3 (Decrease of multiplicities and term complexities).

– If t −→xr u, then for all w ∈ FV(t), Mw(t) ≥Mw(u).
– If t −→xr u, then S(t) ≥ S(u). Moreover,

if t −→Var,Weak1,Cont,Comp u, then S(t) > S(u).

Proof. Both points are proved by case analysis and induction on t. The first one
uses the fact that that Mx(t) ≥ 1 (provided x ∈ FV (t)), the second one relies
on the first. See the appendix for details.

Note that this does not hold for rule B. For instance,
t = (λx.Cx1|x2

x (x1 x2)) λy.Cy1|y2
y (y1 y2) −→B Cx1|x2

x (x1 x2)〈x\λy.Cy1|y2
y (y1 y2)〉 = u

but S(t) = 4 and S(u) = 8.
We now use another measure to show the termination of the subsystem of xr

containing only the rules that might not decrease the term complexity.

Definition 7. We define an interpretation I() from λlxr-terms to natural num-
bers as follows:

I(x) := 2 I(t〈x\u〉) := I(t) · (I(u) + 1)
I(λx.t) := 2 · I(t) + 2 I(t u) := 2 · (I(t) + I(u)) + 2

I(Wx(t)) := I(t) + 1 I(Cy|z
x (t)) := 2 · I(t)

Remark 2. The interpretation I() is invariant under conversion by ≡.

13

See the appendix for details.

Lemma 4 (Decrease of I()). If t −→xr u and the reduction is neither Var,
Weak1, Cont nor Comp, then I(t) > I(u).

Proof. By case analysis and induction on t, using the fact that for any term t,
I(t) ≥ 2. See the appendix for details.

We can conclude this section with the following property

Theorem 1. The system xr is terminating.

Proof. Every rule of xr decreases the pair of integers (S(t), I(t)) w.r.t the lexico-
graphical order.

2.5 Typing Rules

In this section we present the simply-typed λlxr-calculus. The typing system en-
sures strong normalisation (as in the λ-calculus) and also linearity. Types are
defined by the following grammar, where σ ranges over a countable set of atomic
types.

A ::= σ | A → A

An environment Γ is a finite mapping from variables to types, so that it
can be seen as a finite set of pairs x: A. We use the standard notion of domain
of an environment Γ , written d(Γ). We write Γ, ∆ to denote the disjoint and
consistent union of the environments Γ and ∆. A judgement is an object of the
form Γ ` t : A, where Γ is an environment, t is a λlxr-term, and A is a type.

The typing rules of the simply-typed λlxr-calculus are shown in Figure 3.
Derivations of typed terms, a.k.a. proofs, are the trees built (as usual, see [TS00])
from these rules.

Remark 3. Note that a judgement Γ ` t: A can be the root of at most one
derivation (up to renaming, in sub-derivations, of the variables bound in t), which
can be reconstructed using the structure of the term t (hence the notion of proof-
term).

Remark that Γ ` t : A implies that d(Γ) = FV(t). Renaming is sound with
respect to typing, as shown by the following result of admissibility, in the standard
sense [TS00].

Lemma 5. The following rules are admissible in the typing system of λlxr (we
use dashed lines to emphasise their admissibility):

Γ, ∆ ` t: A
−−−−−−−−−−−−
Rd(Γ)

Φ (Γ), ∆ ` Rd(Γ)
Φ (t): A

14

x : A ` x : A
(Axiom)

Γ, x : B ` t : A ∆ ` M : B

Γ, ∆ ` t〈x\M〉 : A
(Subs)

Γ ` t : A → B ∆ ` v : A

Γ, ∆ ` (t v) : B
(App)

Γ, x : A ` t : B

Γ ` λx.t : A → B
(Lambda)

Γ, x : A, y : A ` M : B

Γ, z : A ` Cx|y
z (M) : B

(Cont)
Γ ` t : A

Γ, x : B ` Wx(t) : A
(Weak)

Figure 3. Typing Rules for λlxr-terms

where RΨ
Φ({x1: A1, . . . , xn: An}) := {RΨ

Φ(x1): A1, . . . ,RΨ
Φ(xn): An}.

The following rules are derivable in the typing system of λlxr (we use double
lines to emphasise their derivability.):

∆ ` t: A
===============
Γ, ∆ ` Wd(Γ)(t): A

Rd(Γ)
Φ (Γ),Rd(Γ)

Ψ (Γ), ∆ ` t: A
=======================

Γ, ∆ ` CΦ|Ψ
d(Γ)(t): A

Proof. The admissibility of the first rule is proved by a routine induction on |t|.
For the next two rules an induction on the cardinal of d(Γ) suffices.

As expected, the following holds:

Theorem 2 (Subject Reduction).

• If Γ ` s : A and s ≡ s′, then Γ ` s′ : A.

• If Γ ` s : A and s −→
λlxr s′, then Γ ` s′ : A.

Proof. The proof of the first point is straightforward, based on checking that
it holds for all equations defining ≡. Using the first point leaves only the basic
reduction to be checked in the second point. This is also straightforward and
proved by induction on the reduction step and by case analysis. Using remark 3
we recompose from the hypothesis Γ ` s : A the last steps of its derivation and
rearrange the sub-derivations to conclude Γ ` s′ : A as follows:

– (B): We have s = (λx.t) u and s′ = t〈x\u〉.
Γ, x : B ` t : A

Γ ` λx.t : B → A ∆ ` u : B

Γ, ∆ ` (λx.t) u : A

Γ, x : B ` t : A ∆ ` u : B

Γ, ∆ ` t〈x\u〉 : A

15

– (Abs): We have s = (λy.t)〈x\u〉, s′ = λy.t〈x\u〉 and A = B → C.

Γ, x : D, y : B ` t : C

Γ, x : D ` λy.t : B → C ∆ ` u : D

Γ, ∆ ` (λy.t)〈x\u〉 : B → C

Γ, x : D, y : B ` t : C ∆ ` u : D

Γ, y : B, ∆ ` t〈x\u〉 : C

Γ, ∆ ` λy.t〈x\u〉 : B → C

– (App1): We have s = (t v)〈x\u〉 and s′ = t〈x\u〉 v.

Γ, x : B ` t : C → A ∆ ` v : C

Γ, ∆, x : B ` t v : A Π ` u : B

Γ, ∆, Π ` (t v)〈x\u〉 : A

Γ, x : B ` t : C → A Π ` u : B

Γ, Π ` t〈x\u〉 : C → A ∆ ` v : C

Γ, Π, ∆ ` t〈x\u〉 v : A

– (App2): Similar to the previous case.
– (Var): We have s = x〈x\u〉 and s′ = u.

x : A ` x : A Γ ` u : A

Γ ` x〈x\u〉 : A

Γ ` u : A

– (Weak1): We have s = Wx(t)〈x\u〉 and s′ = WFV(u)(t).

Γ ` t : A

Γ, x : B ` Wx(t) : A ∆ ` u : B

Γ, ∆ ` Wx(t)〈x\u〉 : A

Γ ` t : A
================
Γ, ∆ ` WFV(u)(t) : A

since d(∆) = FV(u).
– (Weak2): We have s = Wy(t)〈x\u〉 and s′ = Wy(t〈x\u〉) with x 6= y.

Γ, x : B ` t : A

Γ, y : C, x : B ` Wy(t) : A ∆ ` u : B

Γ, y : C, ∆ ` Wy(t)〈x\u〉 : A

Γ, x : B ` t : A ∆ ` u : B

Γ, ∆ ` t〈x\u〉 : A

Γ, y : C, ∆ ` Wy(t〈x\u〉) : A

– (Cont): s = Cy|z
x (t)〈x\v〉 and s′ = CΦ|Σ

FV(v)(t〈y\RFV(v)
Φ (v)〉〈z\RFV(v)

Σ (v)〉).
Γ, y : B, z : B ` t : A

Γ, x : B ` Cy|z
x (t) : A ∆ ` v : B

Γ, ∆ ` Cy|z
x (t)〈x\v〉 : A

Γ, y : B, z : B ` t : A

∆ ` v : B

−−−−−−−−−−−−−
Rd(∆)

Φ (∆) ` RFV(v)
Φ (v) : B

Γ, z : B,Rd(∆)
Φ (∆) ` t〈y\RFV(v)

Φ (v)〉 : A

∆ ` v : B

−−−−−−−−−−−−−
Rd(∆)

Σ (∆) ` RFV(v)
Σ (v) : B

Γ,Rd(∆)
Φ (∆),Rd(∆)

Σ (∆) ` t〈y\RFV(v)
Φ (v)〉〈z\RFV(v)

Σ (v)〉 : A

==

Γ, ∆ ` CΦ|Σ
FV(v)

(t〈y\RFV(v)
Φ (v)〉〈z\RFV(v)

Σ (v)〉) : A

since d(∆) = FV(v).

16

– (Comp): s = t〈y\u〉〈x\v〉 and s′ = t〈y\u〈x\v〉〉.
Γ, y : C ` t : A ∆, x : B ` u : C

Γ, ∆, x : B ` t〈y\u〉 : A Π ` v : B

Γ, ∆, Π ` t〈y\u〉〈x\v〉 : A

Γ, y : C ` t : A

∆, x : B ` u : C Π ` v : B

∆, Π ` u〈x\v〉 : C

Γ, ∆, Π ` t〈y\u〈x\v〉〉 : A

– (WAbs): We have s = Wy(λx.t) and s′ = λx.Wy(t).

Γ, x : B ` t : C

Γ ` λx.t : B → C

y : D, Γ ` Wy(λx.t) : B → C

Γ, x : B ` t : C

y : D, Γ, x : B ` Wy(t) : C

y : D, Γ ` λx.Wy(t) : B → C

– (WApp1): We have s = Wy(u) v and s′ = Wy(uv).

Γ ` u : B → C

Γ, y : D ` Wy(u) : B → C ∆ ` v : B

Γ, y : D, ∆ ` Wy(u) v : C

Γ ` u : B → C ∆ ` v : B

Γ, ∆ ` u v : C

Γ, y : D, ∆ ` Wy(uv) : C

– (WApp2): Similar to the previous case.
– (WSubs): We have s = t〈x\Wy(u)〉 and s′ = Wy(t〈x\u〉).

Γ ` u : B

Γ, y : C ` Wy(u) : B ∆, x : B ` t : A

Γ, y : C, ∆ ` t〈x\Wy(u)〉 : A

Γ ` u : B ∆, x : B ` t : A

Γ, ∆ ` t〈x\u〉 : A

Γ, y : C, ∆ ` Wy(t〈x\u〉) : A

– (Merge): s = Cy|z
w (Wy(t)) and s′ = t.

Γ, z : C ` t : A

Γ, y : C, z : C ` Wy(t) : A

Γ, w : C ` Cy|z
w (Wy(t)) : A

Γ, z : C ` t : A
−−−−−−−− −
Γ, w : C ` Rz

w(t) : A

– (Cross): s = Cy|z
w (Wx(t)) and s′ = Wx(Cy|z

w (t)).

Γ, y : C, z : C ` t : A

Γ, y : C, z : C, x : B ` Wx(t) : A

Γ, w : C, x : B ` Cy|z
w (Wx(t)) : A

Γ, y : C, z : C ` t : A

Γ, w : C ` Cy|z
w (t) : A

Γ, w : C, x : B ` Wx(Cy|z
w (t)) : A

– (CAbs): s = Cy|z
w (λx.t) and s′ = λx.Cy|z

w (t).

Γ, y : D, z : D, x : B ` t : C

Γ, y : D, z : D ` λx.t : B → C

Γ, w : D ` Cy|z
w (λx.t) : B → C

Γ, y : D, z : D, x : B ` t : C

Γ, w : D, x : B ` Cy|z
w (t) : C

Γ, w : D ` λx.Cy|z
w (t) : B → C

17

– (CApp1): s = Cy|z
w (t u) and s′ = Cy|z

w (t) u.

Γ, y : C, z : C ` t : A → B ∆ ` u : A

Γ, y : C, z : C, ∆ ` (t u) : B

Γ, w : C, ∆ ` Cy|z
w (t u) : B

Γ, y : C, z : C ` t : A → B

Γ, w : C ` Cy|z
w (t) : A → B ∆ ` u : A

Γ, w : C, ∆ ` (Cy|z
w (t) u) : B

– (CApp2): Similar to the previous case.

– (CSubs): s = Cy|z
w (t〈x\u〉) and s′ = t〈x\Cy|z

w (u)〉.
Γ, y : B, z : B ` u : C ∆, x : C ` t : A

Γ, ∆, y : B, z : B ` t〈x\u〉 : A

Γ, ∆, w : B ` Cy|z
w (t〈x\u〉) : A

Γ, y : B, z : B ` u : C

Γ, w : B ` Cy|z
w (u) : C ∆, x : C ` t : A

Γ, ∆, w : B ` t〈x\Cy|z
w (u)〉

3 A model for λlxr

This section is devoted to show two of the main properties of our calculus. The
first one (Theorem 4) concerns strong normalisation of simply-typed terms, which
is achieved by translating simply-typed λlxr-terms to MELL proof-nets. MELL
decomposes the intuitionistic logical connectives into more elementary connec-
tives, such as the linear implication and the exponentials, thus providing a more
refined use of resources than the one available in Intuitionistic Logic or Classical
Logic. Proof-nets provide a geometric interpretation of proofs, thus keeping only
the logical part of the structure of proofs and forgetting the structural details.

Theorem 5 and Theorem 6 show that the translation from λlxr to proof-nets
is sound and complete w.r.t the appropriate equivalence relations on terms and
proof-nets respectively.

We briefly recall here the traditional notion of proof-nets of Linear Logic and
some of its basic properties. We refer the interested reader to [Gir87] or [Laf95]
for more details.

Let A be a set of atomic formulae containing positive atoms p and negative
atoms p⊥. The set of formulae of the multiplicative exponential fragment of linear
logic (called MELL) is defined as follows:

F ::= A | F ⊗ F (tensor) | F O F (par) | !F (of course) | ?F (why not)

The formula F O G denotes the linear version of the classical disjunction,
whereas ?F and !F are used to indicate where contraction or weakening can take
place.

Linear negation of formulae is defined by

(p⊥)⊥ := p
(?A)⊥ := !(A⊥) (A ⊗ B)⊥ := A⊥ O B⊥

(!A)⊥ := ?(A⊥) (A O B)⊥ := A⊥ ⊗ B⊥

18

The set of proof-nets, that we denote by PN , is defined inductively in Figure 4
where we use rectangles having rounded corners to denote already defined nets
used in the inductive constructions.

(Axiom) (Cut) (Dereliction) (Contraction)

ax

A A⊥

A ∆A⊥

cut

Γ Γ A

?A

D

Γ ?A ?A

?A

C

(Par) (Times) (Weakening) (Box)

Γ BA

AOB

BA

A⊗B

Γ ∆ Γ ?A

W

A

!A

?Γ

?Γ

Figure 4. MELL Proof-nets

Similarly to term contexts [Ter03], proof-net contexts are proof-nets con-
structed by adding to Figure 4 the basic case of a special proof-net called hole.

A proof-net can be viewed as a finite acyclic oriented graph, where the nodes
correspond to the alphabet {ax, cut,⊗,O,C,D,W,B}. Each node has a number
of p (premise) and c (conclusion) ports. Indeed, the ax node has two ports c, the
cut node two ports p, the D node one port p and one port c, the ⊗, O and C
nodes two ports p and one port c, the W node one port c and the B node has n
ports p and n ports c (for every n ≥ 1). Each edge in the graph is decorated with
a type and is connected to exactly one port c and at most one port p, i.e. each
edge has a source node but not necessarily a goal node 4. The following picture
shows an example of proof-net in standard graphical notation on the left, and its
interpretation as oriented graph on the right.

!A⊥

!!A⊥

?A

?A

?B

?B ?B?A!!A⊥

ax

B

!A⊥ ?B?A
W

Wax

4 Formally, this is not an oriented graph but one can add an empty special node with one port p and
none port c as destination of such edges.

19

Viewed as finite oriented graphs, the above example reads (inductively) as
follows: the graph with one node ax which is the source of two edges decorated
(respectively) by A and A⊥ is a proof-net; the graph obtained by (1) taking two
proof-nets n1 and n2, (2) adding a cut node and (3) adding two edges e1 and
e2, decorated respectively with A and A⊥, whose source is n1 and n2 respectively
and whose goal is the cut node, is a proof-net.

Proof-nets are the computational objects behind Linear Logic, where the no-
tion of reduction (called also “cut elimination”) corresponds exactly to the cut-
elimination procedure on sequent derivations. The traditional reduction system
for MELL consists in the set of cut elimination rules appearing in Figure 5.

20

cut

A

ax

AA⊥ Γ

−→Ax-cut
A Γ

A B B⊥

AOB

cut

A⊥∆ Π

A⊥ ⊗B⊥

Γ

−→O-⊗

A B B⊥A⊥∆ ΠΓ

cut
cut

W

cut

?A

A⊥

!A⊥

?Γ

?Γ

−→w-b

W

?Γ

∆

cut

?A !A⊥

A⊥ ?Γ

?Γ

D

A

−→d-b cut

∆ A

A⊥ ?Γ

!A⊥

A⊥ ?Γ

?Γ

C

?A ?A

?A

cut

∆

−→c-b

C

A⊥

!A⊥

A⊥

!A⊥

?Γ

?Γ

?Γ

?Γ

?Γ

cut

cut

?A ?A∆

cut

B

!A⊥

A⊥?A

?A

?∆

?∆!B

?Γ

?Γ

−→b-b

cut

B

!B

?∆

?∆

?A
A⊥

!A⊥

?Γ

?Γ

?Γ

Figure 5. Cut elimination rules for MELL Proof-nets

Unfortunately, the original notion of reduction on PN is unsufficient to encode
directly either the β rule of λ-calculus, or the rules dealing with propagation of
substitution in explicit substitution calculi. For instance, this is prevented by the

21

fact that the order in which contraction nodes are connected is still relevant in
PN . One is thus led to define an equivalence relation on PN , as in [DCG99],
where two equations ∼Ac and ∼Pcb are introduced (see Figure 6).

∆

?B

C

?B

C

∼Ac

?B3?B2?B1 ∆

?B

C

?B

C

?B3?B2?B1

?A ?∆

?A ?A

?A ?A

?A ?∆

?A ?A

?A

∼Pcb

C

C

B

!B

B

!B

Figure 6. Equations for MELL proof-nets

Equivalence Ac turns contraction into an associative operator, and corresponds
to forgetting the order in which the contraction rule is used. Equivalence Pcb
abstracts away the relative order of application of the rules of box-formation and
contraction on the premises of a box. Finally, besides the equivalence relation
defined in [DCG99], we shall also use the two extra reduction rules in Figure 7 : U
is used to simplify weakening linked to contraction nodes and V allows weakening
links to go outside boxes in order to bring them together at the top of the proof-
nets.

∆?B ∆?B?B

?B

C

−→UW

?∆

!A ?B

?∆ ?B

?B!A

A

?∆?∆

A

−→V

W W

Figure 7. Extra reduction rules for MELL proof-nets

The reader may check that all these rules and equations preserve types as well
as well-formedness of proof-nets.

Notation: Henceforth, we shall call R the set of rules Ax-cut, O-⊗, w-b, d-b,
c-b, b-b, U and V and E the set of equations Ac and Pcb. We shall write ∼E for
the congruence (reflexive, symmetric, transitive, closed by proof-net contexts)
relation on proof-nets generated by the equations in E. We shall write R/E for

22

the system of reduction modulo an equivalence relation [Ter03] made of the rules
in R and the equations in E, given by r −→R/E s if and only if there exist r′

and s′ such that r ∼E r′ −→R s′ ∼E s.
In order to prove one of the main properties of λlxr, namely strong normali-

sation, we shall use the following result:

Theorem 3. The reduction relation −→R/E terminates.

Proof. This result is proved in [Pol04] for which we refer the interested reader for
full details. For the sake of completeness, we explain the main steps of the proof
here.

We note PN the system containing only rules Ax-cut, O-⊗, w-b, d-b, c-b, b-b
and W the system made of rules U and V (so that R is PN ∪W). The notation
PN/E (resp. W/E) is used to denote PN (resp. W) reduction modulo E.

1. The reduction relation PN/E is terminating.

Proof. The proof can be found in [DCG99].

2. The reduction relation W/E is terminating.

Proof. We assign to each proof net p a pair 〈p1, p2〉, where p1 is the number of
nodes in the proof-net, and p2 is the the sum of the depths of all the weakening
nodes in the net. The reduction relation W/E strictly decreases 〈p1, p2〉 w.r.t
the lexicographic order : U decreases p1, V decreases p2 while not modifying
p1, and the congruence ∼E keep 〈p1, p2〉.

3. The relation W/E can be postponed w.r.t PN/E:
if t −→W/E −→PN/E t′, then t−→+

PN/E −→∗
R/E t′.

Proof. Uses postponment of U (resp. V) w.r.t PN see [DCKP03] (resp. [Pol04])
and the fact that W and ∼E commute.

4. The relation R/E is terminating.

Proof. By points 3 and 1 and 2.

3.1 Interpreting terms into proof-nets

We now present the natural interpretation of typed λlxr-terms as proof-nets. For
that, we use the standard translation of intitionistic types [Gir87] given by :

A∗ := A for atomic types
(A → B)∗ := ?((A∗)⊥)OB∗ otherwise

Figure 8 defines the translation T () from derivable typing judgements of λlxr
to proof-nets. Every proof-net T (Γ ` t : A) has one wire labelled with ?(B∗)⊥

for every B ∈ Γ and one unique wire labelled with A∗. We shall often write T (t)

23

T (x : A ` x : A) T (Γ ` λx.t : B → C) T (Γ, ∆ ` t u : A)

A∗⊥

?A∗⊥ A∗

ax

D

?Γ ∗⊥ B∗ ?C∗⊥

B∗O?C∗⊥

T(t)

?B∗⊥OA∗

!B∗ A∗⊥

B∗ ?∆∗⊥

?∆∗⊥

?Γ ∗⊥

cut

!B∗ ⊗A∗⊥

A∗

T(t)
T(u)

T (Γ, x : B ` Wx(t) : A) T (Γ, x : B ` Cy|z
x (t) : A) T (Γ, ∆ ` t〈x\u〉 : A)

T(t)

?Γ

W

?B A∗

T(t)

C

?B∗⊥

?B∗⊥?Γ ∗⊥ ?B∗⊥ A∗

?Γ ∗⊥

B∗ ?∆∗⊥

?Γ ∗⊥ ?B∗⊥

?∆∗⊥!B∗
A∗

cut

T(t)
T(u)

Figure 8. Encoding typed λlxr-terms into MELL proof-nets

instead of T (Γ ` t : A) when Γ and A do not matter or are clear (for instance
from Subject Reduction in λlxr, Theorem 2). The translation T () satisfies the
following properties:

We now show how to simulate λlxr-reduction into R/E-reduction. This proof
justifies the use of the additional equations Ac and Pcb as well as the additional
reduction rules V and U. Indeed, we use the equation Ac on proof-nets to simulate
the Ac equation of λlxr-terms, the Pcb equation to simulate rules CApp2 and CSubs,
the rule V to simulate WApp2 and WSubs, and the U rule to simulate Merge.

Lemma 6 (Simulation of λlxr-reduction). Let s be a simply-typed λlxr-term.

• If s ≡ s′, then T (s) ∼E T (s′).
• If s −→B s′, then T (s)−→2

R/E T (s′).
• If s −→xr s′, then T (s)−→∗

R/E T (s′).

Proof. For the first property we consider the base cases below, the rest of the
induction being straightforward using the fact that the relations ≡ and ∼E are
congruences.

– For Cx|v
w (Cy|z

x (t)) ≡Ac
Cx|y

w (Cz|v
x (t)) we have the two following equivalent proof-

nets.

24

T(t) T(t)∼Ac

?A ?B∗?A∗⊥ ?A∗⊥

?A∗⊥ ?A∗⊥

?A∗⊥?A∗⊥?A∗⊥ ?Γ ∗⊥ ?B∗?Γ ∗⊥

C

C C

C

– For all the other cases we leave to the reader the (easy) verification that both
interpretations are exactly equal.

For the second and third property, we proceed by induction on the reduction
step. We only show here the cases of root reductions. We give for each case the
rules/equations needed to verify the statement.

– For t1 = (λx.t) u −→B t〈x\u〉 = t2, let Γ := FV (λx.t) and ∆ := FV (u).
We have the following interpretations T (t1) and T (t2) and we can verify that
T (t1)−→2

O-⊗,Ax-cut T (t2) in exactly two steps.

?∆∗⊥

?∆∗⊥

B∗
A∗

!A∗

?Γ ∗⊥

B∗

B∗⊥

?A∗⊥OB∗

!A∗ ⊗B∗

A∗

!A∗

?∆∗⊥

∆∗⊥

?Γ ∗⊥ ?A∗⊥B∗

T(t) T(u)

?A∗⊥

T(t) T(u)

– For t1 = (λy.t)〈x\u〉 −→Abs λy.t〈x\u〉 = t2, let Γ, x := FV (λy.t) and
∆ := FV (u). We have exactly the same interpretation T (t1) and T (t2).

?Γ ∗⊥

A∗O?B∗⊥
C∗

!C∗

?∆∗⊥

?∆∗⊥

?C∗⊥A∗ ?B∗⊥

T(u)
T(t)

– For t1 = (t v)〈x\u〉 −→App1 (t〈x\u〉 v) = t2 with x ∈ FV (t), exactly the

same interpretation T (t1) and T (t2).

T(t)

?C∗⊥ ?Γ ∗⊥ ?A∗⊥OB∗

A∗

!A∗

?∆∗⊥

B∗⊥

B∗

C∗

!C∗

?Π∗⊥

?Π∗⊥

?∆∗⊥!A∗ ⊗B∗⊥

T(v) T(u)

25

– For t1 = (t v)〈x\u〉 −→App2 (t v〈x\u〉) = t2 with x ∈ FV (v), we have the

following interpretations T (t1) and T (t2) and we can verify that T (t1) −→b-b
T (t2).

T(t)

?C∗⊥

?C∗⊥

?∆∗⊥

?∆∗⊥

A∗

!A∗ B∗⊥

B∗

?A∗⊥OB∗?Γ ∗⊥

C∗ ?Π∗⊥

?Π∗⊥!C∗

!A∗ ⊗B∗⊥

?Γ ∗⊥ ?A∗⊥OB∗

A∗

!A∗ B∗⊥

!A∗ ⊗B∗⊥

B∗ ?∆∗⊥

C∗

!C∗

?Π∗⊥

?Π∗⊥

?C∗⊥?∆∗⊥

T(u)T(v)

T(t)

T(v)
T(u)

– For t1 = x〈x\u〉 −→Var u = t2, let ∆ := FV (u). We have the following
interpretations T (t1) and T (t2) and we can verify that T (t1)−→∗

d-b,Ax-cut T (t2).

A∗

A∗⊥

?A∗⊥

A∗

!A∗

?∆∗⊥

?∆∗⊥

A∗ ?∆∗⊥

T(t) T(t)
D

– For t1 = Wx(t)〈x\u〉 −→Weak1 WΠ(t) = t2, where Π := FV (u), we have the
following interpretations T (t1) and T (t2) and we can verify that T (t1) −→w-b
T (t2).

W W

?Γ ∗⊥?Γ ∗⊥
?Π∗⊥

A∗?C∗⊥

!C∗

C∗
A∗

?Π∗⊥

?Π∗⊥

T(t)
T(u)

T(t)

– For t1 = Wy(t)〈x\u〉 −→Weak2 Wy(t〈x\u〉) = t2, where x 6= y, we have
exactly the same interpretation T (t1) and T (t2).

26

?C∗⊥A∗

C∗

!C∗

?Γ ∗⊥

?B∗⊥

?Π∗⊥

?Π∗⊥

W
T(t) T(u)

– For t1 = Cy|z
x (t)〈x\v〉 −→Cont CΠ1|Π2

Π (t〈y\RΠ
Π1

(v)〉〈z\RΠ
Π2

(v)〉) = t2, where
Π := FV (v), we have the following interpretations T (t1) and T (t2) and we
can verify that T (t1) −→c-b T (t2).

A∗

!A∗

A∗

!A∗

?Π∗⊥
1

?Π∗⊥
1

?Π∗⊥
2

?Π∗⊥
2

?Π∗⊥

?∆∗⊥

?∆∗⊥ B∗

?A∗⊥ ?A∗⊥
?Π∗⊥

?Π∗⊥

A∗

!A∗

?∆∗⊥ B∗

?∆∗⊥ ?A∗⊥ ?A∗⊥

?A∗⊥

T(t)

C

T(v)
T(t)

T(RΠ
Π2

(v))T(RΠ
Π1

(v))

C

– For t1 = t〈y\u〉〈x\v〉 −→Comp t〈y\u〈x\v〉〉 = t2 where x ∈ FV (u), let

(Γ, y) := FV (t), (Π, x) := FV (u) and ∆ := FV (v). We have the following
interpretations T (t1) and T (t2) and we can verify that T (t1) −→b-b T (t2).

A∗

!A∗

B∗Γ ∗⊥ ?A∗⊥

?Π∗⊥

?Π∗⊥?C∗⊥
C∗

!C∗

?∆∗⊥

?∆∗⊥

?∆∗⊥

T(v)
T(u)T(t)

A∗

!A∗

?Π∗⊥??C∗⊥

?Π∗⊥ ?C∗⊥

C∗

!C∗

?∆∗⊥

?∆∗⊥

?A∗⊥B∗?Γ ∗⊥

T(t) T(u) T(v)

– For t1 = Wy(λx.t) −→WAbs λx.Wy(t) = t2, we have exactly the same
interpretation T (t1) and T (t2).

T(t)

?Γ ∗⊥ B∗ ?C∗⊥?A∗⊥

?A∗⊥OB∗

W

– For t1 = Wy(u) v −→WApp1 Wy(uv) = t2, we have exactly the same inter-

pretation T (t1) and T (t2).

?B∗⊥OA∗

!B∗

!B∗OA∗⊥

A∗⊥

B∗ ?∆∗⊥

?∆∗⊥

?Γ ∗⊥

cut A∗

?C∗⊥

W
T(u)T(t)

– For t1 = u Wy(v) −→WApp2 Wy(uv) = t2, we have the following interpreta-

tions T (t1) and T (t2) and we can verify that T (t1) −→V T (t2).

27

?Γ ∗⊥ ?A∗⊥OB∗

A∗

!A∗

!A∗ ⊗B∗⊥

B∗⊥

?∆∗⊥

?∆∗⊥

B∗

?C∗⊥

?Γ ∗⊥ ?A∗⊥OB∗

A∗

!A∗

!A∗ ⊗B∗⊥

B∗⊥

?∆∗⊥

?∆∗⊥

?C∗⊥

?C∗⊥

B∗

T(t)
T(v) W

T(t)
T(v) W

– For t1 = t〈x\Wy(u)〉 −→WSubs Wy(t〈x\u〉) = t2, we have the following
interpretations T (t1) and T (t2) and we can verify that T (t1) −→V T (t2).

?Γ ∗⊥ ?A∗⊥B∗

A∗ ?∆∗⊥

?∆∗⊥!A∗

?Γ ∗⊥ ?A∗⊥B∗

A∗ ?∆∗⊥

?∆∗⊥!A∗

?C∗⊥

?C∗⊥

T(t)
T(v)

W

?C∗⊥

?C∗⊥

T(t)
T(v)

W

– For t1 = Cy|z
w (Wy(t)) −→Merge Rz

w(t) = t2, we have the following interpreta-

tions T (t1) and T (t2) and we can verify that T (t1) −→U T (t2).

?A⊥?A⊥ ?A⊥ ?Γ⊥

?A⊥

C∗ ?Γ⊥ C∗

C

T(t) T(Rz
w(t))

W

– For t1 = Cy|z
w (Wx(t)) −→Cross Wx(Cy|z

w (t)) = t2 when x 6= y, x 6= z, we have
exactly the same interpretation T (t1) and T (t2).

?A∗⊥ ?A∗⊥

?A∗⊥

?B∗⊥?Γ ∗⊥ C∗

T(t)

C

W

– For t1 = Cy|z
w (λx.t) −→CAbs λx.Cy|z

w (t) = t2, we have exactly the same
interpretation T (t1) and T (t2).

?C∗⊥?Γ ∗⊥ ?C∗⊥ ?A∗⊥ B∗

?A∗⊥OB∗

?C∗⊥

T(t)

C

– For t1 = Cy|z
w (t u) −→CApp1 Cy|z

w (t) u = t2 when y, z ∈ FV (t), we have

exactly the same interpretation T (t1) and T (t2).

28

?Γ ∗⊥ ?C∗⊥ ?C∗⊥

?C∗⊥

?A∗⊥OB∗
A∗

!A∗

?∆∗⊥

?∆∗⊥B∗⊥

B∗

!A∗OB∗

T(t)

C

T(v)

– For t1 = Cy|z
w (t u) −→CApp2 t Cy|z

w (u) = t2 when y, z ∈ FV (u), we have

the following interpretations T (t1) and T (t2) and we can verify that T (t1) ∼B

T (t2).

A∗ ?C∗⊥ ?C∗⊥
?A∗⊥OB∗?Γ ∗⊥

?∆∗⊥A∗

!A∗

?C∗⊥ ?C∗⊥

B∗⊥

!A∗OB∗⊥

?A∗⊥OB∗?Γ ∗⊥
?∆∗⊥

B∗ ?C∗⊥

?C∗⊥

!A∗ B∗⊥

!A∗OB∗⊥

B∗

T(t) T(v)

C

T(v)T(t)

C

– For t1 = Cy|z
w (t〈x\u〉) −→CSubs t〈x\Cy|z

w (u)〉 when y, z ∈ FV (u), we have
the following interpretations T (t1) and T (t2) and we can verify that T (t1) ∼B

T (t2).

?C∗⊥ ?C∗⊥
?Γ ∗⊥

?∆∗⊥A∗

!A∗

?C∗⊥ ?C∗⊥
?A∗⊥OB∗?Γ ∗⊥

?∆∗⊥

?C∗⊥

?C∗⊥

!A∗

A∗
?A∗⊥B∗B∗

T(t) T(v)

C

T(t) T(v)

C

As a consequence we obtain one of the main important properties of λlxr:

Theorem 4 (Strong Normalisation).
The relation −→

λlxr is strongly normalising on simply-typed λlxr-terms.

Proof. Suppose −→
λlxr is not strongly normalising. Then, since xr terminates

by Theorem 1, an infinite λlxr-reduction sequence would have infinitely many
B-steps. But this would lead by Lemma 6 to an infinite R/E-reduction sequence
which is impossible by Theorem 3.

The simulation result of λlxr-reduction that we use to conclude the strong
normalisation of the simply-typed λlxr-calculus helps understanding its reduc-
tion rules and equations, but another technique [Pol04] not using proof-nets

29

but using Preservation of Strong Normalisation (cf. Section 5) together with
the strong normalisation of the simply-typed λ-calculus could also be used. Di-
rect proofs of strong normalization using for instance reducibility by perpetual-
ity [Bon01,LLD+04] seem much more difficult to adapt to our case, owing to the
fact that rewriting is performed modulo a congruence. However, we expect the
study of perpetuality in λlxr to be particularly interesting, particularly in connec-
tion with intersection types and characterisation of strongly normalisable terms.
Also, we would expect that strong normalisation of proof-nets can be inferred
from a direct proof of strong normalisation of λlxr, i.e. that the two properties
have the same strength. We leave those topics for future work.

3.2 Terms having the same box structure

In the rest of this section we restrict our attention to the cut-elimination steps in
proof-nets that modify their box structure; thus tackling for λlxr a problem stud-
ied in [Lau03] for the λµ-calculus: characterising those terms that are translated
(in our case by T ()) into proof-nets having identical box structures. Character-
ising those terms that are translated into the same proof-nets (modulo a weaker
congruence such as Ac, Pcb) could also be interesting and is left as further work.

Let TB be the reduction relation on PN generated by the rules that do not
modify the box structure, namely V, U, Ax-cut and O-⊗, modulo the congruence
∼E. Since termination holds for the whole system R/E which contains TB, then
using known techniques for abstract reduction systems [Hue80] we obtain:

Proposition 1. The reduction relation TB is confluent and terminating. Hence,
the normal form of a proof-net r w.r.t this reduction relation, written TB(r),
exists and is unique up to the congruence ∼E.

Hence, “having the same box structure” can be expressed by the following
equivalence:

Definition 8. Let r and r′ be two proof-nets. Then the relation r ≈ r′ is defined
as TB(r) ∼E TB(r′).

In order to characterise the terms that are translated to proof-nets having the
same box structure, we identify those rules of λlxr that do not change the box
structure:

Definition 9. We define the congruence ∼= between λlxr-terms by adding to ≡
the following rules turned into equalities:

{B, Abs, App1, Weak2, WAbs, WApp1, WApp2, Merge, Cross, CAbs, CApp1, CApp2}

Note that WSubs and CSubs are captured by ∼=, in the following sense:

Remark 4. If t←→∗
WSubs∪CSubs t′, then t ∼= t′.

30

Remark also that the rules {App2, Comp, Var, Weak1, Cont}, which are not
in ∼=, change the structure of boxes. More precisely, App2 and Comp in λlxr
correspond to b-b in R, Var to d-b, Weak1 to w-b and Cont to c-b.

Definition 10. Given a derivable typing judgement Γ ` t : A, we define its
translation NT (Γ ` t : A) as TB(T (Γ ` t : A)).

We will often write NT (t) instead of NT (Γ ` t : A) when Γ and A do
not matter or are clear from the context. Remark that by definition we have
T (t1) ≈ T (t2) if and only if NT (t1) ∼E NT (t2).

The following soundness property relates two ∼=-convertible terms w.r.t their
translations into proof-nets. The reverse result concerning completeness is shown
later (Theorem 6).

Theorem 5 (Soundness). Given two simply-typed λlxr-terms t1, t2, if t1 ∼= t2,
then T (t1) ≈ T (t2).

Proof. Since the relations ∼= and ∼E are congruences it is sufficient to check the
root cases.

– For t1 =B t2, we have shown that T (t1)−→∗
O⊗,Ax-cut T (t2) (cf. the proof of

Lemma 6) so that NT (t1) = NT (t2) and thus NT (t1) ∼E NT (t2) trivially
holds.

– For t1 =Abs,WAbs,CAbs,App1,WApp1,CApp1,CApp2,Weak2,Cross t2, we have

shown that T (t1) ∼E T (t2) (cf. the proof of Lemma 6) so that NT (t1) ∼E

NT (t2) also holds.
– For t1 =WApp2 t2, we have shown that T (t1) −→V T (t2) (cf. the proof of

Lemma 6) so that NT (t1) = NT (t2) and thus NT (t1) ∼E NT (t2) trivially
holds.

– For t1 =Merge t2, we have shown that T (t1) −→U T (t2) (cf. the proof of

Lemma 6) so that NT (t1) = NT (t2) and thus NT (t1) ∼E NT (t2) trivially
holds.

– For all the other cases we have already shown that T (t1) ∼E T (t2) (cf. the
proof of Lemma 6) so that NT (t1) ∼E NT (t2) holds.

We proceed now to show the completeness result. We first establish a property
of terms which is used further in Lemma 8 to reason according to their particular
head-shapes.

Lemma 7 (Revealing the head-shape of a term). For every term t, there
is a term t′ ∼= t with |t′| ≤ |t| such that either

– t′ = λx.t′′, or
– t′ = Wx(t

′′), or

– t′ = Cy|z
x (t′′), or

31

– t′ = (xt1 . . . tn)〈x1\u1〉 . . . 〈xm\um〉 (n ≥ 0,m ≥ 0), or

– t′ = Wx(t
′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with m ≥ 0 and xi 6∈ FV (t′′) for all i,

or

– t′ = Cy|z
x (t′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with m ≥ 0 and xi 6∈ FV (t′′) for all i.

Proof. By induction on |t|. In each of the following cases we obtain |t′| ≤ |t| by
induction hypothesis and because the way we use ∼= to convert the terms can
only decrease their sizes.

– If t is a variable (taking n = m = 0 in the fourth case above), an abstraction,
a weakening or a contraction, it is trivial.

– If t = t′1〈x′\t′2〉, then we apply the induction hypothesis on t′1:

• If t′1 ∼= λx.t′′ (x is necessarily different from x′ by α-equivalence), then
t ∼= (λx.t′′)〈x′\t′2〉 ∼=Abs λx.t′′〈x′\t′2〉.

• If t′1 ∼= Wy(t
′′), then for y = x′ we are done, otherwise t ∼= Wy(t

′′)〈x′\t′2〉 ∼=Weak2
Wy(t

′′〈x′\t′2〉).
• If t′1 ∼= Cy|z

x (t′′), then for x = x′ we are done, otherwise t ∼= Cy|z
x (t′′)〈x′\t′2〉 ∼=Pcs

Cy|z
x (t′′〈x′\t′2〉).

• If t′1 ∼= (xt1 . . . tn)〈x1\u1〉 . . . 〈xm\um〉,
then t ∼= (xt1 . . . tn)〈x1\u1〉 . . . 〈xm\um〉〈x′\t′2〉.

• If t′1 ∼= Wx(t
′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (t′′) for all i, then t ∼=

Wx(t
′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉〈x′\t′2〉. Now either x′ 6∈ FV (t′′) and we

are done, or x′ ∈ FV (t′′) and in that case t ∼=Weak2 Wx(t
′′〈x′\t′2〉)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉

since xi is not free in t′2 by α-equivalence.

• If t′1 ∼= Cy|z
x (t′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (t′′) for all i, then

t ∼= Cy|z
x (t′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉〈x′\t′2〉. Now either x′ 6∈ FV (t′′) and

we are done, or x′ ∈ FV (t′′) and in that case t ∼=Pcs
Cy|z

x (t′′〈x′\t′2〉)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉
since xi is not free in t′2 by α-equivalence.

– If t = t′1 t′2, then we apply the induction hypothesis on t′1.

• If t′1 ∼= λx.t′′, then t ∼=B t′′〈x\t′2〉, on which we apply the induction hypoth-
esis because the size is strictly smaller.

• If t′1 ∼= Wy(t
′′), then t ∼= Wy(t

′′) t′2 ∼=WApp1 Wy(t
′′ t′2).

• If t′1 ∼= Cy|z
x (t′′), then t ∼= Cy|z

x (t′′) t′2 ∼=CApp1 C
y|z
x (t′′ t′2).

• If t′1 ∼= (xt1 . . . tn)〈x1\u1〉 . . . 〈xm\um〉,
then t ∼= (xt1 . . . tn)〈x1\u1〉 . . . 〈xm\um〉 t′2 ∼=App1 (xt1 . . . tnt

′
2)〈x1\u1〉 . . . 〈xm\um〉.

• If t′1 ∼= Wx(t
′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (t′′) for all i, then t ∼=

Wx(t
′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 t′2 ∼=App1,WApp1 Wx(t

′′ t′2)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉.
• If t′1 ∼= Cy|z

x (t′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (t′′) for all i, then

t ∼= Cy|z
x (t′′)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉 t′2 ∼=App1,CApp1 C

y|z
x (t′′ t′2)〈x\u〉〈x1\u1〉 . . . 〈xm\um〉.

32

3.3 Towards completeness

We say that a node n is final in a proof-net if there exists an edge connected to a
c port of n which is not premise of another node. In other words, a node is final if
some c port of n is “free”. Final nodes can be seen as the interface of a proof-net.
Remark that cut is never final. We will be particularly interested in final nodes
W/C/O which have a direct syntactical interpretation in our term calculus. A
type is said to be distinguished in a proof-net if it is not a formula of the form
?A and it is the type of an edge connected to a c port of a final node. Every edge
decorated with a formula of the form ?A which is connected to a c port of a final
node n is labelled with an associated variable x. By abuse of language we will
sometimes talk about the variable label of a final node having only one c port
(as for example in the case of W/C/O-nodes).

Remark that this notion is not well-adapted to proof-nets modulo the con-
gruence E so that we now modify the notion of final node as follows:

A node W or C is final-modulo in a proof-net r if it is final in some proof-net
r′ which is {V, Pcb}-equivalent to r. Said differently, W or C is final-modulo in
a proof-net seen as a directed graph if there is a path -only with box nodes but
possibly of length 0- from this node to some final node. Finally, a node different
from W and C is final-modulo if it is final. Note that the notion of final-modulo
is invariant under conversion by the congruence E, so final-modulo nodes can
be seen as the interface of a proof-net modulo. A node n occurs at depth k in
a proof-net r if n appears inside (or is a predecessor in the oriented graph) k
different boxes of r.

Remark 5. Let t be a λlxr-term. Then the proof-net T (Γ ` t : A) has a unique
distinguished type which is A∗. As a consequence, O-nodes which are final-
modulo in such proof-nets are unique and the edge connected to its conclusion
port is decorated with the unique distinguished type of the proof-net.

The following lemma establishes, for any typed tem t, a connection between
the interface of NT (t) and the constructors of t that can be pulled to the top-level
by the congruence ∼=. It will be useful to reason by induction on terms modulo
∼=: we shall then be able to assume that they have a particular shape insead f
having to cover all cases.

Lemma 8. Let t be a λlxr-term and let f be a final-modulo node of NT (t).

1. If f is a W-node whose c edge is labelled with x, then there exist a term t′

such that t ∼= Wx(t
′) and |t| = |Wx(t

′)|.
2. If f is a C-node whose c edge is labelled with x, then there exist a term t′

such that t ∼= Cy|z
x (t′) and |t| = |Cy|z

x (t′)|.
3. If f is an O-node, then there exist a term t′ and a variable x such that t ∼= λx.t′

and |t| = |λx.t′|.

33

Proof. By induction on |t|. See the appendix for details.

The following lemma states how applications are recognisable as cuts.

Lemma 9. Let t be a λlxr-term. If NT (t) has no final-modulo node C, W or
O but has some cut node at depth 0, then there exist terms v and u such that
t ∼= (λx.u)v.

Proof. By induction on the size of the term t.

– If t = x, then there is no cut-node at depth 0 in NT (x).
– If t = λx.u, then NT (t) has a final-modulo O-node.
– If t = Wy(u), then NT (t) has a final-modulo W-node.

– If t = Cy|z
x (u), then NT (t) has a C final-modulo node.

– If t is an application or a closure, then t ∼=B u0u1 . . . un (n ≥ 1), where u0

is neither an application nor a closure since for every closure v〈y\u〉 in t we
have v〈y\u〉 ∼=B (λy.v)u, having the same size.

• If u0 = y, then there is no cut-node at depth 0 in NT (t).
• If u0 = Wy(w), then NT (t) has a final-modulo W-node.

• If u0 = Cy|z
w (t′), then NT (t) has a final-modulo C-node.

• If u0 = (λy.w), then we have

t∼=B (λy.w)u1u2 . . . un∼=B w〈y\u1〉u2 . . . un∼=App1 (wu2 . . . un)〈y\u1〉
∼=B (λy.wu2 . . . un)u1

We can now state one of the main results of this paper, showing that the
simply-typed λlxr-calculus captures (intuitionistic) proof-nets using a term syn-
tax.

Theorem 6 (Completeness). Let t1, t2 be two λlxr-terms. If T (t1) ≈ T (t2),
then t1 ∼= t2.

Proof. We reason by induction on NT (t1). In what follows, for any proof-net r
and final-modulo node r, we note r \ n the proof-net obtained from r by erasing
n and its corresponding edges.

– If NT (t1) has a final-modulo W-node called n, then t1 ∼= Wx(t
′
1) and t2 ∼=

Wx(t
′
2) by Lemma 8. By definition of the translation NT (t′1) = NT (t1) \ n

and NT (t′2) = NT (t2) \n. Thus, it is easy to see that NT (t′1) ∼E NT (t′2). By
the i.h. we have t′1 ∼= t′2 so that Wx(t

′
1)
∼= Wx(t

′
2).

– If NT (t1) has a final-modulo C-node called n, then t1 ∼= Cy1|z1
x1 (t′1) and t2 ∼=

Cy2|z2
x2 (t′2) by Lemma 8. By definition of the translation NT (t′1) = NT (t1) \ n

and NT (t′2) = NT (t2) \ n. Thus NT (t′1) ∼E NT (t′2). By the i.h. we have

t′1 ∼= t′2 so that Cy1|z1
x1 (t′1) ∼= Cy2|z2

x2 (t′2).

34

– If NT (t1) has a final-modulo O-node called n, then t1 ∼= λx.t′1 and t2 ∼=
λx.t′2 by Lemma 8. By definition of the translation NT (t′1) = NT (t1) \ n and
NT (t′2) = NT (t2) \ n. Thus NT (t′1) ∼E NT (t′2). By the i.h. we have t′1 ∼= t′2
so that λx.t′1 ∼= λx.t′2.

– If NT (t1) has no final-modulo W/C/O-node, then t1 is an application or a
closure.
If NT (t1) has no cut at depth 0, then t1 ∼= xu1 . . . un and t2 ∼= yv1 . . . vn. Since
NT (ui) ∼E NT (vi), then by the i.h. we have ui

∼= vi and thus xu1 . . . un
∼=

yv1 . . . vn.
If NT (t1) has some cut at depth 0, then by Lemma 9 we have t1 ∼= (λx.u1)v1

and t2 ∼= (λx.u2)v2. Since NT (u1) and NT (u2) are sub proof-nets of NT (t1)
and NT (t2) respectively, then u1

∼= u2 by the i.h. The same happens with
NT (v1) and NT (v2) so that v1

∼= v2. We can then conclude (λx.u1)v1
∼=

(λx.u2)v2.

This result allows us to interpret not only λlxr-terms as proof-nets (Soundness
Theorem) but also, the other way around, proof-nets in some particular form to
λlxr-terms. A similar characterisation was given in [Lau03] for λµ-terms with re-
spect to Polarized Proof-Nets, where equality in the term syntax is an extension
of the σ-equivalence on λ-terms defined in [Reg94]. Yet, the latter needs to con-
sider specific permutations of β-redexs to achieve the characterisation, instead of
simply turning some reduction rules into equivalence rules, which can be done in
λlxr only because the operators of our calculus adequately reflect the structure
of proof-nets.

4 Recovering the λ-calculus

We show in this section the relation between λlxr-terms and λ-terms. We refer
the reader to [Bar84] for a presentation of λ-calculus and all its standard notions
such as free variables, α-equivalence, Barendregt’s convention, etc, that we use
in this section.

More precisely, we show that the linearity constraints and the use of explicit
resource operators in λlxr are sufficient to decompose the β-reduction step into
smaller steps. We will also show in this section the relation between the simply-
typed λlxr and the simply-typed λ-calculus. For that we first recall in Figure 9
the typing rules for λ-calculus.

We consider λ-terms as an independent syntax rather than particular λlxr-
terms, since they might not be linear. We shall use the notation Γ `λ t : A
to denote typing judgements and typing derivability in λ-calculus in order to
distinguish them from those of λlxr.

4.1 From λ-calculus to λlxr-calculus

We now describe how to encode a λ-term into a (linear) λlxr one.

35

Γ, x : A `λ x : A

Γ, x : A `λ t : B

Γ `λ λx.t : A → B

Γ `λ t : A → B Γ `λ v : A

Γ `λ t v : B

Figure 9. Typing Rules for λ-calculus

Definition 11. The encoding of λ-terms is defined by induction as follows:

A(x) := x
A(λx.t) := λx.A(t) if x ∈ FV(t)
A(λx.t) := λx.Wx(A(t)) if x /∈ FV(t)

A(t u) := CΥ |Ω
FV(t)∩FV(u)(RΦ

Υ (A(t)) RΦ
Ω(A(u))) where Υ,Ω are fresh

Using the fact that W∅(t) = t, we can write the translation of an abstrac-
tion, with only one case, as A(λx.t) = λx.W{x}\FV(t)(A(t)). Note that A(t u) =
A(t)A(u) in the particular case FV(t) ∩ FV(u) = ∅. More generally, a λ-term
which, viewed as a particular λlxr-term, is linear, is translated by A to itself. Note
also that the weakenings and contractions introduced by this translations are al-
ready in their canonical places, i.e. A(t) is an xr-normal form for every λ-term
t.

In most of the following proofs, we shall use the following results:

Lemma 10 (Properties of A).

1. FV(t) = FV(A(t)).
2. A(RΦ

Υ (t)) = RΦ
Υ (A(t))

As a consequence, the encoding of a λ-term is a linear λlxr-term.

Example 1. Given t = λx.λy.y(zz), we have A(t) = λx.Wx(λy.(y Cz1|z2
z (z1 z2))).

We now want to simulate a β-reduction step in λlxr, so we start by proving that
the interaction between (and the propagation of) the three operators of λlxr by
means of the system xr do implement the notion of substitution. More precisely,
given two λ-terms t1 and t2, we identify a λlxr-term, built from the translations
by A of t1 and t2 and using a linear substitution operator, that reduces to the
translation of t1{x\t2}, as shown by the following lemma:

Lemma 11. For all λ-terms t1 and t2 such that x ∈ FV(t1),

CΥ |Ω
Φ (RΦ

Υ (A(t1))〈x\RΦ
Ω(A(t2))〉)−→∗

xr A(t1{x\t2})
where Φ := (FV(t1) \ {x}) ∩ FV(t2), provided that the former term is linear.

In the simple case where Φ = ∅, the statement reads:

A(t1)〈x\A(t2)〉−→∗
xr A(t1{x\t2})

36

Proof. By induction on the size of t1, by propagating the linear substitution
operator, pulling out weakenings and pushing in contractions. See the appendix
for details.

The correctness result concerning linear substitution operators obtained in
the previous lemma enables us to prove a more general property concerning sim-
ulation of β-reduction in λlxr. Notice that a β-reduction step may not preserve
the set of free variables whereas any reduction in λlxr does. Indeed, we have
t = (λx.y) z −→β y, but

A(t) = (λx.Wx(y)) z−→∗
λlxr Wz(y) = Wz(A(y))

As a consequence, the simulation property has to be stated by taking into
account the operational behaviour of system xr given by Lemma 11.

Theorem 7 (Simulating β-reduction). Let t be a λ-term such that t −→β t′.
Then A(t)−→+

λlxr
WFV(t)\FV(t′)(A(t′)).

Proof. We prove this by induction on the reduction step. We only show here the
root reduction cases.

1. The root case is the reduction (λx.t1)t2 −→β t1{x\t2}. By α-equivalence,
x /∈ FV(t2).
(a) If x /∈ FV(t1), let Φ := FV(t1) ∩ FV(t2) and Ξ := FV(t2) \ FV(t1).

A((λx.t1)t2) = CΥ |Ω
Φ (λx.Wx(RΦ

Υ (A(t1))) RΦ
Ω(A(t2)))

−→B CΥ |Ω
Φ (Wx(RΦ

Υ (A(t1)))〈x\RΦ
Ω(A(t2))〉)

−→Weak1 CΥ |Ω
Φ (WFV(RΦ

Ω(t2))(RΦ
Υ (A(t1))))

≡ CΥ |Ω
Φ (WΩ,Ξ(RΦ

Υ (A(t1))))

= CΥ |Ω
Φ (WΩ(WΞ(RΦ

Υ (A(t1)))))
−→∗

Merge RΥ
Φ(WΞ(RΦ

Υ (A(t1))))

= WΞ(A(t1))

Now it suffices to notice that Ξ := FV((λx.t1) t2) \ FV(t1{x\t2}) using
FV(t1{x\t2}) = FV(t1) since x /∈ FV(t1).

(b) If x ∈ FV(t1), let Φ := (FV(t1) \ {x}) ∩ FV(t2).

A((λx.t1)t2) = CΥ |Ω
Φ (λx.RΦ

Υ (A(t1)) RΦ
Ω(A(t2)))

−→B CΥ |Ω
Φ (A(RΦ

Υ (t1))〈x\A(RΦ
Ω(t2))〉)

−→∗
xr A(t1{x\t2}) by Lemma 11

2. Now suppose λx.u −→β λx.u′ with u −→β u′,
(a) If x /∈ FV(u)

A(λx.u) = λx.Wx(A(u))
−→+

λlxr
λx.Wx(WFV(u)\FV(u′)(A(u′))) by the i.h.

= λx.Wx(WFV(λx.u)\FV(λx.u′)(A(u′)))
−→∗

WAbs WFV(λx.u)\FV(λx.u′)(λx.Wx(A(u′)))

37

(b) If x ∈ FV(u)

A(λx.u) = λx.A(u)
−→+

λlxr
λx.WFV(u)\FV(u′)(A(u′)) by the i.h.

= λx.WFV(λx.u)\FV(u′)(W{x}\FV(u′)(A(u′)))
= λx.WFV(λx.u)\FV(λx.u′)(W{x}\FV(u′)(A(u′)))
−→∗

WAbs WFV(λx.u)\FV(λx.u′)(λx.W{x}\FV(u′)(A(u′)))

3. Now suppose t1 t2 −→β t′1 t2 with t1 −→β t′1, let
Σ := FV(t′1) ∩ FV(t2)
Λ := FV(t′1) \ (FV(t′1) ∩ FV(t2))
Ψ := (FV(t1) ∩ FV(t2)) \ FV(t′1)
Ξ := FV(t1) \ (FV(t′1) ∩ FV(t2))
Note in particular that FV(t1) ∩ FV(t2) is a permutation of Σ, Ψ . Corre-
spondingly, let Σl, Ψl and Σr, Ψr be fresh variables.

We have:

A(t1 t2) ≡ CΣl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(A(t1)) RΣ,Ψ
Σr,Ψr

(A(t2)))

−→+

λlxr
CΣl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(WFV(t1)\FV(t′1)(A(t′1))) RΣ,Ψ
Σr,Ψr

(A(t2)))

by the i.h.

≡ CΣl,Ψl|Σr,Ψr

Σ,Ψ (RΣ,Ψ
Σl,Ψl

(WΞ,Ψ (A(t′1))) RΣ,Ψ
Σr,Ψr

(A(t2)))

= CΣl,Ψl|Σr,Ψr

Σ,Ψ (WΞ(WΨl
(RΣ

Σl
(A(t′1)))) RΣ,Ψ

Σr,Ψr
(A(t2)))

−→∗
WApp1 CΣl,Ψl|Σr,Ψr

Σ,Ψ (WΞ(WΨl
(RΣ

Σl
(A(t′1)) RΣ,Ψ

Σr,Ψr
(A(t2)))))

−→∗
Cross WΞ(CΣl,Ψl|Σr,Ψr

Σ,Ψ (WΨl
(RΣ

Σl
(A(t′1)) RΣ,Ψ

Σr,Ψr
(A(t2)))))

−→∗
Merge WΞ(CΣl|Σr

Σ (RΨr
Ψ (RΣ

Σl
(A(t′1)) RΣ,Ψ

Σr,Ψr
(A(t2)))))

= WΞ(CΣl|Σr

Σ (RΣ
Σl

(A(t′1)) RΣ
Σr

(A(t2))))

Then it suffices to notice that Ξ = FV(t1 t2) \ FV(t′1 t2).

4. The case t1 t2 −→β t1 t′2 is similar to the previous one.

As for the types, a straightforward induction on typing derivations allows us
to show soundness of the translation A:

Lemma 12 (Encoding A preserves types). If t is a λ-term s.t. Γ `λ t : A,
then Γ ` WΓ\FV(t)(A(t)) : A.

4.2 From λlxr-calculus to λ-calculus

We now show how to encode a λlxr-term into a λ-term.

38

Definition 12. Let t be a λlxr-term. We define the function B(t) by induction
on the structure of t as follows:

B(x) := x
B(λx.t) := λx.B(t)
B(Wx(t)) := B(t)

B(Cy|z
x (t)) := B(t){y\x}{z\x}

B(t u) := B(t) B(u)
B(t〈x\u〉) := B(t){x\B(u)}

Remark that B(t) is not the xr-normal form of t since weakenings and con-
tractions disappear and thus the linearity constraints need not hold anymore.

Lemma 13 (Properties of B). The translation B enjoys the following proper-
ties.

– B(RΦ
Υ (t)) = RΦ

Υ (B(t))
– FV(B(t)) ⊆ FV(t)

The following result will allow us to project the λlxr-calculus onto the λ-
calculus, as usually done for calculi with explicit substitutions [Ros96].

Lemma 14 (Simulating λlxr-reduction).

1. If t1 ≡ t2, then B(t1) = B(t2).
2. If t1 −→B t2, then B(t1)−→∗

β B(t2).
3. If t1 −→xr t2, then B(t1) = B(t2).

Proof. 1. This is obvious for the equivalence rule Pw. For the other ones we have
to use the well-known [Bar84] substitution lemma of λ-calculus stating that
for any λ-terms t, u, v,

t{x\u}{y\v} = t{y\v}{x\u{y\v}}

2. A B-reduction step at the root of t1 corresponds exactly to a β-reduction step
at the root of B(t1). For the closure under contexts, all cases are trivial except
for:
– the contraction, for which we use the fact that if B(t)−→∗

β B(t′)
then B(t){y\x}{z\x}−→∗

β B(t′){y\x}{z\x}.
– the linear substitution operator, for which we use the two following facts:

If B(t)−→∗
β B(t′) then B(t){x\B(u)}−→∗

β B(t′){x\B(u)}.
If B(u)−→∗

β B(u′) then B(t){x\B(u)}−→∗
β B(t){x\B(u′)}.

3. We only discuss the cases where the reduction takes place at the root, all the
other ones being trivial.
– If the rule applied is WAbs, WApp1, WApp2, WSubs, Cross, Weak2, then the

property is trivial.

39

– If the rule applied is Abs, App1, App2, Var, CAbs, CApp1, CApp2, then the
property follows from the definition of substitution.

– If the rule applied is Comp, then x is not free in t since the left-hand side
is linear, so by Remark 13 x is neither free in B(t). It suffices to use the
substitution lemma as before.

– If the rule applied is Weak1, then x is not free in t since the left-hand side
is linear, so by Remark 13 x is neither free in B(t). Hence, we get on the
left-hand side B(t){x\B(u)} which is exactly B(t).

– If the rule applied is Merge, then, as before, y is not free in B(t) so that it
suffices to notice that B(t){z\w} = B(Rz

w(t)) by Remark 13.
– If the rule applies is CSubs, then it is sufficient to apply the substitution

lemma of λ-calculus.
– If the rule applied is Cont, then, as before, x is not free in B(t) so that
B(t1) = B(t){y\B(u)}{z\B(u)} by the substitution lemma. For the right-
hand side we have

B(t2) = B(t){y\B(RΦ
Ψ (u))}{z\B(RΦ

Ξ(u))}{Ψ\Φ}{Ξ\Φ}
which, using Remark 13, is equal to

B(t){y\RΦ
Ψ (B(u))}{z\RΦ

Ξ(B(u))}{Ψ\Φ}{Ξ\Φ}
which is

RΞ
Φ (RΨ

Φ(B(t){y\RΦ
Ψ (B(u))}{z\RΦ

Ξ(B(u))}))
which is equal to the left-hand side.

Corollary 1. If t1 −→λlxr t2, then B(t1)−→∗
β B(t2).

A straightforward induction on typing derivations allows us to show:

Lemma 15 (B preserves types). If t is a λlxr-term such that Γ ` t : A, then
Γ `λ B(t) : A.

We end this section by considering the composition of the encodings B and
A. Indeed, since congruent terms are mapped to the same λ-term, it makes sense
to consider B(A()), which is in fact the identity: t = B(A(t)) (straightforward
induction on t). For A(B()) we get t −→xr WFV(t)\FV(B(t))(t), which is in xr-
normal form (we leave the proof to Section 5, Lemma 18).

5 Operational Properties

In Sections 2, 3 and 4 we have already established the properties of subject
reduction, strong normalisation of simply-typed λlxr-terms and simulation of β-
reduction step by step. But a calculus which is defined in order to implement
λ-calculus is also expected to satisfy confluence and preservation of strong nor-
malisation (PSN). We prove both properties in this section.

40

5.1 Preservation of Strong Normalisation

PSN is in some sense a test property when a new calculus with explicit substitu-
tions is proposed. As mentioned in the introduction, Melliès [Mel95] has shown
that calculi such as λσ [ACCL91] and λσ⇑ [HL89] do not have PSN, that is, there
are β-strongly normalisable terms in λ-calculus which are not strongly normalis-
able when evaluated with the reduction rules of λσ and λσ⇑.

The original notion of PSN [BBLRD96] makes sense in any calculus extending
the syntax of the λ-calculus. Since we work with linear terms, it is not the case of
λlxr, so the notion of PSN has to be properly reformulated in our context as fol-
lows: every strongly normalisable λ-term is encoded into a strongly normalisable
λlxr-term, the encoding being in our case A() (Definition 11).

We establish PSN of λlxr by simulating reductions λlxr by reductions in the
λI-calculus of [Klo80,Ned73], based on earlier work by [Chu41], with its associ-
ated reduction relations β and π. We refer the reader to [Sor97,Xi97] for a survey
on different techniques based on the λI-calculus to infer normalisation proper-
ties. The proof technique that we use here is presented in [Len05,Len06], which
establishes general results, but also fully treats the case of λlxr as an example. We
give here the part that is specific to λlxr and refer the reader to [Len05,Len06] for
the proofs of the general results that we use. The technique can be summarised
as follows:

1. Define a relation I between linear λlxr-terms and λI-terms (Definition 14).
2. Show that t I T and t −→xr t′ imply t′ I T , as well as t I T and t −→B t′

imply there exists T ′ such that t′ I T ′ and T−→+
βπ T ′ (Theorem 8).

3. Deduce that if t I T and T ∈ SNβπ, then t ∈ SN
λlxr (Corollary 2).

4. Use an encoding i() : λ 7→ λI (Definition 15) such that if u ∈ SNβ then
i(u) ∈ SNβπ (Theorems 9 and 10).

5. Show that A(u) I i(u) (Theorem 11), where A(u) is the encoding given in
Section 4, and conclude PSN (Corollary 3).

This proof can be captured by the following picture:

A(u) −→∗
xr t1 −→B t2 −→∗

xr t3 −→B t4 . . .
I I I I I . . .
i(u) = T1 −→+

βπ T2 = T3 −→+
βπ T4 . . .

Figure 10. Proving PSN for λlxr

We now proceed to develop the above points needed to conclude PSN as
explained above.

Definition 13. The set ΛI of terms of the λI-calculus [Klo80] is defined by the
following grammar:

41

M ::= x | (M M) | λx.M | [M,M]

where every abstraction λx.M satisfies x ∈ FV (M).

We use [N, 〈M〉] or [N,M1, M2, . . . , Mn] to denote the term [. . . [[N, M1],M2], . . . ,Mn]
assuming that this expression is equal to N when n = 0. The term M and the
notation 〈M〉 inside [N, 〈M〉] must not be confused.

The following property is straightforward by induction on terms.

Lemma 16 (Substitutions [Klo80]). For all ΛI-terms M,N, L, we have M{x\N} ∈
ΛI and M{x\N}{y\L} = M{y\L}{x\N{y\L}} provided there is no variable
capture.

In what follows we consider two reduction rules on ΛI-terms:

(λx.M) N −→β M{x\N}
[M, N] L −→π [M L, N]

Definition 14. The relation I between linear λlxr-terms and ΛI-terms is in-
ductively given by the following rules:

x I x

t I T

λx.t I λx.T

t I T u I U

tu I TU

t I T

t I [T, N]
N ∈ ΛI

t I T u I U

t〈x\u〉 I T{x\U}
t I T

Cy|z
x (t) I T{y\x}{z\x}

t I T

Wx(t) I T
x ∈ FV (T)

The relation I enjoys the following properties.

Lemma 17. If t I M , then

1. FV (t) ⊆ FV (M)
2. M ∈ ΛI

3. x /∈ FV (t) and N ∈ ΛI implies t I M{x\N}
4. t ≡ t′ implies t′ I M
5. RΦ

Ψ (t) I RΦ
Ψ (M)

Proof. Property (1) is a straightforward induction on the proof tree as well as
Property (2) which also uses Lemma 16. Properties (3) and (5) are also proved
by induction on the tree, using Lemma 16. For Property (4):

– If Wx(Wy(t)) I M then M = [[T, 〈Ti〉], 〈Ui〉] with t I T , y ∈ FV (T) and
x ∈ FV ([T, 〈Ti〉]). Then Wy(Wx(t)) I M .

42

– If t〈x\u〉〈y\v〉 I M with y /∈ FV (u), then M = [[T{x\U}, 〈Ti〉]{y\V }, 〈Ui〉]
with t I T , u I U and v I V . By α-equivalence we can assume that x /∈
FV (T1)∪ . . .∪FV (Tm)∪FV (V), so that M = [[T, 〈Ti〉]{x\U}{y\V }, 〈Ui〉] =
[[T, 〈Ti〉]{y\V }{x\U{y\V }}, 〈Ui〉]. As a consequence t〈y\v〉〈x\u〉 I M , since
by (3) we get u I U{y\V }.

– Associativity and commutativity of contraction are very similar to the previ-
ous case.

– If Cy|z
w (p)〈x\u〉 I M , then M = [[P{y\w}{z\w}, 〈Pi〉]{x\U}, 〈Ui〉], with p I P

and u I U . We then conclude that Cy|z
w (p〈x\u〉) I M where M = [P{x\U}{y\w}{z\w}, 〈Pi{x\U}〉, 〈Ui〉].

Theorem 8 (Simulation in ΛI).

1. If t I T and t −→xr t′, then t′ I T .
2. If t I T and t −→B t′, then there is T ′ ∈ ΛI such that t′ I T ′ and T−→+

βπ T ′.

Proof. By induction on the reduction step. Remark that the case t ∼= t′ is already
considered by Lemma 17-4 so that we restrict the proof here to basic reduction
steps.

– B: (λx.p) u −→ p〈x\u〉.
Then T = [[λx.P, 〈Pi〉]U, 〈Ui〉] with p I P and u I U . We then obtain the
reduction sequence T−→∗

π [(λx.P)U, 〈Pi〉, 〈Ui〉] −→β [P{x\U}, 〈Pi〉, 〈Ui〉] =
T ′.

– Abs: (λy.p)〈x\u〉 −→ λy.p〈x\u〉. Then T = [[λy.P, 〈Pi〉]{x\U}, 〈Ui〉] with
p I P and u I U . We have T = [λy.(P{x\U}), 〈Pi{x\U}〉, 〈Ui〉].

– App1,App2: Similar to the previous case.
– Var: x〈x\u〉 −→ u. Then T = [[x, 〈Pi〉]{x\U}, 〈Ui〉] with u I U . We have

T = [U, 〈Pi{x\U}〉, 〈Ui〉].
– Weak1: Wx(p)〈x\u〉 −→ WFV (u)(p).

Then T = [[P, 〈Pi〉]{x\U}, 〈Ui〉] with p I P , u I U , and x ∈ FV (P). We
have T = [P{x\U}, 〈Pi{x\U}〉, 〈Ui〉]. Since x /∈ FV (p), then by Lemma 17-3
p I P{x\U}, and since x ∈ FV (P), FV (U) ⊆ FV (P{x\U}). By Lemma 17-1
FV (u) ⊆ FV (U) so that FV (u) ⊆ FV (P{x\U}) concludes the proof.

– Weak2: Wy(p)〈x\u〉 −→ Wy(p〈x\u〉).
Then T = [[P, 〈Pi〉]{x\U}, 〈Ui〉] with p I P , u I U , and y ∈ FV (P). We have
T = [P{x\U}, 〈Pi{x\U}〉, 〈Ui〉] and we still have y ∈ FV (P{x\U}).

– Cont: Cy|z
x (p)〈x\u〉 −→ CΨ |Υ

Φ (p〈y\RΦ
Ψ (u)〉〈z\RΦ

Υ (u)〉).
Then T = [[P{y\x}{z\x}, 〈Pi〉]{x\U}, 〈Ui〉] with p I P and u I U . We
obtain the following equality T = [P{y\U}{z\U}, 〈Pi{x\U}〉, 〈Ui〉] which can
be expressed as

T = [P{y\U ′}{z\U ′′}{Ψ\Φ}{Υ\Φ}, 〈Pi{x\U}〉, 〈Ui〉]
where U ′ = U{Φ\Ψ} and U ′′ = U{Φ\Υ}. We obtainRΦ

Ψ (u) I U ′ andRΦ
Υ (u) I U ′′

by Lemma 17-5.

43

– Comp: p〈y\v〉〈x\u〉 −→ p〈y\v〈x\u〉〉 where x ∈ FV (v). Then T = [[P{y\Q}, 〈Pi〉]{x\U}, 〈Ui〉]
with t I P , v I Q, and u I U .
We have T = [P{x\U}{y\Q{x\U}}, 〈Pi{x\U}〉, 〈Ui〉]. Notice that we obtain
t I P{x\U} by Lemma 17-3.

– WAbs, WApp1, WApp2, WSubs, Cross are straightforward because the condition
x ∈ FV (P) that is checked by Wx() is just changed into a side-condition
x ∈ FV (Q) (checked one step later), where x ∈ FV (P) implies x ∈ FV (Q).

– Merge: Cy|z
w (Wy(p)) −→ Rz

w(p).
Then T = [[P, 〈Pi〉]{y\w}{z\w}, 〈Ui〉] with t I P and y ∈ FV (P). We then
have the equality T = [[P{z\w}, 〈Pi{z\w}〉]{y\w}, 〈Ui〉] and we conclude by
Lemma 17-3.

– CAbs: Cy|z
w (λx.t) −→ λx.Cy|z

w (p).
Then T = [[λx.P, 〈Pi〉]{y\w}{z\w}, 〈Ui〉] with t I P .
We have T = [λx.(P{y\w}{z\w}), 〈Pi{y\w}{z\w}〉, 〈Ui〉].

– CApp1, CApp2: Similar to the previous case.
– CSubs: We have Cy|z

w (p〈x\u〉) I [[P{x\U}, 〈Pi〉]{y\w}{z\w}, 〈Ui〉] which is
equal to T = [[P{y\w}{z\w}{x\U{y\w}{z\w}}, 〈Pi〉{y\w}{z\w}], 〈Ui〉] by

Lemma 16. We have p〈x\Cy|z
w (u)〉 I T by Lemma 17-3, which concludes this

case.

Now for the closure under context, we use the fact that if P −→βπ P ′ then
P{x\U} −→βπ P ′{x\U}, and if moreover x ∈ FV (P) and U −→βπ U ′ then
P{x\U}−→+

βπ P{x\U ′}. The latter is useful for the closure: if p〈x\t〉 I Q and
t −→B t′, then Q = [P{x\T}, 〈Ui〉] with p I P , t I T and by the i.h. we get
T−→+

βπ T ′ such that t′ I T ′. Since x ∈ FV (p), x ∈ FV (P) by Lemma 17-1, and

hence Q−→+
βπ [P{x\T ′}, 〈Ui〉].

Corollary 2. If t I T and T ∈ SNβπ, then t ∈ SN
λlxr.

Proof. Suppose that t /∈ SN
λlxr. Then there is an infinite λlxr-reduction sequence

σ starting at t. Since xr is terminating (Lemma 1), then there are infinite B-steps
in the sequence σ, so that it is of the form

σ : t−→∗
xr −→B t1 · · · −→∗

xr −→B ti−→∗
xr −→B · · ·

By Theorem 8 we can construct an infinite βπ-reduction sequence

T−→+
βπ T1−→+

βπ · · · −→+
βπ Ti−→+

βπ · · ·
where ti I Ti. This contradicts the hypothesis T ∈ SNβπ.

Definition 15 ([Len05]). We encode the λ-calculus into ΛI as follows:

i(x) = x
i(λx.t) = λx.i(t) x ∈ FV (t)
i(λx.t) = λx.[i(t), x] x /∈ FV (t)
i(t u) = i(t) i(u)

44

Theorem 9 ([Len05]). For any λ-term t, if t ∈ SNβ, then i(t) ∈ WNβπ.

Theorem 10 ([Ned73]). If i(t) ∈ WNβπ then i(t) ∈ SNβπ.

Theorem 11. For any λ-term u, A(u) I i(u).

Proof. By induction on u:

– x I x trivially holds.
– If u = λx.t , thenA(t) I i(t) holds by the i.h. Therefore, we obtain λx.A(t) I λx.i(t)

and λx.Wx(A(t)) I λx.[i(t), x].
– If u = (t u) , then A(t) I i(t) and A(u) I i(u) hold by the i.h. and
RΦ

Υ (A(t)) I RΦ
Υ (i(t)) andRΦ

Υ (A(u)) I RΦ
Υ (i(u)) by Lemma 17-5. SinceRΦ

Υ (i(t)){Υ\Φ} =

i(t) (and the same for i(u)), we can then conclude CΨ |Υ
Φ (RΦ

Ψ (A(t)) RΦ
Υ (A(u))) I i(t) i(u).

Corollary 3 (PSN). For any λ-term t, if t ∈ SNβ, then A(t) ∈ SN
λlxr.

Proof. If t ∈ SNβ, then i(t) ∈ SNβπ by Theorems 9 and 10. As A(t) I i(t) by
Theorem 11, then we conclude A(t) ∈ SN

λlxr by Corollary 2.

5.2 Confluence

We now use both simulations presented in Section 4 to derive the confluence prop-
erty for systems xr and λlxr via a generalisation of the Interpretation Method [Har87].
We start by stating a result that relates xr-normal forms to the composition of
encodings A and B.

Theorem 12. If t is an xr-normal form, then t ≡ WFV(t)\FV(B(t))(A(B(t))).

Proof. The proof may proceed by induction since a subterm of an xr-normal form
is an xr-normal form:

– If t = x, then x = A(B(x)) and FV(t) \ FV(B(t)) = ∅
– If t = λx.u, then we know u ≡ WFV(u)\FV(B(u))(A(B(u))) by the i.h. But t is

an xr-normal form, so FV(u) \ FV(B(u)) ⊆ {x}, otherwise it can be reduced
by WAbs. Now, if FV(u) \ FV(B(u)) = ∅, then also FV(t) \ FV(B(t)) = ∅ and
the claim t ≡ A(B(λx.u)) immediately holds. Otherwise, FV(u) \ FV(B(u)) =
{x} and t ≡ λx.Wx(A(B(u))) = A(B(t)).

– If t = u v, t ≡ WFV(u)\FV(B(u))(A(B(u))) WFV(v)\FV(B(v))(A(B(v))) by the i.h.
But t is a xr-normal form, so

FV(u) \ FV(B(u)) = FV(v) \ FV(B(v)) = ∅

(otherwise it could be reduced by WApp1 or WApp1). Hence, FV(t) = FV(B(t))
and t ≡ A(B(u)) A(B(v)) ≡ A(B(t)) since u and v have no variable in com-
mon.

– The case t = u〈x\v〉 is not possible by Lemma 2.

45

– If t = Wx(u), t ≡ Wx(WFV(u)\FV(B(u))(A(B(u)))) by the i.h. This last term is
equal to WFV(t)\FV(B(t))(A(B(t))) since x ∈ FV(t) but x /∈ FV(B(t)).

– If t = Cy|z
x (u), t ≡ Cy|z

x (WFV(u)\FV(B(u))(A(B(u)))) by the i.h.

We first remark that y and z are free in u since t is linear, and also x is not
free in u, hence neither is it free in B(u).

Secondly, since t is an xr-normal form, we have FV(u) \ FV(B(u)) = ∅ (oth-
erwise t could be reduced by Cross or Merge). Hence, y and z are free in B(u)

and t ≡ Cy|z
x (A(B(u))).

But B(t) = B(u){y\x}{z\x}, so x is free in B(t). We conclude FV(t) =
FV(B(t)).

Third, notice that B(u) can be neither a variable (otherwise t would not
be linear) nor an abstraction (otherwise t could be reduced by CAbs), so
B(u) = w v,

and A(B(u)) = CΥ |Ψ
Φ (RΦ

Υ (A(w)) RΦ
Ψ (A(v))) with Φ = FV(w)∩FV(v). Hence,

t ≡ Cy|z
x (CΥ |Ψ

Φ (RΦ
Υ (A(w)) RΦ

Ψ (A(v)))).

Now it would suffice that y ∈ FV(w) \ FV(v) and z ∈ FV(v) \ FV(w) to
prove that this term is in fact

A(w{y\x} v{z\x}) = A(B(u){y\x}{z\x}) = A(B(t))

We are going to prove that this is the case (or the symmetrical case when y
and z are swapped): we know that they are free in w v.

Suppose that one of them, say y, is both in w and in v. Then y ∈ Φ, so

t ≡ Cy|z
x (C(Υ ′,y′)|(Ψ ′,y′′)

Φ′,y (RΦ
Υ (A(w)) RΦ

Ψ (A(v))))

which we can rearrange into

t ≡ Cy|y′′
x (C(Υ ′,y′)|(Ψ ′,z)

Φ′,y (RΦ
Υ (A(w)) RΦ

Ψ (A(v))))

if z ∈ FV(w), or t ≡ Cy|y′
x (C(Υ ′,z)|(Ψ ′,y′′)

Φ′,y (RΦ
Υ (A(w)) RΦ

Ψ (A(v)))) if z ∈ FV(v).

In the first case, t can be reduced by CApp1 (on Cy′|z
y ()), and in the second by

CApp2 (on Cz|y′′
y ()). In both cases, it contradicts the fact that t is a xr-normal

form. Hence, y /∈ Φ (and similarly z /∈ Φ).

Now suppose that both y and z are on the same side, say in w. Then t can be
reduced by CApp1 on Cy|z

x (). Similarly, they cannot be both in v (t could be
reduced by CApp2). Hence one of them is only in w, and the other is only in
v, as required.

Lemma 18. The system xr is confluent and terminating, and the xr-normal form
of t is WFV(t)\FV(B(t))(A(B(t))).

46

Proof. By Theorem 1 the system xr is terminating so that we can take any
xr-normal form t′ of t such that t−→∗

xr t′. We then have FV(t) = FV(t′) by
Lemma 1 and B(t) = B(t′) by Lemma 14. Since t′ is an xr-normal form, then t′ ≡
WFV(t′)\FV(B(t′))(A(B(t′))) by Theorem 12. Hence t′ ≡ WFV(t)\FV(B(t))(A(B(t))).

To show confluence let us suppose t−→∗
xr t1 and t−→∗

xr t2. Let us take xr-
normal forms t′1 and t′2 such that ti−→∗

xr t′i. By the previous remark both t′1 and
t′2 are congruent to WFV(t)\FV(B(t))(A(B(t))) which concludes the proof.

Theorem 13. The system λlxr is confluent.

Proof. Suppose N ≡ N ′, N−→∗
λlxr N1 and N ′−→∗

λlxr N2. We get B(N) = B(N ′)
and B(N)−→∗

β B(N1) and B(N ′)−→∗
β B(N2) using Lemma 14. Now, confluence of

−→β gives us a λ-term M such that B(N1)−→∗
β M and B(N2)−→∗

β M . Thus, by
Theorem 7, there exist two lists of variables Φ1, Φ2 such thatA(B(N1))−→∗

λlxr WΦ1(A(M))

and A(B(N2))−→∗
λlxr WΦ2(A(M)).

We can now reduce N1 and N2 to their respective xr-normal form so that
Lemma 18 provides Φ′1 and Φ′2 such that

N1−→∗
xr WΦ′1(A(B(N1)))−→∗

λlxr WΥ1(A(M))

N2−→∗
xr WΦ′2(A(B(N2)))−→∗

λlxr WΥ2(A(M))

for Υ1 = Φ′1, Φ1 and Υ2 = Φ′2, Φ2.
The relation −→

λlxr preserves the set of free variables by Lemma 1, so that

FV(WΥ1(A(M))) = FV(N1) = FV(N) = FV(N ′)
FV(WΥ2(A(M))) = FV(N2) = FV(N ′) = FV(N)

We can conclude that Υ1 is a permutation of Υ2, hence N1 and N2 both reduce
to the same term up to ≡, as required.

6 Conclusion and further work

This paper extends the explicit substitution paradigm by showing how the proof-
nets of Linear Logic can be suitable as a logical model of a (typed) calculus with
operators for erasure, duplication and substitution.

Our term calculus is expressed by a simple syntax, and enjoys natural oper-
ational semantics via a well-established [Ter03] notion of reduction modulo a set
of equations. Soundness and completeness of (typed) λlxr are shown with respect
to its proof-nets model.

Although this paper uses typed proof-nets, our (untyped) system could also be
put in relation with an appropriate notion of reduction in formalism of untyped
proof-nets. This would provide soundness and completeness w.r.t. an untyped
model. However, one of the main results of this paper is strong normalisation of

47

typed λlxr-terms, and this can only be obtained from typed proof-nets, which we
therefore chose to use for this paper.

In contrast to other term calculi in the literature, λlxr has full composition
and enjoys PSN. Moreover, λlxr enjoys confluence, strong normalisation of simply-
typed terms and step by step simulation of β-reduction. All these properties are
shown by considering the complex notion of reduction modulo an equivalence
which we have associated to λlxr-terms.

Weakening operators are a useful tool to handle garbage collection. Indeed,
free variables are never lost and weakening operators are pulled out to the top-
level during computation.

Our soundness and completeness proofs illustrate how the following rules
{App2, Comp, Var, Weak1, Cont} tightly correspond to the manipulation of boxes
in proof-nets. More precisely, App2 and Comp in λlxr correspond to b-b in PN ,
Var to d-b, Weak1 to w-b and Cont to c-b.

It is worth mentioning the calculus obtained by turning the equation Pcs into
a reduction rule (from left to right) and by eliminating reduction rules WSubs
and CSubs enjoys exactly the same properties as the calculus presented in this
paper, namely Theorems 2,4,7,1,13, and Corollary 3. However, these rules seem
to be necessary for the confluence on meta terms (ongoing work).

We think that many points raised in this work deserve further development.
The first one concerns the study of reduction strategies well-adapted to handle the
operators for substitution, erasure and duplication. This may take into account
the notion of weak reduction used to implement functional programming [LM99].

Proof techniques used in the literature to show PSN of calculi with explicit
substitutions (zoom-in [ABR00], minimality [BBLRD96], labelled RPO [BG99],
PSN by standardisation [KOvO01], or intersection types [DL03]) are not all easy
to adapt/extend to reduction modulo and other formalisms. We believe that the
proof technique used here is really flexible since only a small part of the proof
depends on the calculus itself: the simulation result 8 and the start relation
result (Theorem 11). We think however that a more direct proof of PSN would
be possible by incorporating a memory operator inside λlxr in such a way that the
resulting calculus becomes non-erasing. This would require for example a proof to
show that weak normalisation implies strong normalisation in the new calculus.

Using the PSN result, we believe that we can characterise very neatly the
strongly normalising terms of λlxr as the terms typable with intersection types, as
it the case in λ-calculus as well as in the explicit substitution calculus λx [LLD+04].

First-order term syntax for λlxr via de Bruijn indices, or other special notation
to avoid α-conversion as for example explicit scoping [HvO03] or also director
strings [SFM03], would make implementation easier and bring the term calculus
even closer to the proof-nets model which has no notion of binding.

Connections with similar approaches relating graph formalisms to term cal-
culi, as for example that of Hasegawa [Has99] also merits further investigations.

48

Another interesting issue would be to study the combination of λlxr with other
(higher-order) reduction systems, particularly with eta-reduction (contraction or
expansion) rules. Because of the linearity constraints, no additional side-condition
is needed to specify such kind of rules λx.t x←→∗ t.

Acknowledgements

We are very grateful to R. Dyckhoff, J. Forest, B. Guillaume, O. Laurent, P. Les-
canne, R. Matthes, J. Mc Kinna and V. van Oostrom for valuable comments and
suggestions.

References

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111:3–57, 1993.

[ABR00] A. Arbiser, E. Bonelli, and A. Ŕıos. Perpetuality in a lambda calculus with explicit sub-
stitutions and composition. Workshop Argentino de Informática Teórica (WAIT), JAIIO,
2000.

[ACCL91] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 4(1):375–416, 1991.

[AG98] A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming
Languages, volume 45 of Cambridge Tracts in Theoret. Comput. Sci. Cambridge University
Press, 1998.

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland, 1984. Revised Edition.

[BBdH93] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic
linear logic. In J. F. Groote and M. Bezem, editors, Proceedings of the 1st International
Conference of Typed Lambda Calculus and Applications, volume 664 of Lecture Notes in
Computer Science, pages 75–90. Springer-Verlag, May 1993.

[BBLRD96] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit
substitutions which preserves strong normalisation. Journal of Functional Programming,
6(5):699–722, 1996.

[BG99] R. Bloo and H. Geuvers. Explicit substitution: on the edge of strong normalization. The-
oretical Computer Science, 211(1-2):375–395, 1999.

[Bon01] E. Bonelli. Perpetuality in a named lambda calculus with explicit substitutions. Math.
Structures Comput. Sci., 11(1):47–90, 2001.

[BR95] R. Bloo and K. Rose. Preservation of strong normalization in named lambda calculi with
explicit substitution and garbage collection. In Computing Science in the Netherlands,
pages 62–72. Netherlands Computer Science Research Foundation, 1995.

[Chu41] A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
[CK99] S. Cerrito and D. Kesner. Pattern matching as cut elimination. In G. Longo, editor, 14th

Annual IEEE Symposium on Logic in Computer Science (LICS), pages 98–108. IEEE
Computer Society Press, July 1999.

[Coq] The Coq Proof Assistant. http://coq.inria.fr/.
[DCG99] R. Di Cosmo and S. Guerrini. Strong normalization of proof nets modulo structural

congruences. In P. Narendran and M. Rusinowitch, editors, 10th International Conference
on Rewriting Techniques and Applications, volume 1631 of Lecture Notes in Computer
Science, pages 75–89. Springer-Verlag, July 1999.

[DCK97] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut elim-
ination in proof nets. In 12th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 35–46. IEEE Computer Society Press, July 1997.

49

[DCKP00] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions. In
J. Tiuryn, editor, Foundations of Software Science and Computation Structures (FOS-
SACS), volume 1784 of Lecture Notes in Computer Science, pages 63–81. Springer-Verlag,
Mar. 2000.

[DCKP03] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit substitutions. Math.
Structures Comput. Sci., 13(3):409–450, 2003.

[DG01] R. David and B. Guillaume. A λ-calculus with explicit weakening and explicit substitution.
Math. Structures Comput. Sci., 11:169–206, 2001.

[DHK95] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitutions.
In Proceedings of the Symposium on Logic in Computer Science (LICS), 1995.

[DL03] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit substitutions.
Math. Structures Comput. Sci., 13(1):55–85, 2003.

[FM99] M. Fernández and I. Mackie. Closed reductions in the lambda calculus. In J. Flum and
M. Rodŕıguez-Artalejo, editors, Proceedings of the 13th Annual Conference of the European
Association for Computer Science Logic (CSL), volume 1683 of Lecture Notes in Computer
Science. Springer-Verlag, Sept. 1999.

[For02] J. Forest. A weak calculus with explicit operators for pattern matching and substitution. In
S. Tison, editor, 13th International Conference on Rewriting Techniques and Applications,
volume 2378 of Lecture Notes in Computer Science, pages 174–191. Springer-Verlag, July
2002.

[GdR00] N. Ghani, V. de Paiva, and E. Ritter. Linear explicit substitutions. Logic Journal of the
Interest Group of Pure and Applied Logic, 8(1):7–31, 2000.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[GL98] J. Goubault-Larrecq. A proof of weak termination of typed lambda sigma-calculi. In

T. Altenkirch, W. Naraschewski, and B. Reus, editors, Proceedings of the International
Workshop Types for Proofs and Programs, volume 1512 of Lecture Notes in Computer
Science, pages 134–151. Springer-Verlag, Dec. 1998.

[Gue99] S. Guerrini. A general theory of sharing graphs. Theoret. Comput. Sci., 227(1–2):99–151,
1999.

[Har87] T. Hardin. Résultats de confluence pour les règles fortes de la logique combinatoire
catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris VII,
1987.

[Has99] M. Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec.
Distinguished Dissertation Series. Springer-Verlag, Kyoto University, Japan, 1999. PhD
Thesis.

[Her94] H. Herbelin. A λ-calculus structure isomorphic to sequent calculus structure. In L. Pa-
cholski and J. Tiuryn, editors, Proceedings of the 8th Annual Conference of the European
Association for Computer Science Logic (CSL), volume 933 of Lecture Notes in Computer
Science. Springer-Verlag, Sept. 1994.

[HL89] T. Hardin and J.-J. Lévy. A confluent calculus of substitutions. In France-Japan Artificial
Intelligence and Computer Science Symposium, 1989.

[HMP96] T. Hardin, L. Maranget, and B. Pagano. Functional back-ends within the lambda-sigma
calculus. In R. K. Dybvig, editor, Proceedings of the ACM International Conference on
Functional Programming. ACM Press, May 1996.

[HOL] The HOL system. http://www.dcs.gla.ac.uk/~tfm/fmt/hol.html.
[Hue80] G. Huet. Confluent reductions: abstract properties and applications to term rewriting

systems. Journal of the ACM, 27(4):797–821, 1980.
[HvO03] D. Hendriks and V. van Oostrom. Adbmal. In C. Kirchner, editor, 19th Conference on

Automated Deduction (CADE), volume 2741 of Lecture Notes in Artificial Intelligence,
pages 136–150. Springer-Verlag, July 2003.

[Klo80] J.-W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Centre Tracts
127, CWI, Amsterdam, 1980.

[KOvO01] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. Uniform Normalization Beyond Orthog-
onality. In A. Middeldorp, editor, 12th International Conference on Rewriting Techniques
and Applications, volume 2051 of Lecture Notes in Computer Science, pages 122–136.
Springer-Verlag, May 2001.

50

[KR95] F. Kamareddine and A. Rı́os. A λ-calculus à la de Bruijn with explicit substitutions. In
D. Swierstra and M. Hermenegildo, editors, Proceedings of the 7th International Symposium
on Proceedings of the International Symposium on Programming Language Implementation
and Logic Programming, volume 982 of Lecture Notes in Computer Science, pages 45–62.
Springer-Verlag, Sept. 1995.

[Laf90] Y. Lafont. Interaction nets. In 17th Annual ACM Symposium on Principles of Program-
ming Languages (POPL), pages 95–108. ACM, 1990.

[Laf95] Y. Lafont. From proof-nets to interaction nets. In Advances in Linear Logic, volume 222 of
London Mathematical Society, Lecture Notes, pages 225–247. Cambridge University Press,
1995.

[Lau03] O. Laurent. Polarized proof-nets and lambda-mu calculus. Theoretical Computer Science,
1(290):161–188, 2003.

[Len05] S. Lengrand. Induction principles as the foundation of the theory of normalisation: Con-
cepts and techniques. Technical report, PPS laboratory, Université Paris 7, Mar. 2005.
Available at http://hal.ccsd.cnrs.fr/ccsd-00004358.

[Len06] S. Lengrand. Normalisation and Equivalence in Proof Theory and Type Theory. PhD
thesis, Université Denis Diderot Paris VII and University of St Andrews, 2006.

[LLD+04] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Inter-
section types for explicit substitutions. Inform. and Comput., 189(1):17–42, 2004.

[LM99] J.-J. Lévy and L. Maranget. Explicit substitutions and programming languages. In R. R.
C. Pandu Rangan, Venkatesh Raman, editor, Foundations of Software Technology and
Theoretical Computer Science, volume 1738 of Lecture Notes in Computer Science, pages
181–200. Springer-Verlag, Dec. 1999.

[Mel95] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Proceedings of the 2nd International Conference of
Typed Lambda Calculus and Applications, volume 902 of Lecture Notes in Computer Sci-
ence, pages 328–334. Springer-Verlag, Apr. 1995.

[Ned73] R. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured
Types. PhD thesis, Eindhoven University of Technology, 1973.

[Nip91] T. Nipkow. Higher-order critical pairs. In 6th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 342–349. IEEE Computer Society Press, July 1991.

[OH06] Y. Ohta and M. Hasegawa. A terminating and confluent linear lambda calculus. In
F. Pfenning, editor, 17th International Conference on Rewriting Techniques and Applica-
tions, Lecture Notes in Computer Science. Springer-Verlag, Aug. 2006. To appear.

[Par92] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In
A. Voronkov, editor, International Conference on Logic Programming and Automated Rea-
soning, volume 624 of Lecture Notes in Computer Science, pages 190–201. Springer-Verlag,
July 1992.

[Pol04] E. Polonovski. Substitutions explicites, logique et normalisation. Thèse de doctorat, Uni-
versité Paris 7, 2004.

[Reg94] L. Regnier. Une équivalence sur les lambda-termes. Theoretical Computer Science,
2(126):281–292, 1994.

[Ros96] K. Rose. Explicit substitution - tutorial & survey. Available as http://www.brics.dk/

LS/96/3/BRICS-LS-96-3/BRICS-LS-96-3.html, 1996.
[RR97] S. Ronchi della Rocca and L. Roversi. Lambda calculus and intuitionistic linear logic.

Studia Logica, 59(3), 1997.
[SFM03] F.-R. Sinot, M. Fernández, and I. Mackie. Efficient reductions with director strings. In

R. Nieuwenhuis, editor, 14th International Conference on Rewriting Techniques and Appli-
cations, volume 2706 of Lecture Notes in Computer Science, pages 46–60. Springer-Verlag,
June 2003.

[Sor97] M. H. Sorensen. Strong normalization from weak normalization in typed lambda-calculi.
Inform. and Comput., 37:35–71, 1997.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoret. Comput. Sci.
Cambridge University Press, 2003.

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
2000.

51

[vO01] V. van Oostrom. Net-calculus. Course Notes available on http://www.phil.uu.nl/

~oostrom/typcomp/00-01/net.ps, 2001.
[VW01] R. Vestergaard and J. Wells. Cut rules and explicit substitutions. Math. Structures Com-

put. Sci., 11(1):131–168, 2001.
[Wad93] P. Wadler. A syntax for linear logic. In S. D. Brookes, M. G. Main, A. Melton, M. W.

Mislove, and D. A. Schmidt, editors, The 9th International Conference on the Mathematical
Foundations of Programming Semantics, volume 802 of Lecture Notes in Computer Science,
pages 513–529. Springer-Verlag, Apr. 1993.

[Xi97] H. Xi. Weak and strong beta normalisations in typed lambda-calculi. In P. de Groote,
editor, Proceedings of the 3th International Conference of Typed Lambda Calculus and
Applications, volume 1210 of Lecture Notes in Computer Science, pages 390–404. Springer-
Verlag, Apr. 1997.

52

Remark 1 The notions of multiplicity and term complexity are invariant under
conversion by ≡.

Proof. Indeed, as two non-trivial cases, let us consider the case Cx|v
w (Cy|z

x (t)) ≡
Cx|y

w (Cz|v
x (t)) for which we have:

Mw(Cx|v
w (Cy|z

x (t))) = My(t) +Mz(t) +Mv(t) + 2 = Mw(Cx|y
w (Cz|v

x (t)))

and let us consider the case t〈x\u〉〈y\v〉 ≡ t〈y\v〉〈x\u〉, where y /∈ FV (u) and x /∈
FV (v), for which we have:

– if w ∈ FV (t) \ {x, y}, then
Mw(t〈x\u〉〈y\v〉) = Mw(t) = Mw(t〈y\v〉〈x\u〉);

– if w ∈ FV (u), then
Mw(t〈x\u〉〈y\v〉) = Mx(t) · (Mw(u) + 1) = Mw(t〈y\v〉〈x\u〉);

– if w ∈ FV (v), then
Mw(t〈x\u〉〈y\v〉) = My(t) · (Mw(v) + 1) = Mw(t〈y\v〉〈x\u〉).
We then obtain

S(t〈x\u〉〈y\v〉) = S(t) +Mx(t) · S(u) +My(t) · S(v) = S(t〈y\v〉〈x\u〉)

Lemma 3 (Decrease of multiplicities and term complexities).

– If t −→xr u, then for all w ∈ FV(t), Mw(t) ≥Mw(u).
– If t −→xr u, then S(t) ≥ S(u). Moreover,

if t −→Var,Weak1,Cont,Comp u, then S(t) > S(u).

Proof. – Since the congruence steps preserve the multiplicity, we only have to
consider the basic reduction relation. This is done by induction on the reduc-
tion step, the base cases being shown in Figure 11. Note that we use the fact
that Mx(t) > 0 (provided x ∈ FV(t)) and S(t) > 0.

– Since the congruence steps preserve the term complexity, we only have to
consider the basic reduction relation. The proof can be done by structural
induction on terms. The inductive cases are straightforward by using by the
first point. We show in Figure 12 the root reductions.
The last line holds because the term complexity measure forgets weakenings,
contractions, abstractions and applications.

53

Left-hand side Right-hand side

(Var) x〈x\u〉 −→ u
Mw(u) + 1 > Mw(u)

(Weak1) Wx(t)〈x\u〉 −→ WFV (u)(t)
w ∈ FV (u) Mw(u) + 1 > 1
w ∈ FV (t) \ {x} Mw(t) = Mw(t)

(Cont) Cy|z
x (t)〈x\u〉 −→ CΨ |Υ

Φ (t〈y\RΦ
Ψ (u)〉〈z\RΦ

Υ (u)〉)
w ∈ FV (u) = Φ (My(t) +Mz(t) + 1) · (Mw(u) + 1) > My(t) · (Mw(u) + 1) +Mz(t) · (Mw(u) + 1) + 1
w ∈ FV (t) \ {x, y, z} Mw(t) = Mw(t)

(Comp) t〈y\v〉〈x\u〉 −→ t〈y\v〈x\u〉〉
w ∈ FV (t) \ {y} Mw(t) = Mw(t)
w ∈ FV (v) \ {x} My(t) · (Mw(v) + 1) = My(t) · (Mw(v) + 1)
w ∈ FV (u) My(t) · (Mx(v) + 1) · (Mw(u) + 1) > My(t) · (Mx(v) · (Mw(u) + 1) + 1)

Other x t〈x\u〉 −→ t′

w ∈ FV (t) \ {x} Mw(t) = Mw(t)
w ∈ FV (u) Mw(u) = Mw(u)

(Merge) Cy|z
w′ (Wy(t)) −→ Rz

w′(t)
w = w′ Mz(t) + 2 > Mz(t)
w 6= w′ Mw(t) = Mw(t)

(WSubs) t〈x\Wy(u)〉 −→ Wy(t〈x\u〉)
w ∈ FV (t) \ {x} Mw(t) = Mw(t)
w = y Mx(t) · (1 + 1) > 1
w ∈ FV (u) Mx(t) · (Mw(u) + 1) = Mx(t) · (Mw(u) + 1)

(CSubs) Cx|y
z (t〈y′\u〉) −→ t〈y′\Cx|y

z (u)〉
w ∈ FV (t) \ {y′} Mw(t) = Mw(t)
w = z My′(t) · (Mx(u) +My(u) + 2) + 1 > My′(t) · (Mx(u) +My(u) + 1 + 1)
w ∈ FV (u) My′(t) · (Mw(u) + 1) = My′(t) · (Mw(u) + 1)

Other r t −→ t′

Mw(t) = Mw(t′)

Figure 11. Decrease of multiplicities

Left-hand side Right-hand side

x〈x\u〉 −→Var u
1 + S(u) > S(u)

Wx(t)〈x\u〉 −→Weak1 WFV (u)(t)
S(t) + S(u) > S(t)

Cy|z
x (t)〈x\u〉 −→Cont CΨ |Υ

Φ (t〈y\RΦ
Ψ (u)〉〈z\RΦ

Υ (u)〉)
S(t) + S(u) · (My(t) +Mz(t) + 1) > S(t) + S(u) · My(t) + S(u) · Mz(t)

t〈y\v〉〈x\u〉 −→Comp t〈y\v〈x\u〉〉
S(t) +My(t) · (S(v) + (Mx(v) + 1) · S(u)) > S(t) +My(t) · (S(v) +Mx(v) · S(u))

t −→Other xr t′

S(t) = S(t′)

Figure 12. Decrease of term complexity

54

Remark 2 The polynomial interpretation I() is invariant under conversion by
≡.

Proof. The polynomial interpretation is blind to the variables’ names, so it is
trivially sound with respect to α-equivalence, and rules Ac, Cc, Pc and Pw. For
the equivalence rule Ps we have by commutativity of multiplication the following
equality:

I(t〈x\u〉〈y\v〉) = I(t) · I(u) · I(v) = I(t〈y\v〉〈x\u〉)
For the equivalence rule Pcs we have:

I(Cy|z
w (t)〈x\u〉) = 2 · I(t) · I(u) + 2 · I(t) = I(Cy|z

w (t〈x\u〉))
Lemma 4 (Decrease of I()). If t −→xr u and the reduction is neither Var,
Weak1, Cont nor Comp, then I(t) > I(u).

Proof. Since the congruence steps preserve the interpretation, we only have to
consider the basic reduction relation. The proof can be done by structural induc-
tion on terms. The cases of root reductions are:

Rule left-hand side right-hand side

(Abs) (2 · I(t) + 2) · (I(u) + 1) > 2 · I(t) · (I(u) + 1) + 2
(App1) (2 · (I(t) + I(v)) + 2) · (I(u) + 1) > 2 · (I(t) · (I(u) + 1) + I(v)) + 2
(App2) (2 · (I(t) + I(v)) + 2) · (I(u) + 1) > 2 · (I(t) + I(v) · (I(u) + 1)) + 2
(Weak2) (I(t) + 1) · (I(u) + 1) > I(t) · (I(u) + 1) + 1
(WAbs) 2 · (I(t) + 1) + 2 > 2 · I(t) + 2 + 1
(WApp1) 2 · (I(u) + 1 + I(v)) + 2 > 2 · (I(u) + I(v)) + 2 + 1
(WApp2) 2 · (I(u) + I(v) + 1) + 2 > 2 · (I(u) + I(v)) + 2 + 1
(WSubs) I(t) · (I(u) + 1 + 1) > I(t) · (I(u) + 1) + 1
(Merge) 2 · (I(t) + 1) > I(t)
(Cross) 2 · (I(t) + 1) > 2 · I(t) + 1
(CAbs) 2 · (2 · I(t) + 2) > 2 · (2 · I(t)) + 2
(CApp1) 2 · (2 · (I(t) + I(u)) + 2) > 2 · (2 · I(t) + I(u)) + 2
(CApp2) 2 · (2 · (I(t) + I(u)) + 2) > 2 · (I(t) + 2 · I(u)) + 2
(CSubs) 2 · I(t) · (I(u) + 1) > I(t) · (2 · I(u) + 1)

Lemma 8 Let t be a λlxr-term and let f be a final-modulo node of NT (t).

1. If f is a W-node whose c edge is labelled with x, then there exist a term t′

such that t ∼= Wx(t
′) and |t| = |Wx(t

′)|.
2. If f is a C-node whose c edge is labelled with x, then there exist a term t′

such that t ∼= Cy|z
x (t′) and |t| = |Cy|z

x (t′)|.
3. If f is an O-node, then there exist a term t′ and a variable x such that t ∼= λx.t′

and |t| = |λx.t′|.

55

Proof. By induction on |t|. We start by using Lemma 7 and thus assume t to be
of a particular shape (without increasing its size).

– If t ∼= λy.u, then if f is a final-modulo O-node of NT (t), (3) trivially holds.
Otherwise, f is a final-modulo node of NT (u).
If f is a W-node, we have u ∼= Wx(u

′) and |u| = |Wx(u
′)| by the i.h.(1) so

that t ∼= λy.Wx(u
′) and |t| = |λy.Wx(u

′)|. If x 6= y, then λy.Wx(u
′) ∼=WAbs

Wx(λy.u′) and we are done. If x = y, the W-node f is not final-modulo in
NT (t) which leads to a contradiction.

If f is a C-node, we have u ∼= Cy|z
x (u′) and |u| = |Cy|z

x (u′)| by the i.h.(2) so

that t ∼= λw.Cy|z
x (u′) and |t| = |λw.Cy|z

x (u′)|. If x 6= w, then λw.Cy|z
x (u′) ∼=CAbs

Cy|z
x (λx.u′) and we are done. If x = w, the C-node f is not final-modulo in

NT (t) which leads to a contradiction.
– If t ∼= Wy(u), then if f is a W-node labelled with x = y, (1) trivially holds.

Otherwise, x 6= y and f is also final-modulo in NT (u).
If f is a W-node labelled by a variable x 6= y, we have u ∼= Wx(u

′) and
|u| = |Wx(u

′)| by the i.h.(1), thus, Wy(u) ∼= Wy(Wx(u
′)) ∼=Pw

Wx(Wy(u
′))

which concludes this case.
The cases where f is a O-node or a C-node are very similar.

– If t ∼= Cy′|z′
w (u), then if f is a C-node labelled with x = w, (2) trivially holds.

Otherwise, f is already final-modulo in NT (u).
If f is a W-node, we have u ∼= Wx(u

′) and |u| = |Wx(u
′)| by the i.h.(1) so that

t ∼= Cy′|z′
w (Wx(u

′)). If x 6= y′, z′, then Cy′|z′
w (Wx(u

′)) ∼=Cross Wx(Cy′|z′
w (u′)) and

we are done. Otherwise, the W-node f is not final-modulo in NT (t) which
leads to a contradiction.
The cases where f is a O-node or a C-node labelled with a variable different
from w are very similar.

– Suppose t ∼= (xt1 . . . tn)〈xn+1\tn+1〉 . . . 〈xm\tm〉.
We know that if f is a final-modulo W/C/O node of NT (t), then either
it was already in T (t) or it was created by the TB-reduction of T (t). But
the only TB-reductions that can be applied on T (t) are either the Ax-cut
reduction steps concerning the sequence of applications, which do not create
new final-modulo nodes, or reductions inside some box containing T (ti) for
some i. As a consequence, f cannot be a O-node, and it is also final-modulo
in some NT (tj).
Hence, we apply the induction hypothesis on tj to get tj ∼= Wx(t

′
j) (resp.

tj ∼= Cy|z
x (t′j)) with the same size as tj. Let t′i = ti for all i 6= j. If j ≤ n,

we use rules WApp2, WApp1, Weak2 (resp. CApp2, CApp1, Pcs) to get t ∼=
Wx((xt′1 . . . t′n)〈xn+1\t′n+1〉 . . . 〈xm\t′m〉) (resp. t ∼= Cy|z

x ((xt′1 . . . t′n)〈xn+1\t′n+1〉 . . . 〈xm\t′m〉)).
Otherwise, we use rules WSubs, Weak2 (resp. CSubs, Pcs).

– Suppose t ∼= Wv(u)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (u) for all i.
Again, the only TB-reductions that can be applied on T (t) are either in T (u)
or inside some box containing T (ui) for some i.

56

In the former case we use the induction hypothesis on u to get u ∼= Wx(u
′)

(resp. u ∼= Cy|z
x (u′) or u ∼= λx.u′). Then we use rules Weak2 (resp. Cross, Pcs

or WAbs, Abs) to get t ∼= Wx(Wv(u
′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉) (resp. t ∼=

Cy|z
x (Wv(u

′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉) or t ∼= λx.(Wv(u
′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉)).

In the latter case, notice that f cannot be a O-node and we use the induc-
tion hypothesis on uj to get uj

∼= Wx(u
′
j) (resp. uj = Cy|z

x (u′j)). Let u′i = ui

for all i 6= j. We use rules WSubs, Weak2 (resp. CSubs, Pcs), and we get t ∼=
Wx(Wv(u)〈v\u′0〉〈x1\u′1〉 . . . 〈xm\u′m〉) (resp. t ∼= Cy|z

x (Wv(u)〈v\u′0〉〈x1\u′1〉 . . . 〈xm\u′m〉)).
– Suppose t ∼= Cv1|v2

v (u)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉 with xi 6∈ FV (u) for all i.
Again, the only TB-reductions that can be applied on T (t) are either inside
T (u) or inside a some box containing T (ui) for some i.
In the former case we use the induction hypothesis on u to get u ∼= Wx(u

′)
(resp. u ∼= Cy|z

x (u′) or u ∼= λx.u′). Then we use rules Cross, Weak2 (resp. Pcs
or CAbs, Abs) to get t ∼= Wx(Cv1|v2

v (u′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉) (resp. t ∼=
Cy|z

x (Cv1|v2
v (u′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉) or t ∼= λx.(Cv1|v2

v (u′)〈v\u0〉〈x1\u1〉 . . . 〈xm\um〉)).
In the latter case, notice that f cannot be a O-node and we use the induc-
tion hypothesis on uj to get uj

∼= Wx(u
′
j) (resp. uj = Cy|z

x (u′j)). Let u′i = ui

for all i 6= j. We use rules WSubs, Weak2 (resp. CSubs, Pcs), and we get t ∼=
Wx(Cv1|v2

v (u)〈v\u′0〉〈x1\u′1〉 . . . 〈xm\u′m〉) (resp. t ∼= Cy|z
x (Cv1|v2

v (u)〈v\u′0〉〈x1\u′1〉 . . . 〈xm\u′m〉)).
Lemma 11 For all λ-terms t1 and t2 such that x ∈ FV(t1),

CΥ |Ω
Φ (RΦ

Υ (A(t1))〈x\RΦ
Ω(A(t2))〉)−→∗

xr A(t1{x\t2})
where Φ := (FV(t1) \ {x}) ∩ FV(t2), provided that the former term is linear.

Proof. By induction on the size of t1. We shall always suppose, by Barendregt’s
convention, that x 6∈ FV(t2). Moreover, whenever we use the induction hypothesis
throughout the proof, it will be applied to a term which is linear (Lemma 1,
Property 1).

1. If t1 is a variable, then it must be x, so there is no contraction and

x〈x\A(t2)〉 −→Var A(t2) = A(x{x\t2})
2. If t1 = (t u), then by α-equivalence we can suppose x /∈ FV(t2), and let

Σ := FV(t2) ∩ FV(t) ∩ FV(u)
Λ := (FV(t2) ∩ FV(t)) \ (FV(t2) ∩ FV(t) ∩ FV(u))
Ψ := (FV(t2) ∩ FV(u)) \ (FV(t2) ∩ FV(t) ∩ FV(u))
Ξ := (FV(t) ∩ FV(u)) \ (FV(t2) ∩ FV(t) ∩ FV(u))
Θ := FV(t2) \ (FV(t) ∪ FV(u))
Note that Φ = FV(t1) ∩ FV(t2) is a permutation of Σ,Λ, Ψ .
Also note that FV(t) ∩ FV(u) is a permutation of Σ,Ξ and hence

A(t1) ≡ CΣ3,Ξ3|Σ4,Ξ4

Σ,Ξ (RΣ,Ξ
Σ3,Ξ3

(A(t)) RΣ,Ξ
Σ4,Ξ4

(A(u)))

57

We then have:

CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (RΣ,Λ,Ψ
Σ1,Λ1,Ψ1

(A(t1))〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉)
= CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (CΣ3,Ξ3|Σ4,Ξ4

Σ1,Ξ (t′ u′)〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉)

where t′ = RΛ,Σ,Ξ
Λ1,Σ3,Ξ3

(A(t)) and u′ = RΨ,Σ,Ξ
Ψ1,Σ4,Ξ4

(A(u)). We call this term h.

(a) If x ∈ FV(t) ∩ FV(u), then x is necessarily in Ξ (since x /∈ FV(t2)),
so Ξ is a permutation of Ξ ′, x for some list Ξ ′. Hence, the contractions

CΣ3,Ξ3|Σ4,Ξ4

Σ1,Ξ () are equivalent by ≡ to CΣ3,Ξ′3|Σ4,Ξ′4
Σ1,Ξ′ (Cx3|x4

x ()) (where Ξ ′
3, x3

and Ξ ′
4, x4 are the corresponding permutations of Ξ3 and Ξ4, respectively).

Noticing that FV(t2) is a permutation of Θ, Σ, Λ, Ψ , the term h can be
transformed by Pcs and then by rule Cont to:

CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (CΣ3,Ξ′3|Σ4,Ξ′4
Σ1,Ξ′ (CΘ5,Σ5,Λ5,Ψ5|Θ6,Σ6,Λ6,Ψ6

Θ,Σ2,Λ2,Ψ2
(v1)))

where

v1 := (t′ u′)〈x3\RΘ,Σ,Λ,Ψ
Θ5,Σ5,Λ5,Ψ5

(A(t2))〉〈x4\RΘ,Σ,Λ,Ψ
Θ6,Σ6,Λ6,Ψ6

(A(t2))〉
−→App1 (t′〈x3\RΘ,Σ,Λ,Ψ

Θ5,Σ5,Λ5,Ψ5
(A(t2))〉 u′)〈x4\RΘ,Σ,Λ,Ψ

Θ6,Σ6,Λ6,Ψ6
(A(t2))〉

−→App2 t′〈x3\RΘ,Σ,Λ,Ψ
Θ5,Σ5,Λ5,Ψ5

(A(t2))〉 u′〈x4\RΘ,Σ,Λ,Ψ
Θ6,Σ6,Λ6,Ψ6

(A(t2))〉

which we call v′1. Now we rearrange the contractions:

CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (CΣ3,Ξ′3|Σ4,Ξ′4
Σ1,Ξ′ (CΘ5,Σ5,Λ5,Ψ5|Θ6,Σ6,Λ6,Ψ6

Θ,Σ2,Λ2,Ψ2
(v′1)))

≡ CΘ5|Θ6

Θ (CΞ′3|Ξ′4
Ξ′ (CΛ1|Λ2

Λ (CΛ5|Λ6

Λ2
(CΨ1|Ψ2

Ψ (CΨ5|Ψ6

Ψ2
(v2))))))

where v2 := CΣ1|Σ2

Σ (CΣ3|Σ4

Σ1
(CΣ5|Σ6

Σ2
(v′1)))

≡ CΘ5|Θ6

Θ (CΞ′3|Ξ′4
Ξ′ (CΛ2|Λ6

Λ (CΛ1|Λ5

Λ2
(CΨ5|Ψ2

Ψ (CΨ1|Ψ6

Ψ2
(v′2))))))

where v′2 := CΣ1|Σ2

Σ (CΣ3|Σ5

Σ1
(CΣ4|Σ6

Σ2
(v′1)))

≡ CΘ5,Ξ′3,Λ2,Ψ5,Σ1|Θ6,Ξ′4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (CΛ1,Σ3|Λ5,Σ5

Λ2,Σ1
(CΨ1,Σ4|Ψ6,Σ6

Ψ2,Σ2
(v′1)))

This term can be reduced by CApp2 and then by CApp1 to

h′ := CΘ5,Ξ′3,Λ2,Ψ5,Σ1|Θ6,Ξ′4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (p q)

where

p := CΛ1,Σ3|Λ5,Σ5

Λ2,Σ1
(t′〈x3\RΘ,Σ,Λ,Ψ

Θ5,Σ5,Λ5,Ψ5
(A(t2))〉)

= RΘ,Ξ′,Λ,Ψ,Σ
Θ5,Ξ′3,Λ2,Ψ5,Σ1

(CΛ1,Σ3|Λ5,Σ5

Λ,Σ (RΛ,Σ
Λ1,Σ3

(Rx
x3

(A(t)))〈x3\RΣ,Λ
Σ5,Λ5

(A(t2))〉))

q := CΨ1,Σ4|Ψ6,Σ6

Ψ2,Σ2
(u′〈x4\RΘ,Σ,Λ,Ψ

Θ6,Σ6,Λ6,Ψ6
(A(t2))〉)

= RΘ,Ξ′,Λ,Ψ,Σ
Θ6,Ξ′4,Λ6,Ψ2,Σ2

(CΨ1,Σ4|Ψ6,Σ6

Ψ,Σ (RΨ,Σ
Ψ1,Σ4

(Rx
x4

(A(u)))〈x4\RΣ,Ψ
Σ6,Ψ6

(A(t2))〉))

58

We can now apply the induction hypothesis to both subterms and we get:

p −→∗
xr p′ := RΘ,Ξ′,Λ,Ψ,Σ

Θ5,Ξ′3,Λ2,Ψ5,Σ1
(A(t{x\t2}))

q −→∗
xr q′ := RΘ,Ξ′,Λ,Ψ,Σ

Θ6,Ξ′4,Λ6,Ψ2,Σ2
(A(u{x\t2}))

So h′ reduces to
CΘ5,Ξ′3,Λ2,Ψ5,Σ1|Θ6,Ξ′4,Λ6,Ψ2,Σ2

Θ,Ξ′,Λ,Ψ,Σ (p′ q′)

which is A(t{x\t2} u{x\t2}) = A((t u){x\t2}).
(b) If x ∈ FV(t) et x /∈ FV(u), the term h can be transformed by Pcs to:

CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (CΣ3,Ξ3|Σ4,Ξ4

Σ1,Ξ ((t′ u′)〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉))
−→App1 CΣ1,Λ1,Ψ1|Σ2,Λ2,Ψ2

Σ,Λ,Ψ (CΣ3,Ξ3|Σ4,Ξ4

Σ1,Ξ (t′〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉 u′))

≡ CΣ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (CΣ3,Λ1|Σ2,Λ2

Σ1,Λ (t′〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉 u′))
−→CApp1C

Σ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (CΣ3,Λ1|Σ2,Λ2

Σ1,Λ (t′〈x\RΣ,Λ,Ψ
Σ2,Λ2,Ψ2

(A(t2))〉) u′)

= CΣ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (RΣ,Ψ,Ξ
Σ1,Ψ2,Ξ3

(v) RΣ,Ψ,Ξ
Σ4,Ψ1,Ξ4

(u))

where v := CΣ3,Λ1|Σ2,Λ2

Σ,Λ (RΛ,Σ
Λ1,Σ3

(A(t))〈x\RΣ,Λ
Σ2,Λ2

(A(t2))〉), which reduces, by
induction hypothesis, to A(t{x\t2}). Hence,

h−→∗
xr CΣ1,Ψ2,Ξ3|Σ4,Ψ1,Ξ4

Σ,Ψ,Ξ (RΣ,Ψ,Ξ
Σ1,Ψ2,Ξ3

(A(t{x\t2})) RΣ,Ψ,Ξ
Σ4,Ψ1,Ξ4

(u))

which is exactly A(t{x\t2} u) = A((t u){x\t2}).
(c) If x ∈ FV(t) et x /∈ FV(u) the proof is exactly the same.
(d) The case x /∈ FV(t) and x /∈ FV(u) cannot happen since we assumed

x ∈ FV(t1).
3. If t1 = λy.v then by α-equivalence we can suppose y 6= x and y /∈ FV(t2).

(a) If y ∈ FV(v) then

CΥ |Ω
Φ (RΦ

Υ (λy.A(v))〈x\RΦ
Ω(A(t2))〉)

= CΥ |Ω
Φ ((λy.RΦ

Υ (A(v)))〈x\RΦ
Ω(A(t2))〉)

−→Abs CΥ |Ω
Φ (λy.(RΦ

Υ (A(v))〈x\RΦ
Ω(A(t2))〉))

−→CAbs λy.CΥ |Ω
Φ (RΦ

Υ (A(v))〈x\RΦ
Ω(A(t2))〉)

and we get the result by the induction hypothesis.
(b) If y /∈ FV(v) then

CΥ |Ω
Φ (RΦ

Υ (λy.Wy(A(v)))〈x\RΦ
Ω(A(t2))〉)

= CΥ |Ω
Φ ((λy.Wy(RΦ

Υ (A(v))))〈x\RΦ
Ω(A(t2))〉)

−→Abs CΥ |Ω
Φ (λy.(Wy(RΦ

Υ (A(v))))〈x\RΦ
Ω(A(t2))〉)

−→Weak2 CΥ |Ω
Φ (λy.Wy(RΦ

Υ (A(v))〈x\RΦ
Ω(A(t2))〉))

−→CAbs λy.CΥ |Ω
Φ (Wy(RΦ

Υ (A(v))〈x\RΦ
Ω(A(t2))〉))

−→∗
Cross λy.Wy(CΥ |Ω

Φ (RΦ
Υ (A(v))〈x\RΦ

Ω(A(t2))〉))
and we get the result by the induction hypothesis.

59

