
Intersection types for explicit substitutions

St́ephane Lengranda Pierre Lescannea Dan Doughertyb

Mariangiola Dezani-Ciancaglinic,1, Steffen van Bakeld

a École Normale Suṕerieure de Lyon 46, Allée d’Italie, 69364 Lyon 07, FRANCE, E-mail:
{Stephane.Lengrand,Pierre.Lescanne}@ens-lyon.fr

bDepartment of Computer Science, Worcester Polytechnic Institute Worcester, MA 101609
USA, E-mail:dd@cs.wpi.edu

cDipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino,
Italy, E-mail:dezani@di.unito.it

dDepartment of Computing, Imperial College of Science, Technology and Medicine, 180
Queen’s Gate, London SW7 2BZ, U.K., E-mail:svb@doc.ic.ac.uk,

Abstract

We present a new system of intersection types for a composition-free calculus of explicit
substitutions with a rule for garbage collection, and show that it characterizes those terms
which are strongly normalizing. This system extends previous work on the natural general-
ization of the classical intersection types system, which characterized head normalization
and weak normalization, but was not complete for strong normalization. An important role
is played by the notion ofavailable variable in a term, which is a generalization of the
classical notion of free variable.

Key words: Calculi of explicit substitutions, intersection types, strong normalization.

1 Introduction

An explicit substitutions calculus is a refinement of the classical Lambda Calculus
(LC) [6] in which substitution is not treated as a meta-operation on terms but rather
as an operation of the calculus itself. The inspiration for such a study is the observa-
tion that, in the presence of variable-binding, substitution is a complex operation to

1 Partially supported by EU within the FET - Global Computing initiative, project DART
ST-2001-33477 , and MURST Projects COMETA and McTati. The funding bodies are not
responsible for any use that might be made of the results presented here.

Preprint submitted to Elsevier Science 27 October 2003

define and to implement, so that making substitutions explicit leads to a more per-
tinent analysis of the correctness and efficiency of compilers, theorem provers, and
proof-checkers. Abadi, Cardelli, Curien, and Lévy [1] andde Bruijn [12] defined
the first calculi of explicit substitutions.

Intersection type disciplines originated in [14,15] to overcome the limitations of
Curry’s type assignment system and to provide a characterization of the strongly
normalizing terms of theλ-calculus [36]. Since then, intersection types disciplines
have been used in a series of papers for characterizing evaluation properties ofλ-
terms [29,28,3,4,23,2,22,17].

As discussed in [20], one can see an explicit substitution calculus as an improve-
ment on both the system of combinators andLC, since it is a system whose mechan-
ics are first-order and as simple as those of combinatory logic, yet which retains the
same intensional character asLC. Observe thatLC can be viewed as a subsystem
of explicit substitution systems, defined by the strategy of“eagerly” applying the
substitution induced by contracting aβ-redex. In this sense, explicit substitutions
calculi are logically prior toLC, and the study of explicit substitutions represents a
deeper examination of the relationship between abstraction and application.

A fundamental property of typedLC is strong normalization: no typable term ad-
mits an infinite reduction sequence. Melliès [33] made the somewhat surprising
discovery that strong normalization fails even for simply-typed terms of the Abadi-
Cardelli-Curien-Lévy calculus.

Given the central place that strong normalization occupiesin the theory and ap-
plication of LC, it is important to study this property in systems of explicit substi-
tutions. Melliés’ result exploits the existence of acompositionoperator on substi-
tutions, and so there are two obvious and complementary directions for research.
The first is to define classes of reduction strategies in the original calculus which
support strong normalization; a notable example of work in this area is that of Eike
Ritter [37]. The second direction is to investigate calculiin which substitutions are
explicit but composition is absent; the current paper is part of this effort.

Composition-free calculi of explicit substitutions have been studied in [31,11,26,10,8],
among other works. Here we work in the composition-free calculusλx [11] and a
calculusλxgc obtained by adding explicit garbage collection toλx. In fact, our rule
for garbage collection is stronger than the one originally presented in [11].

Previous work [19,20] explored some reduction properties of this system using
intersection types. The natural generalizations of the classical type systems were
able to characterize the sets of normalizing and head-normalizing terms by means
of typability. But it was shown in [19] that the naive generalization of the classical
system did not characterize the strongly normalizing terms. Typable terms were
strongly normalizing but the converse fails.

2

Example 1 Consider the terms

M1 ≡ ((λy.z)(xx))〈x=λa.aa〉 and

M2 ≡ z〈y=xx〉〈x=λa.aa〉

and notice thatM1−→M2. The termM2 is readily seen to be strongly normalizing.
ButM2 is not typable in the systemD of [19]: it is obtained from the (not strongly
normalizing, hence untypable) termM1 by contracting aβ-redex, and such a con-
traction does not change the typing behaviour of terms underD. Finding a type
system characterizing the strongly normalizing terms was left as an open problem
in [19].

Main results. In this paper we solve the aforementioned problem: we define an
extensionE of systemD which types precisely the strongly normalizing terms.
Furthermore, when a universal typeω is added, the resulting systemEω satisfies the
same theorems as those in [19] characterizing the weakly normalizing, head nor-
malizing, and solvable terms. Our claim, then, is that the system presented here —
with or without a universal type — is a robust type system appropriate for analyzing
reduction properties in explicit substitutions calculi.

In fact, we present two different characterizations of strong normalization, in the
form of two different type systems. These systems were discovered independently
[5,30]. Each system starts with the natural generalizationof the classical intersec-
tion types system to the explicit substitutions calculus and adds a new typing rule.
In one system [5], the new rule essentially takes into account that, by putting a term
of the shapeM〈x=N〉 – wherex does not occur free inM – in an arbitrary con-
text, the free variables ofN will never be replaced. Therefore, we can discharge the
assumptions used to typeN when we derive a type forM〈x=N〉. For the second
system the key insight for the solution is the notion ofavailablevariable occur-
rence in a term (Definition 3). This is a refinement of the notion of free variable,
first considered in [11] (Remark 2.3).

The present paper is an joint expanded version of the conference papers [5] and
[30]; we present both rules in a uniform system, and investigate the relationship
between the two systems.

As a corollary of our proof methods we are able to define a somewhat more general
notion of garbage collection than has been studied in the literature ofλx and show
that adding a reduction for garbage collection does not change the set of strongly
normalizing terms.

Explicit substitutions calculi without composition typically enjoy thepreservation
of strong normalizationproperty: a pure term is strongly normalizing in the pres-
ence of explicit substitutions if it is so underβ-reduction [32,8,11,9,10,38,18]. It

3

follows that the classical intersection type system does characterize strong normal-
ization for pure terms. In contrast, the current results provide information aboutall
terms. Perhaps more significant is the fact that the proofs here are direct, involving
reasoning in the explicit substitutions calculus itself, not passing through the indi-
rection of an argument aboutβ-reduction. Herbelin [25] has proposed also a direct
proof of strong normalization for a simply typed calculus ofexplicit substitution
which interprets a sequent calculus (he restricts the attention to simple types and
so does not achieve a characterization of strong normalization). We recommend his
introduction for other arguments on how explicit substitutions give an account of
thecut rule[21].

Recently we learned that Jean Goubault-Larrecq proposes, in the exercises of his
course [24], a type system with intersection types for (a version with De Bruijn
indices of) the calculus of explicit substitutionsλυ introduced in [31]. Each typable
term in this calculus is shown to be strongly normalizing, but the converse is not
true.

Plan of the paper. Section 2 presents the syntax and reduction semantics ofλx,
and in Section 3 we derive some important technical results about reduction, in-
cluding the definition of a perpetual strategy and an inductive definition of the set
of strongly normalizing terms. In Section 4 we present the type systemE and we
show the inter-admissibility of the two new typing rules we define. In Section 5 we
prove that all strongly normalizing terms are typable in systemE , and in Section 6
we show the converse. Finally, in Section 7, we verify that the results of [19] extend
to systemEω.

Notation. Our notation is consistent with that of [7], to which we referthe reader
for background onLC. We will usen for {1, . . . , n}.

2 The calculusλx

2.1 Syntax and available variables

Definition 2 The setλx of terms with explicit substitutions is defined as follows :

M, N ::= x | λx.M |MN |M〈x=N〉

A term of the formM〈x=N〉 is called aclosure. A term which contains no closure
is called apure term.

4

In writing terms, we will use the standard conventions for removing brackets, and
use the following abbreviations:

M
⇀

= M1, . . . , Mn (n ≥ 0)

MM
⇀

= MM1 . . .Mn (n ≥ 0)

M 〈x = N〉
⇀

= M 〈x1 = N1〉 . . . 〈xn = Nn〉 (n ≥ 0)

We will see in Figure 2 another description of the set of termswith explicit sub-
stitutions called thehead-form taxonomywhereas the above description could be
called thenatural taxonomy.

One defines the notions of free and bound variable occurrences in a term as usual.
But it turns out that in the presence of explicit substitutions a refinement of the
notion of free variable, calledavailablevariable occurrence, is key.

Definition 3 Thefreevariables in a term are:

fv(x) = {x}

fv(λx.M) = fv(M) \ {x}

fv(MN) = fv(M)∪ fv(N)

fv(M〈x=N〉) = (fv(M)\{x})∪ fv(N)

A variable occurrence which is not free is called aboundoccurrence. Theavailable
variables in a term are:

av(x) = {x}

av(λx.M) = av(M) \ {x}

av(MN) = av(M)∪ av(N)

av(M〈x=N〉) =







(av(M)\{x})∪ av(N), if x ∈ av(M)

av(M), if x 6∈ av(M)

It is easy to show by induction on the structure of terms that the available variable
occurrences in a term are a subset of the free variable occurrences, and that free
and available variables coincide for pure terms.

Lemma 4 av(M) ⊆ fv(M).

Availability differs from freeness in that the available variables ofM〈x=N〉, where
x is not available inM , are exactly those ofM , whereas the free variables in any
case are those ofM andN . The intuition is thatx is not available just when the
termN disappears in the course of fully applying the substitutions inM〈x=N〉.

5

Further discussion of the motivation for defining availablevariable occurrences
will be given after we present our type system. For now we can observe, referring
to Example 1, that, in the termz〈y=xx〉, the variablex is free, but not available.

Notice that, actually, the calculus includes two binders, namelyλ in λx.M which
bindsx in M , and also·〈·=·〉 in M〈x=N〉 which bindsx in M . In what fol-
lows, we consider terms up toα-conversion. Throughout this paper, we will assume
the Barendregt convention on variables [6] to be fulfilled:no variable occurs both
free and bound. Since available variables are free it follows that we assume that
no variable occurs both available and bound in the same context. The Barendregt
convention extends to judgmentsΓ `M :σ (see Definition 20) in which variables
occurring in the judgmentΓ are considered as free and cannot occur bound in the
termM . Thus a judgment like(x:σ) `M〈x=N〉 :τ is prohibited by the Barendregt
convention.

2.2 The rules

Definition 5 (λx and λxgc) We identify the following reduction rules onλx terms.

(λx.M)P −→ M〈x=P 〉 (B)

(MN)〈x=P 〉 −→ M〈x=P 〉N〈x=P 〉 (App)

(λy.M)〈x=P 〉 −→ λy.(M〈x=P 〉) (Abs)

x〈x=P 〉 −→ P (VarI)

y〈x=P 〉 −→ y (VarK)

M〈x=P 〉 −→ M, if x 6∈ av(M) (gc)

The Barendregt convention on variables plays a major role inthe above definition,
especially in rule(Abs) which otherwise would involve the capture of variables.
The notion of reductionλx is obtained by deleting rule(gc), and the notion of
reductionλxgc is obtained by deleting rule(VarK). The rule(gc) is called “garbage
collection”, as it removes useless substitutions. Notice that here we propose a form
of the(gc) rule which differs from the similar rules given in [11,20], in that it uses
availability of the variable instead of freeness. This models a more liberal rule for
garbage collection.

When it is clear from the context which notion of reduction isused,−→ will de-
note the reduction relation and→−→ will denote its reflexive and transitive closure.

The following lemma justifies the addition of our rule(gc) to λx.

6

Lemma 6 If x 6∈ av(M) then

M〈x=N〉 =
x

M

where· =
x
· is the equivalence relation on terms generated by rules (App), (Abs),

(VarI), (VarK).

PROOF. By induction on the structure of terms.

CasesM ≡ y, λy.P, PQ are straightforward.

For the remaining case,M ≡ P 〈y=Q〉, first of all, notice that, by Corollary 2.13
and Proposition 2.14(a) of [11], we have

(P 〈y=Q〉)〈x=N〉 =
x

(P 〈x=N〉)〈y=Q〈x=N〉〉.

We distinguish two cases:

• y ∈ av(P). Thenx 6∈ (av(P)\{y})∪ av(Q), so

(P 〈x=N〉)〈y=Q〈x=N〉〉 =
x

(IH)

P 〈y=Q〈x=N〉〉 =
x

(IH) P 〈y=Q〉.

• y 6∈ av(P); notice that then alsoP 〈y=Q〉 =
x

P , by induction. Thenx 6∈ av(P),
so

(P 〈x=N〉)〈y=Q〈x=N〉〉 =
x

(IH)

P 〈y=Q〈x=N〉〉 =
x

(IH) P

So(P 〈x=N〉)〈y=Q〈x=N〉〉 =
x

P 〈y=Q〉.

In particular, for both cases, we get(P 〈y=Q〉)〈x=N〉 =
x

P 〈y=Q〉.

By induction on reductions one can check that the set of available variables does
not increase when terms are reduced.

Lemma 7 (1) If M −→N then av(M) ⊇ av(N).
(2) If x 6∈ av(M), M −→N andN is a pure term thenx 6∈ fv(N).

In contrast withLC we are considering a rewrite system with several rules, which
in fact interact with each other in interesting ways. For example, there is acritical
pair formed by the rules(B) and(App). Specifically, a term of the form

((λx.M)N)〈y=L〉

7

can be reduced to either of

(λx.M)〈y=L〉 N〈y=L〉 or M〈x=N〉〈y=L〉

Most of the difficulty in working with the system is due to thiscritical pair, as we
will see.

Definition 8 (SN) We say, as usual, thatM is in normal formif M is redex free,
and write nf(M) if M is in normal form.M is normalisableis there existsM ′ in
normal form such thatM →−→M ′, andM is strongly normalisableif all reduction
sequences starting inM are of finite length. We useSN for the set of strongly
normalizing terms underλx.

3 Generation ofSN , saturated sets, and a perpetual strategy

In this section we show some properties of the setSN : the only property which is
needed for our characterization result is thatSN is saturated (Theorem 12), but we
think that the perpetuality of the defined strategy is by itself interesting.

3.1 An inductive characterization ofSN

We first recall a key closure condition ofSN proved in [20].

Lemma 9 The setSN is closed under rule:

(subs) :
M〈y=L〉〈x=N〈y=L〉〉〈z=Q〉

⇀⇀
P

M〈x=N〉〈y=L〉〈z=Q〉
⇀⇀

P

Figure 1 tells us how the set of strongly normalizing terms can be generated by
induction. Rule(gen-var) has a number (possibly zero) of terms as upper part. The
rule(gen-App) is interesting, as a first example of the role of our critical pair. When
the term(UV) is in fact aB-redex, it is not obvious that this rule is sound, that is,
that pushing the substitution through the application (as opposed to firing theB-
redex) preserves the existence of an infinite reduction. Butin fact it is sound, as we
will see.

Proposition 10 SN is generatedby the rules of Figure 1.

PROOF. We first show that the rules in Figure 1 generateonly terms inSN , i.e.

8

(gen-var) :
M1 . . .Mn

xM
⇀ (gen-B) :

M〈x=N〉
⇀
P

(λx.M)N
⇀
P

(gen-λ) :
M

λx.M
(gen-Abs) :

(λy.M〈x=N〉)〈z=Q〉
⇀⇀

P

(λy.M)〈x=N〉〈z=Q〉
⇀⇀

P

(gen-App) :
(U〈x=N〉)(V 〈x=N〉)〈z=Q〉

⇀⇀
P

(UV)〈x=N〉〈z=Q〉
⇀⇀

P

(gen-I) :
N〈z=Q〉

⇀⇀
P

x〈x=N〉〈z=Q〉
⇀⇀

P
(gen-K) :

y〈z=Q〉
⇀⇀

P N

y〈x=N〉〈z=Q〉
⇀⇀

P

Fig. 1. Generation ofSN

that for each rule, if the upper term(s) belong toSN then the lower term belong to
SN .

We only consider two of the rules:(gen-I), because it is typical, and(gen-App),
because it uses techniques specific to this set of rules.

(gen-I) : SupposeN〈z=Q〉
⇀⇀

P is in SN . Suppose, towards a contradiction, that

x〈x=N〉〈z=Q〉
⇀⇀

P is not inSN , then there is an infinite reduction starting from
this term. Either
• this reduction never contracts the left-outermost redexx〈x=N〉 and there ex-

ists an infinite reduction starting fromN or one of theQi’s or one of thePj ’s,

thenN〈z=Q〉
⇀⇀

P is not inSN , which is a contradiction.
• or this reduction is of the form

x〈x=N〉〈z=Q〉
⇀⇀

P →−→ x〈x=N ′〉〈z=Q′〉
⇀

P ′
⇀

−→ N ′〈z=Q′〉
⇀

P ′
⇀

→−→ . . .

which is in contradiction with the fact thatN〈z=Q〉
⇀⇀

P ∈ SN .

(gen-App) : Suppose(UV)〈x=N〉〈z=Q〉
⇀⇀

P is not inSN , then there exists an in-
finite reduction starting from this term. If this reduction never reduces the redex
(UV)〈x=N〉, neither by(App), nor by(B) (in which caseU reduces to an ab-
straction), then there exists an infinite reduction starting from U , or V , or N or
one of theQi’s or one of thePj ’s, and(U〈x=N〉)(V 〈x=N〉)〈z=Q〉

⇀
is not in

9

SN , which is a contradiction. If

(UV)〈x=N〉〈z=Q〉
⇀⇀

P →−→ (U ′V ′)〈x=N ′〉〈z=Q′〉
⇀

P ′
⇀

−→ (U ′〈x=N ′〉)(V ′〈x=N ′〉)〈z=Q′〉
⇀

P ′
⇀

,

then the looked for contradiction comes from the fact that wehave assumed that
(U〈x=N〉)(V 〈x=N〉)〈z=Q〉

⇀⇀
P is in SN . Suppose now that

(UV)〈x=N〉〈z=Q〉
⇀⇀

P →−→ ((λy.U ′)V ′)〈x=N ′〉〈z=Q′〉
⇀

P ′
⇀

−→ (U ′〈y=V ′〉〈x=N ′〉)〈z=Q′〉
⇀

P ′
⇀

.

But the assumption is that(U〈x=N〉)(V 〈x=N〉)〈z=Q〉
⇀⇀

P is in SN , so also

U ′〈x=N ′〉〈y=V ′〈x=N ′〉〉〈z=Q′〉
⇀

P ′
⇀

is in SN . Therefore, by (Lemma 9), ap-

plying (subs) gives that(U ′〈y=V ′〉〈x=N ′〉)〈z=Q′〉
⇀

P ′
⇀

in SN , which is a con-
tradiction.

To conclude the proof, we need to show that the rules in Figure1 generateall the
terms inSN . This is proven by a double induction on the length of the longest
derivation to normal form and on the structure of terms. Notice that the terms in the
conclusions of the given rules cover all possible shapes of terms inλx. Moreover, it
is easy to see that for each rule in Figure 1, if the lower term belong toSN then the
upper term(s) belong toSN . The induction hypothesis applies since the the upper
term(s) either can be obtained by reducing the lower term or they are subterms of
the lower term.

3.2 Saturated sets

In order to define the notion of saturated set we identify a newclosure-condition on
sets of terms.

(gen-gc)
M〈z=Q〉

⇀⇀
P N ∈ SN

(x 6∈ av(M))
M〈x=N〉〈z=Q〉

⇀⇀
P

Definition 11 A set closed under the rules(subs), (gen-B), (gen-Abs), (gen-App),
(gen-I) and(gen-gc) is said to beSN -saturated.

Theorem 12 (Saturation ofSN) The setSN is SN -saturated.

PROOF. Because of Lemma 9 and Proposition 10 we need only to show thatSN
is closed under the new rule. To show closure under rule(gen-gc), we reformulate
the proof of [20] to take into account the change fromfv(·) to av(·) in the definition

10

of λxgc. We define ann-multi-contextas a term withn holes in which we can insert
n terms, or simplymulti-contextif n is understood from the context. IfC[[·, . . . , ·]] is
ann-multi-context andM1, . . . , Mn are terms, then the insertions of those terms in
C[[·, . . . , ·]] is denotedC[[M1, . . . , Mn]], orC[[Mi

⇀
]] for short. We prove the following

more general statement:

LetC[[. . .]] be a multi-context, andNi, Mi, i ∈ n be terms, withx 6∈ av(Mi), for

i ∈ n. If C[[Mi

⇀
]] ∈ SN andNi ∈ SN for i ∈ n thenC[[Mi〈x=Ni〉

⇀
]] ∈ SN .

We consider triples〈P, M, N〉, whereP is a term,M andN are multisets of terms.
Let Am be the multiset extension [16] ofA, the converse of the proper subterm
order, and let−→m be the multiset extension of the reduction relationλxgc. The
proof is by induction over the following relation:

〈P, M, N〉 � 〈P ′, M′, N′ 〉 if and only if

P −→ P ′ or

P = P ′ andM A
m M′, or

P = P ′, M = M′, andN −→m N′.

In what follows,P will be C[[Mi

⇀
]] and −→ is well-founded out ofP by hy-

pothesis;M will be {M1, . . . , Mn}; N will be {N1, . . . , Nn} and itsλxgc-reducts.
The relation−→m will be well-founded since multiset extension preserves well-
foundedness. Therefore,� is well-founded and a Nötherian induction on� is
possible.

A remark on cases (4) and (5) below: there the termP does not change, only its
representation asC[[. . .]] does. This means we insert theNi’s at “lower” positions,
allowing us to perform a Nötherian induction.

Assume thatC[[Mi

⇀
]] ∈ SN , and thatNi ∈ SN for i ∈ n. We will prove that the

termC[[Mi〈x=Ni〉
⇀

]] reduces only to terms that are inSN .

(1) C[[Mi〈x=Ni〉
⇀

]]−→C ′[[Mij〈x=Nij〉
⇀

]] (where theij ∈ n):

ThenC[[Mi

⇀
]]−→C ′[[Mij

⇀
]], and by inductionC ′[[Mij〈x=Nij〉

⇀
]] ∈ SN .

(2) Mi−→M ′
i : By induction.

(3) Nj −→N ′
j : Also by induction. Note that this case occurs only when theNi are

in SN .
(4) Mi = M1

i M2
i andMi〈x=Ni〉−→M1

i 〈x=Ni〉M2
i 〈x=Ni〉: Since

{M1, . . . , Mi, . . . , Mn} Am {M1, . . . , M
1
i , M2

i , . . . , Mn},

we haveC[[M1〈x=N1〉, . . . , (M1
i 〈x=Ni〉M2

i 〈x=Ni〉), . . . , Mn〈x=Nn〉]] ∈

11

SN by induction.
(5) Mi = λy.M ′

i andMi〈x=Ni〉−→ λy.(M ′
i〈x=Ni〉):

{M1, . . . , Mi, . . . , Mn} Am {M1, . . . , M
′
i , . . . , Mn},

henceC[[M1〈x=N1〉, . . . , λy.(M ′
i〈x=Ni〉), . . . , Mn〈x=Nn〉]] ∈ SN by in-

duction.
(6) Mi〈x=Ni〉−→Mi, which is always applicable beingx 6∈ av(Mi): Since

{M1, . . . , Mi−1, Mi, Mi+1, . . . , Mn} Am {M1, . . . , Mi−1, Mi+1, . . . , Mn},

alsoC[[M1〈x=N1〉, . . . , Mi, . . . , Mn〈x=Nn〉]] ∈ SN by induction.

We have shown thatSN is closed under the rule(gen-gc). This has as a conse-
quence thatSN is also the set of terms strongly normalizing underλxgc.

3.3 A perpetual strategy

In what follows we will define a perpetual strategy for our calculus, which is an
extension toλx of the strategy defined in [6], page 338. It is based on the reduction
of perpetual redexes.

Definition 13 (Perpetual redex) For any term not in normal form, we define its
perpetual redex.

• The perpetual redex ofλx.M is the perpetual redex ofM .
• The perpetual redex ofMN is :

MN, if MN itself is a redex

the perpetual redex ofM, if M is not a normal form

the perpetual redex ofN, otherwise

• The perpetual redex ofM〈x=N〉 is :

the perpetual redex ofN, if M ≡ y 6= x andN is not a normal form

the perpetual redex ofM, if M is a closure

M〈x=N〉, otherwise

Definition 14 (Perpetual strategy) Theperpetual strategyis the strategy that re-
duces always the perpetual redex. It is denoted by .

12

λx.M λx.M ′, if M M ′ (perp-λ)

x
⇀
P M

⇀
Q x

⇀
P M ′

⇀
Q, if nf (x

⇀
P) andM M ′ (perp-var)

(λx.M)N
⇀
P M〈x=N〉

⇀
P (perp-B)

(UV)〈x=N〉〈z=Q〉
⇀⇀

P (U〈x=N〉)(V 〈x=N〉)〈z=Q〉
⇀⇀

P (perp-App)

(λy.M)〈x=N〉〈z=Q〉
⇀⇀

P (λy.M〈x=N〉)〈z=Q〉
⇀⇀

P (perp-Abs)

x〈x=N〉〈z=Q〉
⇀⇀

P N〈z=Q〉
⇀⇀

P (perp-I)

y〈x=N〉〈z=Q〉
⇀⇀

P y〈z=Q〉
⇀⇀

P , if nf(N) (perp-K)

y〈x=N〉〈z=Q〉
⇀⇀

P y〈x=N ′〉〈z=Q〉
⇀⇀

P , if N N ′ (perp-clo)

Fig. 2. The perpetual strategy and the head-form taxonomy

Figure 2 gives both the perpetual strategy and a partition ofterms according to the
head-form taxonomy. The right-hand sides of rules(perp-λ) and(perp-var) give
two forms of irreducible terms whennf(M) and

⇀
Q is empty. Then together with

the left-hand sides of the other rules they split the set of terms into classes that form
thehead-normal form taxonomy.

Since each term contains at most one perpetual redex, the perpetual strategy is
deterministic. Note that, in the case ofλxgc, the perpetual strategy never reduces by
(gc), except when(gc) is degenerated into(VarK), which means that in this case
the perpetual redex is of the formy〈x=N〉.

The perpetual strategy is intended to terminate on a term only when the term is
strongly normalizing. This is why it does not reduce a termy〈x=N〉 by (VarK) or
(gc) whenN is not a normal form. Indeed, ifN is not strongly normalizing, the
perpetual strategy (to be really perpetual) has to reduceN instead of causing it to
disappear.

Theorem 15 The following are equivalent

• M ∈ SN .
• The perpetual strategy terminates onM .

PROOF. For the non-trivial direction, examine the inductive characterization of
SN and observe that whenM is not strongly normalizing and has the form of the
conclusion of one of the inference rules there, one of the hypotheses of the rule is
obtained fromM by the perpetual strategy.

13

4 The systemE of intersection types

We will consider intersection types as first defined in [15] with a pre-order which
takes the idempotence, commutativity and associativity ofthe intersection type con-
structor into account.

Definition 16 The set oftypes, ranged over byσ, τ, ρ, . . ., is inductively defined as
follows

τ1, τ2 ::= ϕ | τ1∩τ2 | τ1→τ2

whereϕ ranges over a denumerable set of type atoms.

The standard pre-ordering≤ on types is the smallest transitive and reflexive rela-
tion such that

τ1∩τ2 ≤ τ1,

τ1∩τ2 ≤ τ2,

if σ ≤ τ1 andσ ≤ τ2 thenσ ≤ τ1∩τ2

The pre-order defines the equivalence relation on types :

τ ∼ σ if and only if τ ≤ σ andσ ≤ τ

In the concrete syntax of types we give, as usual,∩ precedence over→, right-most
outer-most brackets will be omitted, and, since the type constructor∩ is associative
and commutative, we will writeσ∩τ∩ρ rather than(σ∩τ)∩ρ.

The notion of environment is standard, but defining the unionof environments re-
quires some care in the presence of the intersection type constructor.

Definition 17 An environmentis a partial assignment from variables to types,
where each individual assignment is written(x:τ). Environments are partially or-
dered as follows.

Γ ≤ Γ′ iff (x:τ ′) ∈ Γ′ implies(∃τ).(x:τ) ∈ Γ andτ ≤ τ ′

By abuse of notation, we writex ∈ Γ for (∃τ).(x:τ) ∈ Γ. The environmentΓ\x
is the environment which does not containx in its domain and which assigns the
same type asΓ to the other variables.

Notice that the direction of the ordering≤ on environments may seem at first some-
what counter-intuitive: for example, in the case where for eachτ andτ ′ we have
τ = τ ′, Γ ≤ Γ′ meansΓ ⊇ Γ′. But as we will see,Γ ≤ Γ′ can be thought of as an
extension of≤ to environments.

14

Definition 18 Γ1 u Γ2 = {(x:τ) | (x:τ) ∈ Γ1 & x 6∈ Γ2} ∪

{(x:τ) | (x:τ) ∈ Γ2 & x 6∈ Γ1} ∪

{(x:τ1∩τ2) | (x:τ1) ∈ Γ1 & (x:τ2) ∈ Γ2}

Γ, (x:τ) = Γ\x∪ {(x:τ)}

For example,{(x:τ1)} u {(x:τ2)} denotes{(x:τ1∩τ2)}, while {(x:τ1)}, (x:τ2) de-
notes{(x:τ2)}.

Lemma 19 • Γ1 u Γ2 ≤ Γ1 andΓ1 u Γ2 ≤ Γ2.
• If Γ1 ≤ Γ andΓ2 ≤ Γ thenΓ1 u Γ2 ≤ Γ.

PROOF. These are routine verifications.

As discussed in the introduction, the key of our type assignment are non-standard
cut-rules. These will appear in the definition below as(drop) and(K-cut).

Definition 20 (Type Assignment Rules)The systemE of type assignmentfor terms
in λx is defined as follows:

(start) ((x:σ) ∈ Γ)
Γ ` x:σ

(→I)
Γ, (x:σ) `M :τ

Γ ` λx.M :σ→τ

(cut)
Γ, (x:σ) `M :τ Γ ` N :σ

Γ `M 〈x =N〉 :τ
(→E)

Γ `M :σ→τ Γ ` N :σ

Γ `MN :τ

(drop)
Γ `M :τ ∆ ` N :σ

(x 6∈ av(M))
Γ `M 〈x = N〉 :τ

(∩I)
Γ `M :σ Γ `M :τ

Γ `M :σ∩τ

(K-cut)
Γ `M :τ ∆ ` N :σ

(x 6∈ Γ)
Γ `M 〈x = N〉 :τ

(∩E)
Γ `M :σ1∩σ2

(i ∈ {1, 2})
Γ `M :σi

We writeΓ `M :σ if there exists a derivation constructed using the above rules
that has this statement as its conclusion.

The type system of [20] is obtained by removing the inferencerules (drop) and
(K-cut): the point of view taken there was that a closureM〈x=N〉 should always
have the same typing behaviour as theB-redex(λx.M)N which yields it. This is a
plausible strategy sinceB-reduction involves no (immediate) erasing of sub-terms,
even whenx is not free inM ; and indeed the resulting system — in the presence
of a universal type — yields the expected characterizationsof head-normalizing
and left-most-normalizing terms. But as we have seen in Example 1, this system

15

{z:µ} ` z :µ

{x:(ρ→ν)∩ρ} ` x :(ρ→ν)∩ρ

{x:(ρ→ν)∩ρ} ` x :ρ→ν

{x:(ρ→ν)∩ρ} ` x :(ρ→ν)∩ρ

{x:(ρ→ν)∩ρ} ` x :ρ

{x:(ρ→ν)∩ρ} ` xx :ν

{z:µ} ` z 〈y =xx〉 :µ

D

∅ ` λa.aa :(σ→τ)∩σ→τ

{z:µ} ` z 〈y =xx〉 〈x= λa.aa〉 :µ

whereD is the derivation:

{a:(σ→τ)∩σ} ` a :(σ→τ)∩σ

{a:(σ→τ)∩σ} ` a :σ→τ

{a:(σ→τ)∩σ} ` a :(σ→τ)∩σ

{a:(σ→τ)∩σ} ` a :σ

{a:(σ→τ)∩σ} ` aa :τ

∅ ` λa.aa :((σ→τ)∩σ)→τ

Fig. 3. A typing derivation

failed to provide a characterization of the strongly normalizing terms. This example
makes clear that we must allow the type system to distinguishbetween certainB-
redexes and their contractions.

One might note that, in Example 1, the input variable of theB-redex inM1 does
not occur free in the function body (i.e., we have a “K-redex” inLC). This suggests
modifying the cut-rule to obtain one which, when typingM〈x=N〉 with x not
free in M , relaxes the typing hypothesis forN to merely ask that it be typable
undersomeenvironment. This seems particularly appropriate since itechoes the
hypotheses of the Subject Expansion Theorem in treatments of intersection types
for LC. But such a rule doesn’t work: it is still too restrictive. For example, the
reader can easily check that the termz〈y=xx〉〈x=λa.aa〉 cannot be typed in such a
system sincex ∈ fv(z〈y=xx〉), but it is clearly strongly normalizing. This example
should motivate our notion ofavailablevariable occurrence and the corresponding
typing rule(drop).

One can also observe that no premise forx is necessary when typingz in z〈y=xx〉〈x=λa.aa〉
and this leads to the introduction of rule(K-cut).

Figure 3 shows how the termz〈y=xx〉〈x=λa.aa〉 can be typed in systemE .

Notice that rule(cut) has no side-condition, and therefore, whenx 6∈ av(M) and
Γ ` N :σ, one can freely use(cut) or (drop); whenx 6∈ Γ andΓ ` N :σ, one can
freely use(cut) or (K-cut).

We now state some elementary properties of the type system, which highlight the
relations between the non-standard cut rules.

16

Lemma 21 (1) If Γ′ ≤ Γ, τ ≤ τ ′ andΓ `M :τ thenΓ′ `M :τ ′.
(2) If x ∈ av(M), thenΓ `M :τ impliesx ∈ Γ.
(3) If x 6∈ av(M), thenΓ `M :τ impliesΓ\x `M :τ .
(4) If x 6∈ av(M), thenΓ `M :τ impliesΓ, (x:σ) `M :τ for any typeσ.

PROOF. By induction on the structure of derivations, with the exception of part (4)
which follows immediately from parts (1) and (3).

• Before proving part (1) it is useful to make the following observation. LetMy
z

denote the result of substituting (in the traditional sense) y for z in M , and
let Γy

z be the obvious extension of this notion to environments. IfΓ `M :τ ,
thenΓy

z `My
z :τ (this follows by a straightforward induction). Now, in proving

part (1), the only non-trivial case is when the last applied rule is(K-cut):

(K-cut) :
Γ ` P :τ ∆ ` N :σ

(y 6∈ Γ)
Γ ` P 〈y = N〉 :τ

Now, if y did not occur inΓ′, the argument would be a simple appeal to the
induction hypothesis. But there is no reason to assume this,so we have to work
a little. Let y′ be a fresh variable, not occurring (free) inΓ′, ∆, P , or N . Since
Γ′ ≤ Γ, we know thaty′ does not occur inΓ. By our observation about the
preservation of derivations under ordinary substitution,Γ ` P y′

y :τ . So by induc-
tion Γ′ ` P y′

y :τ ′. ThusΓ′ ` P y′

y 〈y
′=N〉 :τ ′ by rule (K-cut). But P y′

y 〈y
′=N〉 is

α-equivalent withP 〈y=N〉, so we are done.
• For part (2), three cases have to be looked at. The first one is whenM isP 〈y=N〉

and the derivation ends with

(cut) :
Γ, (y:σ) ` P :τ Γ ` N :σ

Γ ` P 〈y=N〉 :τ

Sincex ∈ av(M), by Lemma 4,x is free inM and by the variable convention
and the fact thaty is bound, we getx 6= y. By the definition of available variable,
x available inM ≡ P 〈y=N〉 means thatx ∈ av(P) or x ∈ av(N). In both
cases the induction hypothesis yieldsx ∈ Γ. The other cases are

(drop) :
Γ ` P :τ ∆ ` N :σ

(y 6∈ av(P))
Γ ` P 〈y=N〉 :τ

(K-cut) :
Γ ` P :τ ∆ ` N :σ

(y 6∈ Γ)
Γ ` P 〈y=N〉 :τ

In the case of rule(K-cut), notice that, by induction,y 6∈ Γ impliesy 6∈ av(P).
So in each case, fromx ∈ av(M) we getx ∈ av(P). We may then conclude, by
induction, thatx ∈ Γ.

17

4.1 Derivable rules

By Definition 20, the rules of systemE are(start), (→I), (→E), (∩I), (∩E), (cut),
(drop), and(K-cut). DLL is the system obtained fromE by dropping rule(K-cut)
andvBD is the systems obtained fromE by dropping rule(drop). We will write
Γ `DLL M :σ if there exists a derivation with rules inDLL that has this as its
conclusion, and similarlyΓ `vBD M :σ.

We will show that these systems have the same typing power as systemE , so we
can say that just one of the rules(K-cut) and(drop) suffices.

Lemma 22 (1) Rule(K-cut) is derivable in systemDLL.
(2) Rule(drop) is derivable in systemvBD.

PROOF.

(1) : Each application of rule(K-cut)

(K-cut) :
Γ ` P :τ ∆ ` N :σ

(y 6∈ Γ)
Γ ` P 〈y=N〉 :τ

can be replaced by an application of rule(drop), since, by Lemma 21(2), y 6∈ Γ
impliesy 6∈ av(P).

(2) : Consider an application of rule(drop):

(drop) :
Γ ` P :τ ∆ ` N :σ

(y 6∈ av(P))
Γ ` P 〈y=N〉 :τ

By Lemma 21(3), Γ\y ` P :τ . Then the(K-cut) rule yieldsΓ\y ` P 〈y=N〉 :τ .
Then, by Lemma 21(4), we haveΓ ` P 〈y=N〉 :τ .

From the above Lemma we easily get:

Theorem 23 The sets of derivable judgments in systemsE , DLL, andvBD coin-
cide.

5 Typing strongly normalizing terms

As usual for type assignment systems, we have a Generation Lemma. We will use
a generic notation for intersection types,σ1∩ . . .∩σn, and assume that then eachσi

is not an intersection type.

18

Lemma 24 (Generation Lemma)

(1) Γ ` x:σ if and only if there exists(x:τ) ∈ Γ such thatτ ≤ σ.
(2) Γ `MN :σ if and only if there existn, andσi, τi (i ∈ n) such that

σ ∼ (σ1∩ . . .∩σn), andΓ `M :τi→σi andΓ ` N :τi.
(3) Γ ` λx.M :σ if and only if there existn, andρi, τi (i ∈ n) such that

σ ∼ (ρ1→τ1)∩ . . .∩(ρn→τn), andΓ, (x:ρi) `M :τi wheneveri ∈ n.
(4) Γ `M〈x=N〉 :σ if and only if either

(a) x ∈ av(M), and there existsτ such thatΓ, (x:τ) `M :σ andΓ ` N :τ ,
or

(b) x 6∈ av(M), Γ `M :σ and there exist∆, τ such that∆ ` N :τ (in other
words:N is typable in some environment).

PROOF. The right-to-left implications immediately follow from the typing rules.
The converse follows by easy induction on the structure of derivations. For part (4),
notice that Theorem 23 allows us to skip the(K-cut) rule. If the last applied rule is
(∩I) we can use Lemma 21(1) and rule(∩I) .

A minimal requirement of our system is that it satisfies the subject reduction prop-
erty (SR). We will show SR for the reductionλxgc: this gives us SR forλx for
free.

Theorem 25 (Subject Reduction)If M −→ N , thenΓ `M :τ impliesΓ ` N :τ .

PROOF. By induction on the definition of the reduction relation, ‘−→ ’. We only
show the base cases.

(B) : ThenΓ ` (λx.M)N :σ, and, by Lemma 24(2), there exist typesσi, ρi (i ∈ n)
such thatσ ∼ (σ1∩ . . .∩σn), and, for alli ∈ n, Γ ` λx.M :ρi→σi andΓ ` N :ρi.
Then, by Lemma 24(3) Γ, (x:ρi) `M :σi, and therefore,Γ `M 〈x =N〉 :σi by
rule (cut). So, by rule(∩I), Γ `M 〈x =N〉 :σ.

(App) : ThenΓ ` (MN)〈x = P 〉 :σ. Letσ ∼ (σ1∩ . . .∩σn), then, by Lemma 24(4),
we have two cases:
(x ∈ av(MN) & (∃τ).Γ, (x:τ) `MN :σ & Γ ` P :τ) : Then we havex ∈ av(M)

or x ∈ av(N), and, by Lemma 24(2), for everyi ∈ n, there existsρi such
that Γ, (x:τ) `M :ρi→σi andΓ, (x:τ) ` N :ρi. ThenΓ `M 〈x =P 〉 :ρi→σi

by rule(cut), andΓ ` N 〈x =P 〉 :ρi.
(x 6∈ av(MN), Γ `MN :σ & (∃∆, τ).∆ ` P :τ) : Then we havex 6∈ av(M)

andx 6∈ av(N). As above, by Lemma 24(2), for everyi ∈ n, there existsρi

such thatΓ `M :ρi→σi andΓ ` N :ρi. Then, by rule(drop), Γ `M 〈x = P 〉 :ρi→σi

and alsoΓ ` N 〈x =P 〉 :ρi.
In both cases, by rule(→E), we getΓ ` (M 〈x = P 〉)(N 〈x =P 〉):σi, so by rule
(∩I), Γ ` (M 〈x =P 〉)(N 〈x = P 〉):σ.

19

(Abs) : ThenΓ ` (λy.M)〈x =N〉 :σ. Let σ ∼ (σ1∩ . . .∩σn). By Lemma 24(4),
we have two cases:
(x ∈ av(M) & (∃τ)Γ, (x:τ) ` λy.M :σ & Γ ` N :τ) : By Lemma 24(3), for i ∈

n, there existρi, µi such thatσi ∼ ρi→µi andΓ, (x:τ), (y:ρi) `M :µi. Then
we getΓ, (y:ρi) `M 〈x =N〉 :µi by rule(cut).

(x 6∈ av(M), Γ ` λy.M :σ & (∃∆, τ)∆ ` N :τ) : As above, there existρi, µi such
thatσi ∼ ρi→µi andΓ\x, (y:ρi) `M :µi. ThenΓ, (y:ρi) `M 〈x =N〉 :µi by
rule (drop).

In both cases, we obtainΓ ` λy.(M 〈x = N〉):σi by rule(→I), and, by rule(∩I),
alsoΓ ` λy.(M 〈x =N〉):σ.

(VarI) : ThenΓ ` x〈x = N〉 :σ, and, by Lemma 24(4) Γ, (x:τ) ` x:σ andΓ ` N :τ
for a certainτ . Then, by Lemma 24(1), τ ≤σ, and, by Lemma 21(1), Γ ` N :σ.

(gc) : ThenΓ `M 〈x =N〉 :σ andx 6∈ av(M). Then, by Lemma 24(4), Γ `M :σ.

Normal forms inλx are the same as inLC, and the type systemE is an extension
of the standard system of intersection types forLC. Therefore we get the typability
of all normal forms for free. Moreover, we show thatλ-free normal forms (that is
to say, normal forms which are notλ-abstractions) have arbitrary types: this also
holds in the the standard system of intersection types.

Lemma 26 (Normal forms are typable) LetM be a normal form.

(1) If M is λ-free andτ is a type, then there is an environment in whichM has
typeτ .

(2) M is typable in some environment.

PROOF. By simultaneous structural induction onM .

• If M is a variable, both statements hold.
• If M ≡ xM1 . . . Mn, whereM1, . . . , Mn are normal forms, then by induction

there are, fori ∈ n, Γi, τi such thatΓi `Mi :τi. ThenΓ1u. . . Γnu{x:τ1→ . . .→τn→τ} `M :τ .
SoM is typable with an arbitrary typeτ in a suitable environment.

• If M ≡ λx.M ′, then by induction (second statement), there areΓ andτ such that
Γ `M ′ :τ . ThenΓ, (x:σ) `M ′ :τ , where either(x:σ) ∈ Γ or x 6∈ Γ andσ is any
type. Hence,Γ\x `M :σ→τ .

The key property to obtain the typability of all strongly normalizing terms is the
preservation of typability when we expand using the perpetual strategy. This comes
as a corollary of the following more technical theorem.

Theorem 27 (Subject Expansion)If M N in one step, then

20

(1) if the rule applied in the reduction is not(B): Γ ` N :τ ⇒ Γ `M :τ

(2) if the rule applied in the reduction is(B):

Γ ` N :τ ⇒



























Γ `M :τ if M is a closure

(∃Γ′ ≤ Γ). Γ′ `M :τ if M is not an abstraction

(∃τ ′, Γ′ ≤ Γ). Γ′ `M :τ ′ if M is an abstraction

PROOF.

(1) By induction on the structureM . The base case is whenM is its own perpetual
redex: let us reason by cases on the rule used.
(App) : We assumeΓ ` P 〈x=U〉Q〈x=U〉 :σ, and want to proveΓ ` (PQ)〈x=U〉 :σ.

By Lemma 24(2), there are typesτi, σi (i ∈ n) such thatσ ∼ (σ1∩ . . .∩σn),
and

(∀ i ∈ n).Γ ` P 〈x=U〉 :τi→σi & Γ ` Q〈x=U〉 :τi

By rule (∩I) it suffices to prove that(∀ i ∈ n).Γ ` (PQ)〈x=U〉 :σi. If x 6∈
av(P) andx 6∈ av(Q), we apply Lemma 24(4), which givesΓ ` P :τi→σi and
Γ ` Q:τi, as well as thatU is typable. Consequently,Γ ` PQ:σi and finally,
by rule (drop), Γ ` (PQ)〈x=U〉 :σi. If x ∈ av(P) or x ∈ av(Q), it suffices
to prove

(∃τ ′
i).Γ ` U :τ ′

i & Γ, (x:τ ′
i) ` P :τi→σi & Γ, (x:τ ′

i) ` Q:τi

(which induces by rule(cut), Γ ` (PQ)〈x=U〉 :σi). In each case, we apply
Lemma 24(4) on bothP andQ.
· If x ∈ av(P) andx 6∈ av(Q), we getµ such thatΓ, (x:µ) ` P :τi→σi

andΓ ` U :µ. Takingτ ′
i to beµ, we use 21(4) onQ to get the result.

· If x 6∈ av(P) andx ∈ av(Q), we getν such thatΓ, (x:ν) ` Q:τi and
Γ ` U :ν. Takingτ ′

i to beν, we use 21(4) onP to get the result.
· If x ∈ av(P) andx ∈ av(Q), we getµ andν, such that

Γ ` U :µ, & Γ ` U :ν, & Γ, (x:µ) ` P :τi→σi & Γ, (x:ν) ` Q:τi

If we setτ ′
i to µ∩ν we get the result.

(Abs) : SupposeM ≡ (λy.P)〈x=U〉 and N ≡ λy.(P 〈x=U〉). By Baren-
dregt’s convention,y 6∈ av(U) andx 6= y; thenx ∈ av(P) if and only if x ∈
av(λy.P). We assumeΓ ` λy.(P 〈x=U〉):σ, and want to proveΓ ` (λy.P)〈x=U〉 :σ.
Using Lemma 24(3), we have typesτi, σi (i ∈ n) such thatσ ∼ (τ1→σ1)∩ . . .∩(τn→σn)
and (∀ i ∈ n).Γ, (y:τi) ` P 〈x=U〉 :σi. By rule (∩I) it suffices to prove that
(∀ i ∈ n).Γ ` (λy.P)〈x=U〉 :τi→σi. We apply Lemma 24(4) onΓ, (y:τi) ` P 〈x=U〉 :σi

and thereby,

21

· If x ∈ av(P) we getµ such thatΓ, (y:τi), (x:µ) ` P :σi andΓ, (y:τi) ` U :µ.
Sincey 6∈ av(U), applying Lemma 21(1) we getΓ, (x:µ), (y:τi) ` P :σi

andΓ ` U :µ.
· If x 6∈ av(P) we get thatU is typableandΓ, (y:τi) ` P :σi.

In both cases, we get the required result by applying first rule (→I) and then
respectively rules(cut) or (drop).

(VarI) : If Γ ` U :τ , then clearlyΓ, (x:τ) ` x:τ andΓ ` x〈x=U〉 :τ .
(VarK) : ThenU is a normal form, and, by Lemma 26,U is typable. We assume

Γ ` y :σ, and rule(drop) yieldsΓ ` y〈x=U〉 :σ.
Now for the induction step, since the environment and the type of M are the
same as ofN , the proof is easy using the same typing tree.

(2) Again, the proof is by induction on the structure ofM .
(M is its own perpetual redex) : We wish to prove: ifΓ ` P 〈x=U〉 :τ , then(∃Γ′′ ≤

Γ).Γ′′ ` (λx.P)U :τ .
· If x ∈ av(P), we have(∃τ ′).Γ, (x:τ ′) ` P :τ & Γ ` U :τ ′, so(∃τ ′).Γ ` λx.P :τ ′→τ & Γ ` U :τ ′

which entailsΓ ` (λx.P)U :τ by rule(→E).
· If x 6∈ av(P), then, using Lemma 24(4), we haveΓ ` P :τ and(∃Γ′, τ ′).Γ′ ` U :τ ′.

From Lemma 21(1), we getΓ, (x:τ ′) ` P :τ which yieldsΓ ` λx.P :τ ′→τ
by rule(→I). Hence(∃Γ′, τ ′).Γ ` λx.P :τ ′→τ & Γ′ ` U :τ ′. If we setΓ′′

to beΓ u Γ′ ≤ Γ we getΓ′′ ` λx.P :τ ′→τ andΓ′′ ` U :τ ′ which entails
Γ′′ ` (λx.P)U :τ .

(M ≡ λx.M ′) : ThenN ≡ λx.N ′, whereM ′
 N ′. We assumeΓ ` λx.N ′ :σ

and want to proveΓ′ ` λx.M ′ :σ′ for some environmentΓ′ ≤ Γ and typeσ′.
Using Lemma 24(3), we have typesτi, σi (i ∈ n) such that(∀ i ∈ n).Γ, (y:τi) ` N ′ :σi.
Then, by induction, we getΓ′ ≤ Γ, τ ′

1, andσ′
1 such thatΓ′, (x:τ ′

1) `M ′ :σ′
1.

Takingσ′ := τ ′
1→σ′

1 we getΓ′ ` λx.M ′ :σ′ as required.
(M ≡M1M2 whereM is not its own perpetual redex) : ThenN ≡ N1N2 where

eitherM1 N1 or M1 is a λ-free normal form andM2 N2 (see Def-
inition 13). We assumeΓ ` N1N2 :σ, and want to proveΓ′ `M1M2 :σ for
some environmentΓ′ ≤ Γ. Using Lemma 24(2), we have typesτi, σi (i ∈ n)
such thatσ ∼ (σ1∩ . . .∩σn) and (∀ i ∈ n).Γ ` N1 :τi→σi & Γ ` N2 :τi. Us-
ing Lemma 21(1) it suffices to prove that(∀ i ∈ n).Γi `M1M2 :σi for some
Γi ≤ Γ (since then we can takeΓ′ to be(Γ1 u . . . u Γn) ≤ Γi ≤ Γ). Now
by Definition 13,M1 cannot be an abstraction, otherwiseM would be its own
perpetual redex.
· If M1 N1 andM2 ≡ N2, then we apply the induction hypothesis

to M1. Hence we haveΓi ≤ Γ such thatΓi `M1 :τi→σi, and using
Lemma 21(1) we getΓi `M2 :τi. HenceΓi `M1M2 :σi.
· If M2 N2 andM1 ≡ N1, then we apply the induction hypothesis to

M2. Hence we haveΓ′
i ≤ Γ andτ ′

i such thatΓ′
i `M2 :τ ′

i . By Definition 13
we know thatM1 is a λ-free normal form, so Lemma 26(1) provides
an environmentΓ′′ in which M1 has typeτ ′

i→σi. Now, takingΓi to be
Γ′

i u Γ′′, we getΓi `M1M2 :σi as required.
(M ≡M1〈x=M2〉) : By Definition 13, either:

· The perpetual redex ofM is in M2, andM1 ≡ y 6= x (hence,N ≡

22

y〈x=N2〉whereM2 N2). AssumeΓ ` y〈x=N2〉 :σ. Using Lemma 24(4),
we getΓ ` y :σ. Now by inductionM2 is typable. Hence applying rule
(drop) we getΓ ` y〈x=M2〉 :σ as required.
· The perpetual redex ofM is in M1, andM1 is a closure (hence,N ≡

N1〈x=M2〉 whereM1 N1). We assumeΓ ` N1〈x=M2〉 :σ, and want
to proveΓ `M1〈x=M2〉 :σ.

x ∈ av(N1): Then, using Lemma 24(4), we have a typeτ such that
Γ, (x:τ) ` N1 :σ andΓ `M2 :τ . Now we can apply the induction
hypothesis toM1, which is a closure. We getΓ, (x:τ) `M1 :σ, and
then we can apply rule(cut) to getΓ `M1〈x=M2〉 :σ.
x 6∈ av(N1): Then using Lemma 21(3) we getΓ\x ` N1〈x=M2〉 :σ.
Then we can apply Lemma 24(4), and we haveΓ\x ` N1 :σ andM2

is typable. Now we can apply the induction hypothesis toM1, which
is a closure. We getΓ\x `M1 :σ. Note that sincex 6∈ (Γ\x), we
can apply rule(K-cut) and getΓ `M1〈x=M2〉 :σ.

Corollary 28 (Weak Subject Expansion) If M N , thenN is typable implies
M is typable.

Theorem 29 All strongly normalizing terms are typable.

PROOF. By induction on the length of the perpetual derivation. For the base case
we observe that normal forms are typable (Lemma 26(2)), the induction step fol-
lows by Corollary 28.

6 All Typable Terms are Strongly Normalizable

The general idea of the reducibility method, is to interprettypes by suitable sets
(saturated and stable sets for Tait [40] and Krivine [27] andadmissible relations
for Mitchell [34,35]) of terms (reducible terms) which satisfy the required property
(e.g. strong normalization) and then to develop semantics in order to obtain the
soundness of the type assignment. A consequence of soundness, the fact that every
term typable by a type in the type system belongs to the interpretations of that type,
leads to the fact that terms typable in the type system satisfy the required property,
since the type interpretations are built up in that way.

In order to develop the reducibility method we consider the applicative structure
whose domain are the terms inλx and where the application is just the application
of terms.

Definition 30 (Reducible terms)

23

(1) We define the collection of set of termsRρ inductively over types by:

Rϕ = SN

Rσ→τ = {M | ∀N ∈ Rσ [MN ∈ Rτ]}

Rσ∩τ = Rσ ∩Rτ .

(2) We define the setR of reducible termsby: R = {M | ∃ρ [M ∈ Rρ]} =
⋃

ρ∈T R
ρ.

Notice that, if M ∈ Rσ, not necessarily there exists aΓ such thatΓ `M :σ.
For example, ifϕ, ϕ′ are two different type variables, thenλx.x ∈ Rϕ→ϕ′

, since
(λx.x)M ∈ SN wheneverM ∈ SN , but we cannot derive∅ ` λx.x :ϕ→ϕ′. Also,
sinceλx.x ∈ SN , λx.x ∈ Rϕ, but we cannot derive∅ ` λx.x :ϕ.

We now show that reducibility implies strong normalizationand that all term-
variables are reducible. For the latter, it is convenient toshow a generalization:
all typable strongly normalisable terms that start with a term variable are reducible.

Lemma 31 (1) R ⊆ SN .
(2) x

⇀
N ∈ SN ⇒ ∀ρ [x

⇀
N ∈ Rρ].

PROOF. By simultaneous induction on the structure of types.

(1) (ϕ) : By Definition 30.

(σ→τ) : M ∈ Rσ→τ ⇒ (IH(2)) M ∈ Rσ→τ & x ∈ Rσ ⇒ (30)

Mx ∈ Rτ ⇒ (IH(1)) Mx ∈ SN ⇒ M ∈ SN .

(σ∩τ) : M ∈ Rσ∩τ ⇒ (30) M ∈ Rσ & M ∈ Rτ ⇒ (IH(1)) M ∈ SN .
(2) (ϕ) : x

⇀
N ∈ SN ⇒ (30) x

⇀
N ∈ Rϕ.

(σ→τ) : x
⇀
N ∈ SN ⇒ (10, (gen-var))

∀M ∈ SN [x
⇀
NM ∈ SN] ⇒ (IH(1))

∀M ∈ Rσ [x
⇀
NM ∈ SN] ⇒ (IH(2))

∀M ∈ Rσ [x
⇀
NM ∈ Rτ] ⇒ (30) x

⇀
N ∈ Rσ→τ

(σ∩τ) : x
⇀
N ∈ SN ⇒ (IH(2)) x

⇀
N ∈ Rσ & x

⇀
N ∈ Rτ ⇒ (30) x

⇀
N ∈

Rσ∩τ .

We now show that all setsRρ are closed under the rules(subs), (gen-B), (gen-App),
(gen-Abs), (gen-I) and(gen-gc). This result is needed in the proof of Theorem 33.

Lemma 32 (Saturation) For all ρ, the setsRρ areSN -saturated.

24

PROOF. All these closures are shown by induction on the structure oftypes. For
the case of a type-variable,Rϕ = SN , which isSN -saturated (Theorem 12). For
the rest of the induction, since the proofs are all very similar, we will not show all
in detail, but focus on rule(subs). Then:

(σ→τ) : (P 〈x =N〉
⇀
〈y=Q〈x =N〉

⇀
〉)M

⇀
∈ Rσ→τ ⇒ (30)

∀R ∈ Rσ [(P 〈x = N〉
⇀
〈y=Q〈x = N〉

⇀
〉)M

⇀
R ∈ Rτ] ⇒ (IH)

∀R ∈ Rσ [((P 〈y=Q〉)〈x = N〉
⇀

)M
⇀

R ∈ Rτ] ⇒ (30)

((P 〈y=Q〉)〈x =N〉
⇀

)M
⇀
∈ Rσ→τ .

(σ∩τ) : Immediate by Definition 30 and induction.

We shall prove our strong normalization result by showing that every typable term
is reducible. For this, we need to prove a stronger property:we will show that if
we substitute term-variables by reducible terms in a typable term, then we obtain a
reducible term. This gives the soundness of our type interpretation.

Theorem 33 (Soundness)Suppose {(x1:µ1), . . . , (xn:µn)} `M :σ, and, for

i ∈ n, Ni ∈ Rµi , with noxj available in anyNi. ThenM〈x=N〉
⇀
∈ Rσ.

PROOF. The proof is by induction on the structure of derivations. Wewill use the
SN -saturation of the saturated sets (Lemma 32) just mentioning the rule names.
Let Γ = {(x1:µ1), . . . , (xn:µn)}.

(start) : ThenM ≡ xj , andµj = σ, for somej ∈ n. SinceNj ∈ Rµj , Nj ∈ Rσ.

Then, by rules(gen-I) and(gen-gc), xj 〈x =N〉
⇀
∈ Rσ.

(→I) : ThenM ≡ λy.M ′, σ = ρ→τ , andΓ, (y:ρ) `M ′ :τ . Let N ∈ Rρ, then, by

induction,M ′ 〈x =N〉
⇀
〈y=N〉 ∈ Rτ . So, by rule(gen-B), (λy.M ′ 〈x =N〉

⇀
)N ∈

Rτ , and, by Definition 30,λy.M ′ 〈x = N〉
⇀
∈ Rρ→τ . We can assumey 6∈ fv(N),

so, by rule(gen-Abs), (λy.M ′)〈x =N〉
⇀
∈ Rρ→τ .

(→E) : ThenM ≡M1M2 and there existsτ such thatΓ `M1 :τ→σ andΓ `M2 :τ .

By induction,M1 〈x =N〉
⇀
∈ Rτ→σ andM2 〈x =N〉

⇀
∈ Rτ . But then, by Defini-

tion 30,M1 〈x =N〉
⇀

M2 〈x =N〉
⇀
∈ Rσ, so, by rule(gen-App), (M1M2)〈x = N〉

⇀
∈

Rσ.
(∩I) : Thenσ ≡ σ1∩σ2 and, fori ∈ 2, Γ `M :σi. So, by induction,M 〈x =N〉

⇀
∈

Rσ1 andM 〈x =N〉
⇀
∈ Rσ2 , so, by Definition 30,M 〈x =N〉

⇀
∈ Rσ.

(∩E) : Then there existsτ such thatΓ `M :σ∩τ , and, by induction,M 〈x =N〉
⇀
∈

Rσ∩τ . Then, by Definition 30,M 〈x = N〉
⇀
∈ Rσ.

(cut) : Here M ≡ P 〈y=Q〉, and there existsτ such thatΓ, (y:τ) ` P :σ and

Γ ` Q:τ . Then, by induction on the right-hand hypothesis,Q〈x = N〉
⇀
∈ Rτ .

25

Then again by induction, but now on the left-hand hypothesis,P 〈x =N〉
⇀
〈y=Q〈x =N〉

⇀
〉 ∈

Rσ. So, by rule(subs), (P 〈y=Q〉)〈x =N〉
⇀
∈ Rσ.

(drop) : Here M ≡ P 〈y=Q〉, Γ ` P :σ, y /∈ Γ and there exist∆, τ such that

∆ ` Q:τ . By inductionP 〈x =N〉
⇀
∈ Rσ. Sincey /∈ av(P) we may use closure

of Rσ under rule(gen-gc) to conclude that(P 〈y=Q〉)〈x =N〉
⇀
∈ Rσ. To be

able to apply that rule, we need thatQ ∈ SN ; notice that by induction on the
derivation forQ, Q ∈ Rτ , so, by Lemma 31(1), Q ∈ SN .

(K-cut) : The proof is very similar to the(drop) case; we may also use to Theo-
rem 23.

Theorem 34 If Γ `M :σ for someΓ, σ thenM ∈ SN .

PROOF. SupposeΓ is{(x1:ρ1), . . . , (xm:ρm)}. By Lemma 31(2), all term-variables

are reducible for any type, so, by Theorem 33, for allM , M〈x=y〉
⇀

is reducible,

where⇀y are fresh. By Lemma 31(1) the termM〈x=y〉
⇀

is strongly normalizing,
and sinceM is a subterm, the result follows.

7 Characterizing weak normalization and head normalization

The systemE is obtained from the systemD of [20] by adding the rules(drop)
and(K-cut). The systemDω is the extension ofD obtained by adding a universal
typeω: this type was first added to intersection type assignment in[39]. The main
feature of systems with intersection andω is that typing is invariant under any
conversion of subjects. In [20], characterizations of the head-normalizing and left-
most-normalizing terms ofλx were obtained in terms of typability inDω.

The main result of this paper is that typability in systemE serves to characterize the
strongly-normalizing terms ofλx, and therefore that the rules(drop) and(K-cut)
capture this important aspect of reduction in explicit substitutions calculi. But a nat-
ural question to raise at this point is whether rules(drop) and(K-cut) behave well
in the presence of a universal type. In particular, we may askwhether the normal-
ization theorems of [20] still hold in the presence of the newrules. In this section
we show that this is the case. That is, we will verify that theDω-characterizations
of normalizing and head-normalizing terms from [20] generalize in a natural way
to Eω. The first observation is that when a universal type is added to E the resulting
system is equivalent toDω.

26

7.1 Extending the type system

Definition 35 The type systemEω is obtained from systemE by adding the type
constantω and the rule:

(ωI) :
Γ `M :ω

The type systemDω is obtained by addingω and rule(ωI) to the systemD of [20].

Theorem 36 SupposeΓ `M :τ in systemEω. ThenΓ `M :τ in systemDω as well.

PROOF. By induction on the structure of derivations. In light of theequivalence
between(drop) and(K-cut) it suffices to show that an application of rule(drop) can
be simulated inDω. So suppose

(drop) :
Γ `M :τ ∆ ` N :σ

(x 6∈ av(M))
Γ `M〈x=N〉 :τ

By induction we can deriveΓ `M :τ in Dω, so certainly, using aDω-variant of
Lemma 21(4), Γ, (x:ω) `M :τ . By (ωI), Γ ` N :ω in Dω, so we have

(cut) : Γ, (x:ω) `M :τ Γ ` N :ω

Γ `M〈x=N〉 :τ

in Dω, as desired.

7.2 Head reduction and left-most reduction

The head and left-most redexes fromLC appear inλxgc as head or left-mostB-
redexes. But the general notion of head or left-most redex inλxgc must take the
rules for applying substitutions into account. In fact, thecorrect definitions of head
and left-most reduction are more subtle than inLC. Essentially this is becauseλxgc

has a critical pair, due to the following overlapping reductions:

(λx.M)〈y=L〉 N〈y=L〉←− ((λx.M)N)〈y=L〉−→M〈x=N〉〈y=L〉

Both these reductions could be considered a “head reduction.” In fact, it is our
choice to consider them each to be head reductions.

Definition 37 (Head reduction) Head reductionis the closure of the rules ofλxgc

(Definition 5) under the structural rules of Figure 4. A termM is head normalizing
if there is no infinite head-reduction starting fromM . The set of head normalizing
terms is denotedHN .

27

M
h
−→ M ′ M not an abstraction

MN
h
−→ M ′N

M
h
−→ M ′ M not an abstraction

M〈x=N〉
h
−→ M ′〈x=N〉

M
h
−→ M ′

λx.M
h
−→ λx.M ′

Fig. 4. Head reduction

M
l
−→ M ′ M not an abstraction

MN
l
−→ M ′N

M
l
−→ M ′ M not an abstraction

M〈x=N〉
l
−→ M ′〈x=N〉

M
l
−→ M ′

λx.M
l
−→ λx.M ′

Mi
l
−→ M ′

i Mi left-most non-normal

xM1...Mi...Mn
l
−→ xM1...M

′

i ...Mn

Fig. 5. Left-most reduction

Definition 38 (Left-most reduction) Left-most reductionis the closure of the rules
of λxgc under the structural rules in Figure 5. A termM is left-most normaliz-
ing if there is no infinite left-most reduction starting fromM . The set of left-most-
normalizing terms is denotedLN .

Observe that, in contrast to the classical notions, both head reduction and left-most
reduction are non-deterministic strategies. Indeed, eachof the reductions out of the
critical pair noted earlier count as head reductions.

For example, letT be((λx.M)N)〈y=L〉. ThenT can rewrite by left-most reduc-
tion either toP ≡M〈x=N〉〈y=L〉, or (in two steps) toQ ≡ ((λx.M〈y=L〉) N〈y=L〉).
Then, sinceλx.M〈y=L〉 is an abstraction,Q left-most rewrites via ruleB to Q′ ≡
M〈y=L〉〈x= N〈y=L〉〉.

7.3 Characterization theorems

We will assume familiarity with [20] in this subsection; we derive the characteriza-
tion theorems by indicating how to lift the results of that paper. There is a technical
issue to be dealt with, however: the garbage collection rule(gc) in the current paper
is more liberal than the traditional rule in the system of [20]. In this section we refer
to the traditional garbage collection rule asgc−:

M〈x=N〉 −→ M, if x /∈ fv(M) (gc−)

28

Formally, since [20] treats a different reduction system, it is difficult to quote results
there in support of results about the system of this paper. But theargumentsof the
first paper carry over almost word-for-word. In light of thiswe have chosen to indi-
cate below precisely where the distinction between the systems makes a difference,
rather than repeating the entire development.

The following definitions are due to Cardone and Coppo [13]: Atype isproper if
it has no positive occurrence ofω. A type is trivial if it can be generated by the
following rules:

(1) ω is trivial,
(2) If σ is trivial andτ is any type, thenτ→σ is trivial,
(3) If σ andτ are trivial, thenσ ∩ τ is trivial.

The following lemma isolates the place where we must acknowledge the difference
in garbage collection rules.

Lemma 39 If M is typable with a non-trivial type in systemDω thenM is head-
normalizing in the calculusλxgc.
If M is typable in systemDω with a type not involvingω then M is left-most-
normalizing in the calculusλxgc.

PROOF. Each of these assertions is proved in [20] for the systemλxgc− (Theo-
rems 8.1 and 8.2 there). We invite the reader to check that in that paper, the only
places where the garbage collection rule is analyzed are Lemmas 3.2 and 3.5 and
that the proofs of each of these Lemmas are essentially unchanged if the current,
more liberal,gc rule is used. The rest of the development in [20] is unchanged,
completing the proof.

Theorem 40 LetM be a closed term. The following are equivalent.

(1) M is typable with a non-trivial type in systemEω.
(2) M is head-normalizing in the calculusλxgc.
(3) M is head-normalizing in the calculusλx (without garbage collection).
(4) M has a head normal form.
(5) M is solvable, that is, there is ann and termsX1, . . .Xn such thatMX1 · · ·Xn =

λx.x.

PROOF. By Theorem 36 we may replace, in (1), “Eω” by “Dω.” Then each of the
equivalences has been proved in [20] with the exception of the implication from (1)
to (2) since, in [20] garbage collection refers to the more restricted rulegc−. But
for this implication we use Lemma 39 here.

29

Theorem 41 LetM be a closed term. The following are equivalent.

(1) M is typable in systemEω with a type not involvingω.
(2) M is typable with a proper type in systemEω.
(3) M is left-most-normalizing in the calculusλxgc.
(4) M is left-most-normalizing in the calculusλx (without garbage collection).
(5) M has a normal form.

PROOF. As for Theorem 40.

In Theorem 41, the implications 5 to 3 and 5 to 4 state that inλx andλxgc left-most
reduction is a normalizing strategy.

8 Conclusion

We have defined an improved system of intersection types for calculi of explicit
substitutions and shown that it characterizes the stronglynormalizing terms. The
new rules allowing us to type all strongly normalizing termsare consistent with
the addition of a universal type, in the sense that the characterizations of head-
and left-most-normalizing terms obtained in previous workare still valid in the
extended system.

The new notion ofavailable variable occurrence plays an important role in the
type system, and indeed allows us to define a more powerful notion of garbage
collection than has appeared elsewhere in the explicit substitutions literature. We
like to note the similarity between the reduction rule(gc) and the classical ‘mark-
and-sweep’ algorithm for garbage collection. As a matter offact the computation
of the set of available variables of a term corresponds to the‘mark’-phase, while
the reduction using only rule(gc) corresponds to the ‘sweep’-phase. Notice that
this is not true for the similar rules of [11,20]. We think that it could be interesting
to investigate the use of the garbage collection based on availability of variables in
the implementations of functional programming languages.

Acknowledgements

The authors are grateful to Norman Danner, Frédéric Lang,Simona Ronchi della
Rocca, and Kristoffer Rose for many helpful discussions. Moreover they thank the
referees of the conferences LATIN’02 and TCS’02, and of the present submission
for helpful comments.

30

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.Journal of
Functional Programming, 1(4):375–416, 1991.

[2] R. Amadio and P.-L. Curien.Domains and lambda-calculi. Cambridge University
Press, 1998.

[3] S. van Bakel. Complete restrictions of the intersectiontype discipline. Theoretical
Computer Science, 102(1):135–163, 1992.

[4] S. van Bakel. Intersection Type Assignment Systems.Theoretical Computer Science,
151(2):385–435, 1995.

[5] S. van Bakel and M. Dezani-Ciancaglini. Characterizingstrong normalization for
explicit substitutions. In S. Rajsbaum, editor,LATIN’02, volume 2286 ofLecture
Notes in Computer Science, pages 356–370. Springer-Verlag, 2002.

[6] H.P. Barendregt.The Lambda-Calculus, its syntax and semantics. Studies in Logic and
the Foundation of Mathematics. Elsevier Science Publishers B.V. (North-Holland),
1984. Second edition.

[7] H.P. Barendregt. Lambda calculi with types. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors,Handbook of Logic in Computer Science, volume 2, chapter 2,
pages 117–309. Oxford University Press, 1992.

[8] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of
explicit substitutions which preserves strong normalisation. Journal of Functional
Programming, 6(5):699–722, 1996.

[9] R. Bloo. Preservation of Termination for Explicit Substitution. PhD thesis, Technische
Universiteit Eindhoven, 1997. IPA Dissertation Series 1997-05.

[10] R. Bloo and J. H. Geuvers. Explicit substitution: on theedge of strong normalization.
Theoretical Computer Science, 211:375 – 395, 1999.

[11] R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi
with explicit substitution and garbage collection. InCSN’95, pages 62–72, 1995.

[12] N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition
of expressions and segments. TH-Report 78-WSK-03, Department of Mathematics,
Technological University Eindhoven, Netherlands, 1978.

[13] F. Cardone and M. Coppo. Two extension of Curry’s type inference system. In
P. Odifreddi, editor,Logic and Computer Science, volume 31 ofAPIC Series, pages
19–75. Academic Press, 1990.

[14] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms.
Archiv für mathematische Logik und Grundlagenforschung, 19:139–156, 1978.

[15] M. Coppo and M. Dezani-Ciancaglini. An extension of thebasic functionality theory
for theλ-calculus.Notre-Dame Journal of Formal Logic, 21(4):685–693, 1980.

31

[16] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, 1979.

[17] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional characterization
of lambda-terms using intersection types. In M. Nielsen andB. Rovan, editors,
MFCS’00, volume 1893 ofLecture Notes in Computer Science, pages 304–314.
Springer-Verlag, 2000.

[18] R. Di Cosmo and D. Kesner. Strong normalization of explicit substitutions via cut
elimination in proof nets. In G.Winskel, editor,LICS’97, pages 35–46. IEEEC Society
Press, 1997.

[19] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit
substitutions (extended abstract). In S. Abramsky, editor, TLCA’01, volume 2044 of
Lecture Notes in Computer Science, pages 121–135. Springer-Verlag, 2001.

[20] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit
substitutions.Mathematical Structures in Computer Science, 13(1):55–85, 2003.

[21] A.G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67
of Translations of Mathematical Monographs. American Mathematical Society, 1987.

[22] J. Gallier. Typing untyped lambda terms, or reducibility strikes again.Annals of Pure
and Applied Logic, 91:231–270, 1998.

[23] S. Ghilezan. Strong normalization and typability withintersection types.Notre Dame
Journal of Formal Logic, 37(1):44–52, 1996.

[24] J. Goubault-Larrecq. Lambda-calcul, logique et machines.École Normale Supérieure
de Cachan, 2001.

[25] H. Herbelin. Explicit substitutions and reducibility. Journal of Logic and
Computation, 11(3):429–449, 2001.

[26] F. Kamareddine and A. Rı́os. Extending a lambda-calculus with explicit substitution
which preserves strong normalisation into a confluent calculus on open terms.Journal
of Functional Programming, 7(4):395–420, 1997.

[27] J.-L. Krivine. Lambda-calcul, types et modèles. Masson, 1990.

[28] J.-L. Krivine. Lambda calculus, types and models. Ellis Horwood, 1993.

[29] D. Leivant. Typing and computational properties of lambda expressions.Theoretical
Computer Science, 44(1):51–68, 1986.

[30] S. Lengrand, D. Dougherty, and P. Lescanne. An improvedsystem of intersection
types for explicit substitutions. In R. A. Baeza-Yates, U. Montanari and N. Santoro,
editors,Conference on Theoretical Computer Science, IFIP Congress, pages 511–524.
Kluwer Academic Publishers, 2002.

[31] P. Lescanne. Fromλσ to λυ: a journey through calculi of explicit substitutions. In
Hans-J. Bôhm, editor,POPL’94, pages 60–69. ACM Press, 1994.

32

[32] P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutionsλυ. Technical
Report RR-2222, INRIA-Lorraine, January 1994.

[33] P.-A. Melliès. Typedλ-calculi with explicit substitution may not terminate. In
M. Dezani and G. Plotkin, editors,TLCA’95, volume 902 ofLecture Notes in
Computer Science, pages 328–334. Springer-Verlag, 1995.

[34] J.C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 415–431. Elsevier
Science Publishers B.V. (North-Holland), 1990.

[35] J.C. Mitchell.Foundation for Programmimg Languages. MIT Press, 1996.

[36] G. Pottinger. A type assignment for the strongly normalizableλ-terms. In J.P. Seldin
and J.R. Hindley, editors,To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 561–578. Academic Press, 1980.

[37] E. Ritter. Characterising explicit substitutions which preserve termination. In J.-Y.
Girard, editor,TLCA’99, volume 1581 ofLecture Notes in Computer Science, pages
325–339. Springer-Verlag, 1999.

[38] K.H. Rose.Operational Reduction Models for Functional Programming Languages.
PhD thesis, DIKU, Universitetsparken 1, DK-2100 KøbenhavnØ, February 1996.
DIKU report 96/1.

[39] P. Sallé. Une extension de la théorie des types enλ-calcul. In G. Ausiello and C. Böhm,
editors,ICALP’78, volume 62 ofLecture Notes in Computer Science, pages 398–410.
Springer-Verlag, 1978.

[40] W.W. Tait. Intensional interpretations of functionals of finite type I. Journal of
Symbolic Logic, 32:198–212, 1967.

33

