Intersection types for explicit substitutions

Stephane LengraridPierre LescanneDan Dougherty
Mariangiola Dezani-Ciancaglifi, Steffen van Bakel

a Ecole Normale Sugrieure de Lyon 46, Adle d’ltalie, 69364 Lyon 07, FRANCE, E-mail:
{St ephane. Lengr and, Pi erre. Lescanne}@ns-|yon. fr

bDepartment of Computer Science, Worcester Polytechniitutes Worcester, MA 101609
USA, E-mail.dd@s. wpi . edu
“Dipartimento di Informatica, Universit di Torino, Corso Svizzera 185, 10149 Torino,
Italy, E-mail: dezani @li . unito.it

dDepartment of Computing, Imperial College of Science, fieldyy and Medicine, 180
Queen’s Gate, London SW7 2BZ, U.K., E-maitb@oc. i c. ac. uk,

Abstract

We present a new system of intersection types for a compositee calculus of explicit
substitutions with a rule for garbage collection, and shioat {t characterizes those terms
which are strongly normalizing. This system extends previwvork on the natural general-
ization of the classical intersection types system, whitdracterized head normalization
and weak normalization, but was not complete for strong adimation. An important role
is played by the notion oévailable variable in a term, which is a generalization of the
classical notion of free variable.

Key words: Calculi of explicit substitutions, intersection typespsiy normalization.

1 Introduction

An explicit substitutions calculus is a refinement of thesslaal Lambda Calculus
(Lc) [6] in which substitution is not treated as a meta-operatin terms but rather
as an operation of the calculus itself. The inspiration mtsa study is the observa-
tion that, in the presence of variable-binding, substituts a complex operation to

I Partially supported by EU within the FET - Global Computindjiative, project DART
ST-2001-33477 , and MURST Projects COMETA and McTati. Thedfng bodies are not
responsible for any use that might be made of the resultepred here.

Preprint submitted to Elsevier Science 27 October 2003

define and to implement, so that making substitutions eijpdiads to a more per-
tinent analysis of the correctness and efficiency of compilbeorem provers, and
proof-checkers. Abadi, Cardelli, Curien, and Lévy [1] atelBruijn [12] defined
the first calculi of explicit substitutions.

Intersection type disciplines originated in [14,15] to mame the limitations of
Curry’s type assignment system and to provide a charaateiz of the strongly
normalizing terms of the-calculus [36]. Since then, intersection types discigine
have been used in a series of papers for characterizingagi@aiproperties of-
terms [29,28,3,4,23,2,22,17].

As discussed in [20], one can see an explicit substitutidcutizs as an improve-
ment on both the system of combinators agdsince it is a system whose mechan-
ics are first-order and as simple as those of combinatorg,lggt which retains the
same intensional character as. Observe that.c can be viewed as a subsystem
of explicit substitution systems, defined by the strateg{eaiyerly” applying the
substitution induced by contractingdaredex. In this sense, explicit substitutions
calculi are logically prior ta.c, and the study of explicit substitutions represents a
deeper examination of the relationship between abstraatid application.

A fundamental property of typedc is strong normalization: no typable term ad-
mits an infinite reduction sequence. Mellies [33] made thmewhat surprising
discovery that strong normalization fails even for simpiged terms of the Abadi-
Cardelli-Curien-Lévy calculus.

Given the central place that strong normalization occupigbe theory and ap-
plication ofLLC, it is important to study this property in systems of explgibsti-

tutions. Melliés’ result exploits the existence of@ampositioroperator on substi-
tutions, and so there are two obvious and complementargtdires for research.
The first is to define classes of reduction strategies in thggnad calculus which
support strong normalization; a notable example of workig area is that of Eike
Ritter [37]. The second direction is to investigate calaukvhich substitutions are
explicit but composition is absent; the current paper i$ péthis effort.

Composition-free calculi of explicit substitutions hawee studied in [31,11,26,10,8],
among other works. Here we work in the composition-freeudak\x [11] and a
calculushxyc obtained by adding explicit garbage collectionta In fact, our rule

for garbage collection is stronger than the one originalgspnted in [11].

Previous work [19,20] explored some reduction propertiethis system using

intersection types. The natural generalizations of thesital type systems were
able to characterize the sets of normalizing and head-rA@ingterms by means

of typability. But it was shown in [19] that the naive gené&zation of the classical

system did not characterize the strongly normalizing teffypable terms were

strongly normalizing but the converse fails.

Example 1 Consider the terms

M; = ((M\y.z)(zx)){x=Aa.aa) and
M, = z(y=zx)(x=Na.aa)

and notice thaf\/; — M,. The term)/, is readily seen to be strongly normalizing.
But M5 is not typable in the syste of [19]: it is obtained from the (not strongly
normalizing, hence untypable) terid; by contracting as-redex, and such a con-
traction does not change the typing behaviour of terms urfdleFinding a type
system characterizing the strongly normalizing terms veftsds an open problem
in [19].

Main results. In this paper we solve the aforementioned problem: we define a
extensionE of systemD which types precisely the strongly normalizing terms.
Furthermore, when a universal typas added, the resulting systefy satisfies the
same theorems as those in [19] characterizing the weakinal@ing, head nor-
malizing, and solvable terms. Our claim, then, is that tretesy presented here —
with or without a universal type — is a robust type system appate for analyzing
reduction properties in explicit substitutions calculi.

In fact, we present two different characterizations of roormalization, in the
form of two different type systems. These systems were deseal independently
[5,30]. Each system starts with the natural generalizadfcthe classical intersec-
tion types system to the explicit substitutions calculug adds a new typing rule.
In one system [5], the new rule essentially takes into actcitwat, by putting a term
of the shapé\/ (x=N) — wherex does not occur free in/ — in an arbitrary con-
text, the free variables d¥ will never be replaced. Therefore, we can discharge the
assumptions used to typé when we derive a type fab/ (x=N). For the second
system the key insight for the solution is the notionavfilable variable occur-
rence in a term (Definition 3). This is a refinement of the notd free variable,
first considered in [11] (Remark 2.3).

The present paper is an joint expanded version of the carderpapers [5] and
[30]; we present both rules in a uniform system, and invastighe relationship
between the two systems.

As a corollary of our proof methods we are able to define a sdraemore general
notion of garbage collection than has been studied in temliire ofAx and show
that adding a reduction for garbage collection does notghaine set of strongly
normalizing terms.

Explicit substitutions calculi without composition typity enjoy thepreservation
of strong normalizatiomproperty: a pure term is strongly normalizing in the pres-
ence of explicit substitutions if it is so undgrreduction [32,8,11,9,10,38,18]. It

follows that the classical intersection type system doesattierize strong normal-
ization for pure terms. In contrast, the current resultypi®information abouall
terms. Perhaps more significant is the fact that the proo&sdre direct, involving
reasoning in the explicit substitutions calculus itsetft passing through the indi-
rection of an argument abogtreduction. Herbelin [25] has proposed also a direct
proof of strong normalization for a simply typed calculusesplicit substitution
which interprets a sequent calculus (he restricts the tateto simple types and
so does not achieve a characterization of strong normiigaiVe recommend his
introduction for other arguments on how explicit subsiitng give an account of
thecut rule[21].

Recently we learned that Jean Goubault-Larrecq propasékeiexercises of his
course [24], a type system with intersection types for (aieer with De Bruijn
indices of) the calculus of explicit substitutioks introduced in [31]. Each typable
term in this calculus is shown to be strongly normalizing, the converse is not
true.

Plan of the paper. Section 2 presents the syntax and reduction semantits, of
and in Section 3 we derive some important technical resblbsitareduction, in-
cluding the definition of a perpetual strategy and an insedtiefinition of the set
of strongly normalizing terms. In Section 4 we present theetgystent and we
show the inter-admissibility of the two new typing rules wedide. In Section 5 we
prove that all strongly normalizing terms are typable inegsf, and in Section 6
we show the converse. Finally, in Section 7, we verify thatréssults of [19] extend
to systeme,,.

Notation. Our notation is consistent with that of [7], to which we rettee reader
for background onc. We will usen for {1,...,n}.

2 The calculus)x

2.1 Syntax and available variables

Definition 2 The set\x of terms with explicit substitutions is defined as follows :
M,N :=x | Ax.M | MN | M{z=N)

A term of the formV/ (z= N) is called aclosure A term which contains no closure
is called apure term

In writing terms, we will use the standard conventions fonexing brackets, and
use the following abbreviations:

M =M, ..., M, (n>0)
MM = MM, ... M, (n > 0)

_ N

M{(x=N) = M(x;=Ny) ... (xt,=N,) (n >0)

We will see in Figure 2 another description of the set of temith explicit sub-
stitutions called thédnead-form taxonomwhereas the above description could be
called thenatural taxonomy

One defines the notions of free and bound variable occursanaeterm as usual.
But it turns out that in the presence of explicit substitnti@a refinement of the
notion of free variable, calledvailablevariable occurrence, is key.

Definition 3 Thefreevariables in a term are:

fv(z) = {z}

M) = M)\ {z}

W(MN) = fv(M)Uv(N)

(M (2=N)) = (V(M)\{2}) U (V)

A variable occurrence which is not free is calletd@undoccurrence. Thavailable
variables in a term are:

av(z) = {z}

av(Azx.M) =av(M)\ {z}

av(MN) = av(M) U av(N)

av(M(z=N)) = {(aV(M)\{SC}) U av(N), if z € av(M)
av(M), if z & av(M)

It is easy to show by induction on the structure of terms thatavailable variable
occurrences in a term are a subset of the free variable @rmes, and that free
and available variables coincide for pure terms.

Lemma4 av(M) C fv(M).

Availability differs from freeness in that the availableiedbles of M/ (x= N, where

x is not available inV/, are exactly those a¥/, whereas the free variables in any
case are those df/ and N. The intuition is thatr is not available just when the
term N disappears in the course of fully applying the substitugionV/ (z= N').

Further discussion of the motivation for defining availatéiable occurrences
will be given after we present our type system. For now we daseove, referring
to Example 1, that, in the term(y=xx), the variabler is free, but not available.

Notice that, actually, the calculus includes two bindeesnely A in Az.M which
bindsz in M, and also-(-=-) in M (z=N) which bindsz in M. In what fol-
lows, we consider terms up teconversion. Throughout this paper, we will assume
the Barendregt convention on variables [6] to be fulfilled:variable occurs both
free and boundSince available variables are free it follows that we asstmat

no variable occurs both available and bound in the same xioritee Barendregt
convention extends to judgmeriis- M :o (see Definition 20) in which variables
occurring in the judgment are considered as free and cannot occur bound in the
term M. Thus a judgment likéz:o) - M (x= N):7 is prohibited by the Barendregt
convention.

2.2 Therules

Definition 5 (Ax and Axyc) We identify the following reduction rules om terms.

(Az.M)P — M{x=P) (B)
(MN)z=P) — M{z=P)N(z=P) (App)
Ay M){x=P) — \y.(M{z=P)) (Abs)
x(z=P) — P (Varl)
yz=P) —y (VarK)
M({x=P) — M, if x ¢ av(M) (gc)

The Barendregt convention on variables plays a major rolearabove definition,
especially in rule(Abs) which otherwise would involve the capture of variables.
The notion of reductiomx is obtained by deleting rulégc), and the notion of
reduction\xg. is obtained by deleting rulgvarK). The rule(gc) is called “garbage
collection”, as it removes useless substitutions. Notieg¢ here we propose a form
of the (gc) rule which differs from the similar rules given in [11,204, that it uses
availability of the variable instead of freeness. This nis@emore liberal rule for
garbage collection.

When it is clear from the context which notion of reductionuged, — will de-
note the reduction relation and- will denote its reflexive and transitive closure.

The following lemma justifies the addition of our rulgc) to Ax.

Lemma 6 If = ¢ av(M) then

where- =, - is the equivalence relation on terms generated by rudgp), (Abs),
(Varl), (varK).

PROOF. By induction on the structure of terms.
CasesVl = y, \y.P, PQ are straightforward.

For the remaining casé/ = P(y=Q), first of all, notice that, by Corollary 2.13
and Proposition 2.14(a) of [11], we have

(P{y=Q))(x=N) = (P{x=N)){y=Q(z=N)).
We distinguish two cases:

e ycav(P). Thenx ¢ (av(P)\{y}) U av(Q®), so

(Ple=N)){y=Q(x=N)) = (IH)

P{y=Q(z=N)) == (IH) P(y=0Q).
e y ¢ av(P); notice that then als&(y=Q) =, P, by induction. Therr ¢ av(P),
S0
(Ple=N)){y=Q{r=N)) = (IH)
P{y=Q(z=N)) = (IH) P
So(P{z=N))(y=Q(z=N)) =« P{y=0Q).
In particular, for both cases, we g&t(y=0Q))(z=N) =, P(y=Q). L

By induction on reductions one can check that the set of a@viglvariables does
not increase when terms are reduced.

Lemma?7 (1) If M — N thena M) D av(N).
(2) Ifx £av(M), M — N and N is a pure term then: ¢ fv(N).

In contrast withLC we are considering a rewrite system with several rules, kvhic
in fact interact with each other in interesting ways. Forregke, there is &ritical
pair formed by the rule$B) and(App). Specifically, a term of the form

(Ae.M)N)(y=L)

can be reduced to either of

(Az.M){y=L) N(y=L) or M{z=N)({y=L)

Most of the difficulty in working with the system is due to ttustical pair, as we
will see.

Definition 8 (SNV) We say, as usual, that/ is in normal formif M is redex free,
and write nf(A) if M is in normal form.M is normalisablés there exists\/’ in
normal form such thal/ —-» M’, and M is strongly normalisablé all reduction
sequences starting in/ are of finite length. We us8V for the set of strongly
normalizing terms undexXx.

3 Generation of S\, saturated sets, and a perpetual strategy

In this section we show some properties of the$Et the only property which is
needed for our characterization result is t8Af is saturated (Theorem 12), but we
think that the perpetuality of the defined strategy is bylfiis¢eresting.

3.1 An inductive characterization &\

We first recall a key closure condition 8§V proved in [20].

Lemma 9 The setSN is closed under rule:

N\

M{y=L)(z=N{y=L))(z=Q)P
M{z=N){y=L)(z=Q)P

(subs) :

Figure 1 tells us how the set of strongly normalizing terms ba generated by
induction. Rule(gen-var) has a number (possibly zero) of terms as upper part. The
rule (gen-App) is interesting, as a first example of the role of our critictp/Vhen

the term(UV) is in fact aB-redex, it is not obvious that this rule is sound, that is,
that pushing the substitution through the application (@sosed to firing theé3-
redex) preserves the existence of an infinite reductionirBiaict it is sound, as we
will see.

Proposition 10 SV is generatedby the rules of Figure 1.

PROOF. We first show that the rules in Figure 1 generaidy terms inSN/, i.e.

(gen-var) : M. My (gen-B) : M({z=N)P
M (Az.M)N P
(gen-)) : M (gen-Abs) : Ay M{z=N)){z=Q)P
A M (Ay M){z=N)(z=Q)P
gonapp) : TE=NNV =N (==Q)P
(UV){z=N)(z=Q)P
(gen-) : N<Z:Q>ﬁ (gen-K) : y(z:Q)ﬁ N
z(z=N)(z=Q)P y(z=N)(z=Q)P

Fig. 1. Generation of\

that for each rule, if the upper term(s) belong” then the lower term belong to
SN.

We only consider two of the ruleggen-1), because it is typical, angen-App),
because it uses techniques specific to this set of rules.

_ NN

(gen-l) : Suppose]lf(z:Q)P is in SNV. Suppose, towards a contradiction, that
x(x=N)(z=Q) P is notinSN/, then there is an infinite reduction starting from
this term. Either
e this reduction never contracts the left-outermost reclex=N') and there ex-

ists an infinite reduction starting frofW or one of the();’s or one of theP;’s,

thenN (z Q>ﬁ is not inSN, which is a contradiction.
e or this reduction is of the form

2r=N)(z=Q)P —» 2{z=N"){z=Q)P’

SN N/< Q)Pl

_ N\

which is in contradiction with the fact thaf(z:Q)ﬁ € SN.

(gen-App) : Suppose{UV)(x:N)(z:@ﬁ is notinSN, then there exists an in-
finite reduction starting from this term. If this reductioever reduces the redex
(UV){x=N), neither by(App), nor by (B) (in which casd’ reduces to an ab-
straction), then there exists an infinite reduction stgrfrom U, or V, or N or

one of theQ,’s or one of theP;’s, and(U(z=N))(V(z=N))(z=Q) is not in

SN, which is a contradiction. If

UV)a=N)(z=Q)P — <U’V’><x=N’><z=ﬁ’>ﬁéé

— (Uz=N")(V{z=N"))(z=Q") P,

then the looked for contradiction comes from the fact thahaee assumed that
(U{x=N))(V{(x=N)){(z=Q) P is in SN'. Suppose now that

UV)a=N)z=Q)P — (MU)W')z=N){z=Q)F'

— (U{y=V")z=N)){z=Q")P".

_ N

But the assumption is th&U(:c:ﬁ))(W:c:N})(z:Q)ﬁ is in SN, so also
U{z=N"){y=V"(z=N"))(z=Q')P" is in SN. Therefore, by (Lemma 9), ap-
plying (subs) gives that(U’(y=V"){(x=N"))(z=Q’)P’ in SN/, which is a con-
tradiction.

To conclude the proof, we need to show that the rules in Figugeneratall the
terms inSN. This is proven by a double induction on the length of the &sig
derivation to normal form and on the structure of terms. dithat the terms in the
conclusions of the given rules cover all possible shapesrofg inAx. Moreover, it

is easy to see that for each rule in Figure 1, if the lower tegtory toSN then the
upper term(s) belong t&\. The induction hypothesis applies since the the upper
term(s) either can be obtained by reducing the lower ternhey are subterms of
the lower term. [|

3.2 Saturated sets

In order to define the notion of saturated set we identify a cleaure-condition on
sets of terms.
M{z= l_D\ N e SN
(gen-gc) (=@ (x & av(M))
M{z=N){z=Q)P

Definition 11 A set closed under the rulésubs), (gen-B), (gen-Abs), (gen-App),
(gen-1) and (gen-gc) is said to beSA/ -saturated

Theorem 12 (Saturation of S\) The setSN is SN -saturated.

PROOF. Because of Lemma 9 and Proposition 10 we need only to showsitiat
is closed under the new rule. To show closure under (gde-gc), we reformulate
the proof of [20] to take into account the change friwf1) to av(-) in the definition

10

of Axyc. We define am-multi-contextas a term withn holes in which we can insert

n terms, or simplynulti-contexif n is understood from the context.dff-, ..., -] is
ann-multi-context andV/y, . . ., M,, are terms, then the insertions of those termsin
C[-,..., -] isdenoted’[My, ..., M,], orC[[M]] for short. We prove the following

more general statement:

LetCT...] be a multi-context, and/;, M;, ¢ € n be terms, withe & av(M;), for
i € n. If C[M;] € SN andN; € SN for i € nthenC[M;(z=N;)] € SN.

We consider triple$ P, M, N), whereP is a termM andN are multisets of terms.
Let 7™ be the multiset extension [16] afi, the converse of the proper subterm
order, and let—"™ be the multiset extension of the reduction relatio3c. The
proof is by induction over the following relation:

(P,M,N) > (P',M’ N’} if and only if

P — P or
P=PandM D™ M’ or
P=P M=M, andN —m™ N

In what follows, P will be C[[ﬁi]] and — is well-founded out ofP by hy-
pothesisM will be {M, ..., M,}; N will be {Ny,...,N,} and itsAxq-reducts.
The relation—™ will be well-founded since multiset extension preservef-we
foundedness. Therefore; is well-founded and a Notherian induction on is
possible.

A remark on cases (4) and (5) below: there the tétrdoes not change, only its
representation aS|. ..] does. This means we insert thg's at “lower” positions,
allowing us to perform a Notherian induction.

Assume that’][[ﬁi]] € SN, and thatV; € SN for i € n. We will prove that the
term C'[M;(z= N;)] reduces only to terms that aresiV.

(1) C[Mz= N)]] —>C’[[MZ (r=Nj,)] (where thei; € n):
ThenO[[M]] HC’[[M I, and by inductiorC’[M; (x=Nj,)] € SN.

(2) M; — M: Bylnductlon

3) N, — N]’.: Also by induction. Note that this case occurs only whenXhare
in SV.

(4) M; = M} M? andM;{(x=N;) — M} (x=N;)M?{x=N;): Since

{My,....,My,....M,} 3™ {My,.... M} M2,M,},

we haveC[M;(z=Ny),...,(M}{z=N;)M*(z=N;)),..., M,{(x=N,)] €

11

SN by induction.
(5) M; = \y.M] andM;(x=N;) — \y.(M/(x=N;)):

{My, ..., My, ..., M} 3™ {My, ..., M, ... M},
henceC[M,{x=N;),..., \y.(M!(x=N,)), ..., M,(z=N,)] € SN by in-

duction.
(6) M;{(x=N;) — M;, which is always applicable being¢ av(M;): Since

{M17 ey Mi*lu Mi7 Mi+17 ey Mn} o™ {M17) Mi*lu Mi+17 ceey Mn}7

alsoC[My(x=Ny),...,M;,..., M,(x=N,)] € SN by induction. N

We have shown thaf\ is closed under the rulegen-gc). This has as a conse-
quence thaB\ is also the set of terms strongly normalizing undegc.

3.3 A perpetual strategy

In what follows we will define a perpetual strategy for ouratdiis, which is an
extension to\x of the strategy defined in [6], page 338. It is based on theaténiu
of perpetual redexes.

Definition 13 (Perpetual redex) For any term not in normal form, we define its
perpetual redex

e The perpetual redex ofz. M is the perpetual redex of/.
e The perpetual redex gf/ N is :

MN, if M N itselfis a redex
the perpetual redex a¥/, if M is not a normal form

the perpetual redex Q¥, otherwise

e The perpetual redex dff (x=N) is :

the perpetual redex oV, if M =y # x and N is not a normal form
the perpetual redex ¥/, if M is a closure

M(z=N), otherwise

Definition 14 (Perpetual strategy) The perpetual strategis the strategy that re-
duces always the perpetual redex. It is denotee-by

12

Ax. M ~~ Ax. .M, if M ~~ M’ (perp-))
xﬁM@ ~ xﬁM’@, if nf(xﬁ) andM ~- M’ (perp-var)

—\

N)P

(
(
(Ax.M)NP ~~ M(z (perp-B)
r=N < Q)P ~ (Ulr=N))(V(z=N)){z=Q)P (perp-App)
(
(
(
(

r=NYZ=Q)P ~ (\y.M{z=N)){z=Q)P

V){e=N)

() perp-Abs)
z(x=N)(z=Q)P ~» N(z=Q)P

(r=N)

(r=N)

perp-1)
2=N)(z=Q)P ~ y(z=Q)P, if nf(N\) (perp-K)

r=N)(z=Q)P ~ y(x=N")(z=Q)P, if N~ N’ (perp-clo)

Fig. 2. The perpetual strategy and the head-form taxonomy

Figure 2 gives both the perpetual strategy and a partitidarafis according to the
head-form taxonomyThe right-hand sides of rgle(gaerp-)\) and (perp-var) give
two forms of irreducible terms whenf (1/) and @) is empty. Then together with
the left-hand sides of the other rules they split the setrafi$anto classes that form
thehead-normal form taxonomy.

Since each term contains at most one perpetual redex, tipetpal strategy is
deterministic. Note that, in the casefy., the perpetual strategy never reduces by
(gc), except wher{ge) is degenerated intfvarK), which means that in this case
the perpetual redex is of the forggz = V).

The perpetual strategy is intended to terminate on a term when the term is
strongly normalizing. This is why it does not reduce a terfn=N) by (VarK) or
(gc) when N is not a normal form. Indeed, iV is not strongly normalizing, the
perpetual strategy (to be really perpetual) has to reduigestead of causing it to
disappear.

Theorem 15 The following are equivalent

o M e SN.
e The perpetual strategy terminates oh

PROOF. For the non-trivial direction, examine the inductive cleaeaization of
SN and observe that whelt is not strongly normalizing and has the form of the
conclusion of one of the inference rules there, one of thethgses of the rule is
obtained fromM by the perpetual strategy. [

13

4 The system€ of intersection types

We will consider intersection types as first defined in [15hwa pre-order which
takes the idempotence, commutativity and associativitgeintersection type con-
structor into account.

Definition 16 The set ottypes ranged over by, 7, p, .. ., is inductively defined as
follows

T, To == @ | INTe | 1 —To

wherep ranges over a denumerable set of type atoms.

The standard pre-orderingt on types is the smallest transitive and reflexive rela-
tion such that

TN < 71,

1N < Ty,

if o <7 ando < 1, theno < 71Ny

The pre-order defines the equivalence relation on types :

T~o ifandonlyifr <csando <7

In the concrete syntax of types we give, as usogrecedence over, right-most
outer-most brackets will be omitted, and, since the typetrantorn is associative
and commutative, we will writeN7Np rather thanoN7)Np.

The notion of environment is standard, but defining the uib@nvironments re-
quires some care in the presence of the intersection typstroator.

Definition 17 An environmentis a partial assignment from variables to types,
where each individual assignment is writtén7). Environments are partially or-
dered as follows.

r<r’ iff (xz:7")el”implies(3r).(z:7) e Fandr <7

By abuse of notation, we write € T" for (37).(z:7) € T'. The environmenk'\z
is the environment which does not contaiimn its domain and which assigns the
same type aF to the other variables.

Notice that the direction of the orderirgon environments may seem at first some-
what counter-intuitive: for example, in the case where facter and7’ we have

7 =7, <I"meand" D I". But as we will seel" < I can be thought of as an
extension oK to environments.

14

Definition 18 I'y My = {(x:7) | (z:7) e 1 & 2 € T} U
{(mr) [(mr) ey & g} U
{(z:mNm) | (1) € Ty & (2:12) € Ty}
L, (x:7) = T\z U {(2:7)}

For example{(x:m)} M {(z:72)} denotes{(x:71N72)}, while {(x:m)}, (z:72) de-
notes{(z:7)}.

Lemma 19 e Fl (FQ S Fl andFl [l FQ S FQ.
e IfI', <T'andI'y; <TI'thenl’; NIy <T.

PROOF. These are routine verifications. [|

As discussed in the introduction, the key of our type assgmrare non-standard
cut-rules. These will appear in the definition below @®p) and(K-cut).

Definition 20 (Type Assignment Rules)The syster& oftype assignmerior terms
in Ax is defined as follows:

I, (x:0) F M:
(start) ——— ((x:0) €T) (o Dlmo) AT
I'Faio '=Xe.M:o—T1
I, (z:o)F-M:7 T'FN:o 'M:c—7 TFN:o
(cut) (—E)
'FM(x=N):7 ' MN:T
'-M:7t AFN:o '-M:c I'EM:7
(drop) (wgav(M) ()
I'-M{z=N):7 '+ M:ont
I'EM:7 AI—N:U(21) . 't M:o1Noy
K-cut x NE) — (e {1,2
() 'EM(x=N):T (NE) I'FM:o; (e il2)

We writel" = M : o if there exists a derivation constructed using the abovesul
that has this statement as its conclusion.

The type system of [20] is obtained by removing the inferendes (drop) and
(K-cut): the point of view taken there was that a closiWéz= N) should always
have the same typing behaviour as Baeedex(Ax.M)N which yields it. Thisis a
plausible strategy sindg-reduction involves no (immediate) erasing of sub-terms,
even whene is not free inM; and indeed the resulting system — in the presence
of a universal type — yields the expected characterizatadnsead-normalizing
and left-most-normalizing terms. But as we have seen in B¥ard, this system

15

{z:(p—v)Np} F z:(p—v)Np {x:(p—v)Np} - x:(p—v)Np

{z:(p—v)Np} F z:p—v {z:(p—v)Np} Fx:p
{zip} bz {z:(p—v)Np} b zz:v D
{ziu} b 2z(y=zz) 1 0+ Xa.aa: (c—T)No—T

{zzp} F z(y=2x) (x = Na.aa) :p

whereD is the derivation:

{a:(c—71)No} F a:(c—T1)No {a:(c—=71)No} Fa:(c—1)No

{a:(c—=7)No} Fa:o—T {a:(c—=1)No} Fa:o

{a:(c—7)Nc} Faa:T

0+ Xa.aa: ((c—T1)No)—T1

Fig. 3. A typing derivation

failed to provide a characterization of the strongly noiag terms. This example
makes clear that we must allow the type system to distinguetiveen certaiis-
redexes and their contractions.

One might note that, in Example 1, the input variable of Baeedex inM; does
not occur free in the function body.€., we have a K-redex” inLC). This suggests
modifying the cut-rule to obtain one which, when typing(x=N) with = not
free in M, relaxes the typing hypothesis fof to merely ask that it be typable
undersomeenvironment. This seems particularly appropriate sin@litoes the
hypotheses of the Subject Expansion Theorem in treatméirs$ensection types
for Lc. But such a rule doesn’t work: it is still too restrictive. iFexample, the
reader can easily check that the terfp=2z) (x = \a.aa) cannot be typed in such a
system since € fv(z(y=xx)), butitis clearly strongly normalizing. This example
should motivate our notion @fvailablevariable occurrence and the corresponding

typing rule(drop).

One can also observe that no premisefanecessary when typingn z(y=xz) (z = Aa.aa)
and this leads to the introduction of rul€-cut).

Figure 3 shows how the term{y =xz) (x=\a.aa) can be typed in systeg.

Notice that rule(cut) has no side-condition, and therefore, wheg av()/) and
' N:o, one can freely uséut) or (drop); whenz ¢ I'andl' - N:o, one can
freely use(cut) or (K-cut).

We now state some elementary properties of the type systémhwaighlight the
relations between the non-standard cut rules.

16

Lemma?2l (1) fIV<TI',7r <7 andl'+ M:7thenl”+ M:7'.

(2) Ifx € av(M), thenl' = M : 7 impliesz € T.

(3) Ifz £ av(M), thenl' = M :7 impliesI'\z - M : 7.

(4) If x ¢ av(M), thenl' - M :7 impliesT’, (z:0) = M :7 for any typeo.

PROOF. By induction on the structure of derivations, with the excapof part @)
which follows immediately from partslf and Q@).

e Before proving part]) it is useful to make the following observation. L&t¥
denote the result of substituting (in the traditional s¢nséor = in M, and
let I'Y be the obvious extension of this notion to environmentd H M :,
thenT'¥ = MY :7 (this follows by a straightforward induction). Now, in piag
part (1), the only non-trivial case is when the last applied rulé&igut):

'FI—PZT AFN:o .
(K-cut) - 'FP{y=N):T weT)

Now, if y did not occur inl, the argument would be a simple appeal to the

induction hypothesis. But there is no reason to assumesiigie have to work
a little. Lety’ be a fresh variable, not occurring (free)lih A, P, or N. Since
I < T, we know thaty’ does not occur ifi". By our observation about the
preservation of derivations under ordinary substitutiof, Pg' :7. S0 by induc-
tion I' + P :7/. ThusI” - PY'(y'=N):7’ by rule (K-cut). But PY (y'=N) is
a-equivalent withP (y=N), so we are done.

e For part @), three cases have to be looked at. The first one is WhénP (y = N)
and the derivation ends with

L (y:o)-P:7 T'HN:o

(cut) - 'k Ply=N):7

Sincex € av(M), by Lemma 4, is free in M and by the variable convention
and the fact thag is bound, we get # y. By the definition of available variable,
x available inM = P(y=N) means that: € av(P) or z € av(XN). In both
cases the induction hypothesis yields I". The other cases are

'-P:7 AFN:co

(drop) : TF Pl—N) s (y £ av(P))
' I'-P:r AFN:o .
(K-cut) [+ Ply=N):T e D)

In the case of rul¢K-cut), notice that, by inductiony ¢ I" impliesy ¢ av(P).
So in each case, from e av(M) we getz € av(P). We may then conclude, by
induction, thatr € . |

17

4.1 Derivable rules

By Definition 20, the rules of systeéhare(start), (—l), (—E), (Nl), (NE), (cut),
(drop), and(K-cut). DLL is the system obtained froé by dropping rule(K-cut)
andvBD is the systems obtained frothby dropping rule(drop). We will write
I' -pzr M:o if there exists a derivation with rules iPL£L that has this as its
conclusion, and similarly' F,zp M :0o.

We will show that these systems have the same typing poweysésnse, so we
can say that just one of the rul@s-cut) and(drop) suffices.

Lemma 22 (1) Rule(K-cut) is derivable in systerLL.
(2) Rule(drop) is derivable in system3D.

PROOF.

(1) : Each application of rul¢K-cut)

'-P:7r AFN:o

(K-cut) - [+ Py=N):7 vel)

can be replaced by an application of rgieop), since, by Lemma 22§,y ¢ T’
impliesy ¢ av(P).
(2): Consider an application of rulgrop):

'-P:7r AFN:o

(@0p) e (0 av(P)

By Lemma 218), I'\y - P:7. Then the(K-cut) rule yieldsI'\y - P{y=N):T.
Then, by Lemma 2H), we havel' - P(y=N):T. [

From the above Lemma we easily get:

Theorem 23 The sets of derivable judgments in system®LL, andvBD coin-
cide.

5 Typing strongly normalizing terms

As usual for type assignment systems, we have a Generatiombae We will use
a generic notation for intersection typesq . . . No,,, and assume that then eagh
is not an intersection type.

18

Lemma 24 (Generation Lemma)

(1) T+ z:o ifand only if there existér:7) € T such thatr < o.
(2) ' - M N:o if and only if there exist, ando;, 7; (i € n) such that
o~ (o1N...Noy),andl’ - M :7;—o; andT' = N:7;.
(3) I' F Az.M : o if and only if there exist, andp;, 7; (i € n) such that
o~ (p1—m)N...N(pn—7n), andl’, (z:p;) = M :7; whenevet € n.
(4) ' M{(x=N):o if and only if either
(@) = € av(M), and there exists such that’, (z:7) - M:0 andI' - N:7,
or
(b) = € av(M), IT' - M:o and there exist\, 7 such thatA - N:7 (in other
words: N is typable in some environment).

PROOF. The right-to-left implications immediately follow from ¢htyping rules.
The converse follows by easy induction on the structure o¥dgons. For part4),
notice that Theorem 23 allows us to skip tikecut) rule. If the last applied rule is
(Nl) we can use Lemma 21 and rule(Nl) . |

A minimal requirement of our system is that it satisfies thigject reduction prop-
erty (SR). We will show SR for the reductiokky: this gives us SR fonx for
free.

Theorem 25 (Subject Reduction)If M/ — N, thenI' - M :7 impliesI" - N:7.

PROOF. By induction on the definition of the reduction relatior;— . We only
show the base cases.

(B) : ThenI' - (Az.M)N:o, and, by Lemma 24, there exist types;, p; (i € n)
suchthat ~ (o1N...Nao,), and, foralli € n,T'+ Ax.M: p;—o; andl’ - N :p;.
Then, by Lemma 248) I, (z:p;) - M :0;, and thereforel' - M (x = N) :0; by
rule (cut). So, by rule(Nl),I' - M (x=N) :0.

(App) : Thenl't- (MN)(x=P):0.Leto ~ (o1N...Na,), then, by Lemma 244,
we have two cases:

(x €eav(MN) & (37).1, (z:7) - MN:0o & T'+ P:7): Thenwe have € av(M)
or x € av(N), and, by Lemma 24, for everyi € n, there existy; such
thatT', (z:7) - M :p;—o; and D, (x:7) - N:p;. Thenl' - M (x = P) : p;—0;
by rule(cut), andl' F N (z = P) : p;.

(xgav(MN),'FMN:o & (3A,7).AF P:7): Then we haver ¢ av(M)
andz ¢ av(N). As above, by Lemma 23, for every: € n, there existy;
suchthal' - M:p;—o; andl’ = N:p;. Then, by rulgdrop), ' - M (x = P) : p;—0;
and alsd" - N (z = P) : p;.

In both cases, by rule—E), we getl' - (M (x = P))(N (x = P)):0;, SO by rule

(NN, TF(M{(x=P))(N{(x=P)):0.

19

(Abs) : Then' (A\y.M){(x=N):0. Leto ~ (o1:N...No,). By Lemma 244),
we have two cases:

(xeav(M) & 37T, (w:r) - Ay M:0 &I'- N:7) : By Lemma 248), fori €
n, there existp;, u; such thatr; ~ p;—pu,; andT’, (z:7), (y:p;) b M : ;. Then
we getl’, (y:p;) = M (x = N) : u; by rule (cut).

(x gav(M),I'F A y.M:0 & (3A, 7)AF N:7): Asabove, there exigt, 1; such
thato; ~ p;—p; andl\z, (y:p;) = M :p;. ThenD, (y:p;) = M (x=N) :u; by
rule (drop).

In both cases, we obtaln- \y.(M (x = N)):0; by rule(—l), and, by rulgnl),

alsoI' = \y. (M (x=N)):o.

(Varl) : Thenl' - z(x=N):0,and, by Lemma24(T, (z:7) - z:candl' - N:7

for a certainr. Then, by Lemma 24{), 7 <o, and, by Lemma 21), ' - N :o.

(gc): Thenl'F M (x=N):0 andx ¢ av(M). Then, by Lemma 24, ' - M :0.
|

Normal forms in\x are the same as irc, and the type systeifi is an extension
of the standard system of intersection typesifor Therefore we get the typability
of all normal forms for free. Moreover, we show thafree normal forms (that is
to say, normal forms which are natabstractions) have arbitrary types: this also
holds in the the standard system of intersection types.

Lemma 26 (Normal forms are typable) Let M be a normal form.

(1) If M is A\-free andr is a type, then there is an environment in whighhas

typer.
(2) M is typable in some environment.

PROOF. By simultaneous structural induction ar.

e If M is a variable, both statements hold.
o If M = xM,...M,, wherelM, ..., M, are normal forms, then by induction
there are, fof € n, I';, 7; such thal’; - M;:7;. ThenlyM. .. T, {x:m— ... —>7,—7} E M7,
So M is typable with an arbitrary type in a suitable environment.
e If M = \x.M’, then by induction (second statement), therdaaedr such that
I'EM':7. Thenl', (x:0) = M': 7, where eithefz:0) € ' or z ¢ I' ando is any
type. Hencel'\z - M :0—7. [

The key property to obtain the typability of all strongly nmalizing terms is the
preservation of typability when we expand using the pergetinategy. This comes
as a corollary of the following more technical theorem.

Theorem 27 (Subject Expansion)If M ~+ N in one step, then

20

(1) if the rule applied in the reductionisn@B): T+ N:7 = T'+ M:7
(2) if the rule applied in the reduction (®):

I'-M:7 if Misaclosure
'EN:T = (3" <T). I"+ M:7 if M is notan abstraction
(37, 1T7<T). I+ M:7"if M is an abstraction

PROOF.

(1) By induction on the structur&/. The base case is whé is its own perpetual
redex: let us reason by cases on the rule used.
(App) : Weassumé& + P{z=U)Q{x=U):0,and wantto proveé - (PQ){x=U):0.
By Lemma 24R), there are types;, o; (i € n) such thatr ~ (o1N...Nao,),
and
(Vien) 'k Ple=U):1,—0; &T'FQ(x=U):7;

By rule (NI) it suffices to prove thatvi € n).I' - (PQ){(z=U):0;. If x &
av(P)andx ¢ av(Q), we apply Lemma 24), which gived - P:7,—0; and
I'FQ:7;, as well as that/ is typable Consequentiyi’ - PQ:o; and finally,
by rule (drop), I' - (PQ){x=U):0;. If x € av(P) orx € av(Q), it suffices
to prove

3 TrU:7 & T, (v:7)) F Piry—o; & T, (e:7]) FQ:7;

(which induces by rulécut), I' - (PQ)(x=U):0;). In each case, we apply
Lemma 244) on bothP and@.
- If z € av(P) andz ¢ av(Q), we getu such thatl’, (x:u) - P:1,—0;
andI’ - U: . TakingT; to beyu, we use 214) on @ to get the result.
- If ¢ av(P) andz € av(Q®), we getr such thatl’, (z:v) - Q:7; and
[' - U:v. Takingr; to bev, we use 214) on P to get the result.
- If z € av(P) andz € av(Q), we getu andv, such that

'FU:p, & THU:wv, & T, (zv:ip) F Piry—o; & T, (zv) Q7

If we set7/ to N we get the result.

(Abs) : SupposeM = (\y.P)(x=U) and N = \y.(P{(z=U)). By Baren-
dregt’s conventiony ¢ av(U) andz # y; thenz € av(P) ifand only if z €
av(\y.P). We assumé - \y.(P{x=U)):0,and wantto prov€ + (\y.P)(z=U):o.
Using Lemma 24%), we have types;, o; (i € n) suchthat ~ (7,—o1)N...N(1,—0},)
and (Vi € n).I', (y:1;) F P(x=U):0;. By rule (OI) it suffices to prove that
(Vien)I'F (\y.P)(z=U):1,—0;. We apply Lemma 24 onT’, (y:7;) - P{x=U):0;
and thereby,

21

- If x € av(P)we getu such thal’, (y:7;), (x:p) - P:o; andl’, (y:r;) E U .
Sincey ¢ av(U), applying Lemma 21) we getl’, (z:u), (y:7;) F P:o;
andl' - U: .

- If = ¢ av(P) we get that is typableandT’, (y:7;) - P:o;.

In both cases, we get the required result by applying firgt () and then
respectively rulegcut) or (drop).

(Varl) : If I'=U:7, then cleary’, (x:7) F z:7 andl' - z(x=U): 7.

(VarK) : ThenU is a normal form, and, by Lemma 28, is typable We assume
['+y:0, and rule(drop) yieldsT' - y(x=U):0.

Now for the induction step, since the environment and the typ)/ are the

same as ofV, the proof is easy using the same typing tree.

(2) Again, the proof is by induction on the structure/df.

(M is its own perpetual redex We wishto prove: if' - P(x=U):7, then(3I" <
D).I" - (\ze.P)U:T.

- If x € av(P),we haveg37').I", (z:7') F P:r &' U7, s0(37).'F Ae.P:r' =7 & T U7
which entails" - (Az.P)U : 7 by rule (—E).

- If x ¢ av(P), then, using Lemma 24}, we havd" - P:7and(31",7").I" - U:7'.
From Lemma 210), we gefl’, (x:7') - P:7whichyieldsl' - \x.P:7'—71
by rule(—l). Hence(3T”, 7').I' - Ae. P: 7' —7 & TV U: 7. If we setl’”
tobel' MI" < T'we getl - A\x.P:7'—7 andIl"” F U :7" which entails
I'"F (Ae.P)U:T.

(M = Xx.M'): ThenN = \x.N’, whereM’ ~~ N’. We assumé&' - \z.N':o
and want to prové” - \z.M’: ¢’ for some environmeni’ < I" and typeo’.
Using Lemma 24%), we have types;, o; (i € n) suchthatv: € n).I', (y:7;) - N':0;.
Then, by induction, we gdi’ < I, 71, andg such thatl”, (z:7]) - M’:0}.
Takingo’ := 7{—o] we getl” - \z.M’':¢" as required.

(M = M, M, whereM is not its own perpetual redgx ThenN = N; N, where
either M; ~» Np or M, is a A\-free normal form and\/; ~~ N, (see Def-
inition 13). We assumé&' + N; N,:0, and want to prova” - M; M;:o for
some environmerii’ < I'. Using Lemma 24%), we have types;,o; (i € n)
such thato ~ (o1N...No,) and (Vi € n).I'+ Ny:17,—0; & T'F Ny:7;. Us-
ing Lemma 211) it suffices to prove thatv: € n).I'; - M, M, :0; for some
[; < T (since then we can také tobe(I'y ... T[,) < I, < T). Now
by Definition 13,M; cannot be an abstraction, otherwigewould be its own
perpetual redex.

- If My ~ N; and M, = N,, then we apply the induction hypothesis
to M;. Hence we hava’; < I' such thatl’; - M;:7;,—0c;, and using
Lemma 210) we getl’; - M, :7;. Hencel';, = M Ms:o;.

- If My ~ Ny andM; = Ny, then we apply the induction hypothesis to
M,. Hence we have; < I' andr; such thal’; - M,: /. By Definition 13
we know that)M; is a A-free normal form, so Lemma 28) provides
an environment” in which M, has typer/—o;. Now, takingl'; to be
I, we getl’; F M, M, :0; as required.

(M = M,{(x=DM>)) : By Definition 13, either:

- The perpetual redex ai/ is in M,, and M, = y # z (hence,N =

22

y(x=Ny) whereMy ~~ Ny). Assumd’ + y(x= N,):0. Using Lemma 24,
we getl' - y:0. Now by induction), is typable Hence applying rule
(drop) we getl" - y(x=M,):0 as required.

- The perpetual redex ot/ is in M;, and M, is a closure (hencey =
Ni{x=M>) whereM; ~~ Ni). We assumé&' - N, (x=M,):c0, and want
to provel' - M, (z=M>):0.

x € av(Ny): Then, using Lemma 24J, we have a type such that
[, (z:7) F Ny:o andT' = M,:7. Now we can apply the induction
hypothesis tal/;, which is a closure. We gét, (z:7) - M; :0, and
then we can apply rulécut) to getl’ = M, (x=M,):0o.

x ¢ av(Ny): Thenusing Lemma 2B we getl'\z - Ny (z=M>):0.
Then we can apply Lemma 24(and we havé\z - N;:0 andM,
istypable Now we can apply the induction hypothesisitg, which
is a closure. We gdf\z - M, :0. Note that sincer ¢ (I'\z), we
can apply rulgK-cut) and gefl" - M, (x=M,):0. |

Corollary 28 (Weak Subject Expansion) If M ~» N, thenN is typable implies
M is typable.

Theorem 29 All strongly normalizing terms are typable.

PROOF. By induction on the length of the perpetual derivation. Far base case
we observe that normal forms are typable (Lemma&p6¢he induction step fol-
lows by Corollary 28. [

6 All Typable Terms are Strongly Normalizable

The general idea of the reducibility method, is to interpgyges by suitable sets
(saturated and stable sets for Tait [40] and Krivine [27] addissible relations

for Mitchell [34,35]) of terms feducible termpswhich satisfy the required property
(e.g. strong normalization) and then to develop semamnticxder to obtain the

soundness of the type assignment. A consequence of sosntmeact that every

term typable by a type in the type system belongs to the ird&pons of that type,

leads to the fact that terms typable in the type system gdlisfrequired property,

since the type interpretations are built up in that way.

In order to develop the reducibility method we consider tppligative structure
whose domain are the termsis and where the application is just the application
of terms.

Definition 30 (Reducible terms)

23

(1) We define the collection of set of teri®s inductively over types by:

R = SN
RO~ = {M |VYN € R [MN € R"]}
ROT = RO NR.

(2) We define the s&® of reducible termdby: R = {M | Ip[M € Rr]} =
Uper R”.

Notice that, if M € R, not necessarily there existsTasuch thatl' - M :o.
For example, ifp, ¢ are two different type variables, thew.z € R*~¥', since
(Az.x)M € SN wheneverM € SN/, but we cannot deriv@ - \z.z:p—¢'. Also,
sincelz.x € SN, Az.x € R¥, but we cannot deriv@ - \z.z: ¢.

We now show that reducibility implies strong normalizatiand that all term-
variables are reducible. For the latter, it is convenienshiow a generalization:
all typable strongly normalisable terms that start withranteariable are reducible.

Lemma31l (1) R C SN,
(2) N € SN = Vp[zN € R”].

PROOF. By simultaneous induction on the structure of types.

(1) (v): By Definition 30.
(c—=71): MeR”™T =(IH(2) MeR™ &z e R’ =(30)
Mz e R™ = (IH(1)) Mz € SN = M € SN.
(onT): M e R = (30) M e R"& M € R™ = (IH(1)) M € SN.
2) (¢): +N E SN = (30) zN € R?.

(0—7): aN € SN = (10, (gen-var))
VM € SN [zNM € SN] = (IH(1))
VM € R [azﬁM e SN = (IH(2))
VM e R7[xNM e R7] = (30) 2N € RO

(0N7): aN € SN = (IH(2)) 2N € R® & 2N € R™ = (30) 2N &
RUHT' .

We now show that all sef®” are closed under the rulésubs), (gen-B), (gen-App),
(gen-Abs), (gen-1) and(gen-gc). This result is needed in the proof of Theorem 33.

Lemma 32 (Saturation) For all p, the setsk” are SV -saturated.

24

PROOF. All these closures are shown by induction on the structutgpds. For
the case of a type-variabl&¢ = SN/, which isSN -saturated (Theorem 12). For
the rest of the induction, since the proofs are all very similve will not show all
in detail, but focus on rulésubs). Then:

(0=7): (Ple=N){y=Q{z=N))M € R*~" = (30)
VRER[(Ple=N){y=Q(z=N)))MR € R"] = (H)
VR e R [(Ply=Q)) (x=N))MR € R] = (30)
(Ply=Q)) {z=N))M € R7~".

(eN7) : Immediate by Definition 30 and induction. |

We shall prove our strong normalization result by showirag #very typable term
is reducible. For this, we need to prove a stronger proparéywill show that if
we substitute term-variables by reducible terms in a typé&dyim, then we obtain a
reducible term. This gives the soundness of our type ingéaon.

Theorem 33 (SoundnessSuppose {(zi:1), ..., (Tpipn)} F M:0, and, for
i € n, N; € R*, with noz; available in anyN;. ThenM (z=N) € R°.

PROOF. The proof is by induction on the structure of derivations. Wt use the
SN -saturation of the saturated sets (Lemma 32) just mentpthia rule names.

Letl = {(z1:p1), - - - (@piin) }-

(start) : ThenM = xz;, andy; = o, for somej € n. SinceN; € R*, N; € R.
Then, by ruleggen-1) and(gen-gc), z; (z=N) € R°.

(—=1): ThenM = \y.M’, 0 = p—7,andl’, (y:p) = M':7. Let N € R?, then, by
induction, M’ (z = N)(y=N) € R". So, by rule(gen-B), (A\y.M'(x=N))N €
R7, and, by Definition 30Ay. M’ (x = N) € R*~". We can assumg ¢ fv(N),
so, by rule(gen-Abs), (A\y.M") (x=N) € R*~7.

(—E): ThenM = M, M, and there existssuch thal - M;:7—c andl' - M;: 7.
By induction,M; (x =N) € R™~7 and M, (x = N) € R". But then, by Defini-
tion 30,M; (x = N)M,(x = N) € R?, so, by rulggen-App), (M1 M) (z=N) €

Re.

(Nl): Theno = 0,Noy and, fori € 2, I' - M :0,. So, by inductionM (x = N) €
R andM (x = N) € R2, so, by Definition 300/ (z =N) € R°.

(NE) : Then there exists such thaf - M :oN7, and, by inductionM (z = N) €
R°77. Then, by Definition 30) (x = N) € R°.

(cut): Here M = P(y=Q), and there exists such thatl', (y:7) - P:o and
' Q:7. Then, by induction on the right-hand hypothesgsz=N) € R".

25

Then again by induction, but now on the left-hand hypothd3{s = N)(y=Q(x = N)) €
R°. So, by rule(subs), (P{y=Q)){x=N) € R.
(drop) : Here M = P{y=Q), '+ P:o, y ¢ T and there exis\, 7 such that
AF Q:7. By inductionP (x = N) € R°. Sincey ¢ av(P) we may use closure
of R under rule(gen-gc) to conclude thatP(y=Q))(x=N) € R°. To be
able to apply that rule, we need th@te SN/; notice that by induction on the
derivation forQ, Q € R7, so, by Lemma 31, Q € SV
(K-cut) : The proof is very similar to thédrop) case; we may also use to Theo-
rem 23. [

Theorem 34 If I' - M : o for somel’, o thenM < SN.

PROOF. Supposé'is{(z1:p1),-- ., (Tm:pm)}. By Lemma 312), all term-variables
are reducible for any type, so, by Theorem 33, forMl] M (x=y) is reducible,

wherey are fresh. By Lemma 31 the termM (z=1) is strongly normalizing,
and sinceV/ is a subterm, the result follows. |

7 Characterizing weak normalization and head normalization

The systen® is obtained from the syste® of [20] by adding the rulegdrop)
and (K-cut). The systenD,, is the extension oD obtained by adding a universal
typew: this type was first added to intersection type assignmef@dh The main
feature of systems with intersection andis that typing is invariant under any
conversion of subjects. In [20], characterizations of thadinormalizing and left-
most-normalizing terms ofx were obtained in terms of typability iB,,.

The main result of this paper is that typability in systérserves to characterize the
strongly-normalizing terms okx, and therefore that the rulédrop) and (K-cut)
capture this important aspect of reduction in explicit $iibsons calculi. But a nat-
ural question to raise at this point is whether rulésp) and (K-cut) behave well
in the presence of a universal type. In particular, we mayasither the normal-
ization theorems of [20] still hold in the presence of the males. In this section
we show that this is the case. That is, we will verify that The characterizations
of normalizing and head-normalizing terms from [20] gefizeain a natural way
to &,. The first observation is that when a universal type is addédle resulting
system is equivalent tD,.

26

7.1 Extending the type system

Definition 35 The type syster#i, is obtained from systeifi by adding the type
constantv and the rule:

() - I'EM:w
The type systeM,, is obtained by adding and rule(wl) to the syster® of [20].

Theorem 36 Supposé' + M :7insystent,. Thenl' - M :7 in systenD,, as well.

PROOF. By induction on the structure of derivations. In light of tbguivalence
between(drop) and(K-cut) it suffices to show that an application of rit&rop) can
be simulated irD,,. So suppose

'EM: 7 AFN:o

(drop) : CF Ma=N)ir (z ¢ av(M))

By induction we can derivé' - M :7 in D,, so certainly, using &,,-variant of
Lemma 214), I, (z:w) - M:7. By (wl), I' = N:win D, so we have

(cut) : L (zw)FM:7 T'ENw
' M{x=N):T

in D, as desired. [|

7.2 Head reduction and left-most reduction

The head and left-most redexes frarm appear in\xq. as head or left-mods-
redexes. But the general notion of head or left-most redexxjg must take the
rules for applying substitutions into account. In fact, teerect definitions of head
and left-most reduction are more subtle thandn Essentially this is because
has a critical pair, due to the following overlapping redoas:

(Az.M)(y=L) N{y=L) «— ((Ae.M)N){y=L) — M{z=N)(y=L)

Both these reductions could be considered a “head reductiofiact, it is our
choice to consider them each to be head reductions.

Definition 37 (Head reduction) Head reductioims the closure of the rules ofkgyc
(Definition 5) under the structural rules of Figure 4. A teivhis head normalizing
if there is no infinite head-reduction starting froli. The set of head normalizing
terms is denote@(N .

27

h

M —=» M’ M notan abstraction M ", M’ M not an abstraction

MN - M'N M{z=N) -5 M'(z=N)
M - M
o.M o M

Fig. 4. Head reduction

M - M’ M notan abstracton M —~ M’ M not an abstraction

MN -5 M'N M{z=N) - M'(z=N)
M Y A M, L M! M, left-most non-normal
Ao M -5 e M aMy...M;..M, — xM,..M!..M,

Fig. 5. Left-most reduction

Definition 38 (Left-most reduction) Left-most reductiois the closure of the rules
of Axqc under the structural rules in Figure 5. A tert/ is left-most normaliz-
ing if there is no infinite left-most reduction starting fralh. The set of left-most-
normalizing terms is denotedN.

Observe that, in contrast to the classical notions, botl heduction and left-most
reduction are non-deterministic strategies. Indeed, eéttte reductions out of the
critical pair noted earlier count as head reductions.

For example, lef” be ((Az.M)N)(y=L). ThenT can rewrite by left-most reduc-

tion eithertoP = M (x=N)(y=L), or (in two steps) t6) = ((A\z.M(y=L)) N(y=L)).

Then, since\z. M (y=L) is an abstraction) left-most rewrites via rul® to Q' =
M(y=L){z= N(y=L)).

7.3 Characterization theorems

We will assume familiarity with [20] in this subsection; weri/e the characteriza-
tion theorems by indicating how to lift the results of thappa There is a technical
issue to be dealt with, however: the garbage collection(adgin the current paper
is more liberal than the traditional rule in the system of|[20this section we refer
to the traditional garbage collection rulegs :

M{z=N) — M, if x ¢ V(M) (gc)

28

Formally, since [20] treats a different reduction systens,difficult to quote results
there in support of results about the system of this papertigargumentsf the
first paper carry over almost word-for-word. In light of thve have chosen to indi-
cate below precisely where the distinction between theesysimakes a difference,
rather than repeating the entire development.

The following definitions are due to Cardone and Coppo [13lype isproper if
it has no positive occurrence af. A type istrivial if it can be generated by the
following rules:

(1) wis trivial,
(2) If o is trivial andT is any type, them—o is trivial,
(3) If o andr are trivial, thero N 7 is trivial.

The following lemma isolates the place where we must ackedgé the difference
in garbage collection rules.

Lemma 39 If M is typable with a non-trivial type in systef, then M is head-
normalizing in the calculusxgc.
If M is typable in systen®, with a type not involvingu then M is left-most-
normalizing in the calculusxgc.

PROOF. Each of these assertions is proved in [20] for the syskeg- (Theo-
rems 8.1 and 8.2 there). We invite the reader to check thdtaihgaper, the only
places where the garbage collection rule is analyzed areniaa3.2 and 3.5 and
that the proofs of each of these Lemmas are essentially ngelaf the current,
more liberal,gc rule is used. The rest of the development in [20] is unchanged
completing the proof. [

Theorem 40 Let M be a closed term. The following are equivalent.

(1) M is typable with a non-trivial type in systefi).

(2) M is head-normalizing in the calculustgc.

(3) M is head-normalizing in the calculus: (without garbage collection).

(4) M has a head normal form.

(5) M issolvable, thatis, there is anand termsXy, ... X,, suchthat\/ X, - - - X, =
AT.x.

PROOF. By Theorem 36 we may replace, ib)(“E,” by “D,.” Then each of the
equivalences has been proved in [20] with the exceptioneoirtiplication from ()
to (2) since, in [20] garbage collection refers to the more ret&d rulegc™. But
for this implication we use Lemma 39 here. [

29

Theorem 41 Let M be a closed term. The following are equivalent.

(1) M istypable in systeréi, with a type not involving.

(2) M is typable with a proper type in systei.

(3) M is left-most-normalizing in the calculusgc.

(4) M is left-most-normalizing in the calculus: (without garbage collection).
(5) M has a normal form.

PROOF. As for Theorem 40. [|

In Theorem 41, the implications 5 to 3 and 5 to 4 state thakiandAxg. left-most
reduction is a normalizing strategy.

8 Conclusion

We have defined an improved system of intersection typesdiauti of explicit

substitutions and shown that it characterizes the strongiynalizing terms. The
new rules allowing us to type all strongly normalizing terare consistent with
the addition of a universal type, in the sense that the chenwaations of head-
and left-most-normalizing terms obtained in previous wark still valid in the
extended system.

The new notion ofavailable variable occurrence plays an important role in the
type system, and indeed allows us to define a more powerfidmof garbage
collection than has appeared elsewhere in the explicittsutisns literature. We
like to note the similarity between the reduction rige) and the classical ‘mark-
and-sweep’ algorithm for garbage collection. As a mattefiaof the computation
of the set of available variables of a term corresponds tonfaek’-phase, while
the reduction using only rulgyc) corresponds to the ‘sweep’-phase. Notice that
this is not true for the similar rules of [11,20]. We think thacould be interesting

to investigate the use of the garbage collection based alabiiy of variables in
the implementations of functional programming languages.

Acknowledgements

The authors are grateful to Norman Danner, Frédéric L&mmpna Ronchi della
Rocca, and Kristoffer Rose for many helpful discussionstéduer they thank the
referees of the conferences LATIN'02 and TCS’02, and of tles@nt submission
for helpful comments.

30

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Hiqit substitutions.Journal of
Functional Programmingl(4):375-416, 1991.

[2] R. Amadio and P.-L. Curien.Domains and lambda-calculi Cambridge University
Press, 1998.

[3] S. van Bakel. Complete restrictions of the intersectigpme discipline. Theoretical
Computer Sciengd 02(1):135-163, 1992.

[4] S.van Bakel. Intersection Type Assignment Systefigoretical Computer Science
151(2):385-435, 1995.

[5] S. van Bakel and M. Dezani-Ciancaglini. Characterizsigpng normalization for
explicit substitutions. In S. Rajsbaum, editt’ATIN'02, volume 2286 ofLecture
Notes in Computer Scienggages 356—370. Springer-Verlag, 2002.

[6] H.P.BarendregiThe Lambda-Calculus, its syntax and semanttadies in Logic and
the Foundation of Mathematics. Elsevier Science PublsBe¥. (North-Holland),
1984. Second edition.

[7] H.P.Barendregt. Lambda calculi with types. In S. Abr&am®.M. Gabbay, and T.S.E.
Maibaum, editorsHandbook of Logic in Computer Scienogmlume 2, chapter 2,
pages 117-309. Oxford University Press, 1992.

[8] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degliv, a calculus of
explicit substitutions which preserves strong normaitisat Journal of Functional
Programming 6(5):699-722, 1996.

[9] R.Bloo. Preservation of Termination for Explicit SubstitutiddhD thesis, Technische
Universiteit Eindhoven, 1997. IPA Dissertation Series7-98.

[10] R. Bloo and J. H. Geuvers. Explicit substitution: on guge of strong normalization.
Theoretical Computer Scienc211:375 — 395, 1999.

[11] R. Bloo and K. H. Rose. Preservation of strong normétisain named lambda calculi
with explicit substitution and garbage collection. @8N’95 pages 62—-72, 1995.

[12] N. G. de Bruijn. A namefree lambda calculus with fa@d for internal definition
of expressions and segments. TH-Report 78-WSK-03, Depaitof Mathematics,
Technological University Eindhoven, Netherlands, 1978.

[13] F. Cardone and M. Coppo. Two extension of Curry’s typkenence system. In
P. Odifreddi, editorLogic and Computer Scienceolume 31 ofAPIC Seriespages
19-75. Academic Press, 1990.

[14] M. Coppo and M. Dezani-Ciancaglini. A new type assigninfor lambda-terms.
Archiv fir mathematische Logik und Grundlagenforschubh®;139-156, 1978.

[15] M. Coppo and M. Dezani-Ciancaglini. An extension of Hasic functionality theory
for the A-calculus.Notre-Dame Journal of Formal Logi@1(4):685-693, 1980.

31

[16] N. Dershowitz and Z. Manna. Proving termination with Itiset orderings.
Communications of the ACN22(8):465-476, 1979.

[17] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama.n@fmsitional characterization
of lambda-terms using intersection types. In M. Nielsen &dRovan, editors,
MFCS’0Q volume 1893 ofLecture Notes in Computer Sciengeages 304-314.
Springer-Verlag, 2000.

[18] R. Di Cosmo and D. Kesner. Strong normalization of esiplubstitutions via cut
elimination in proof nets. In G.Winskel, editdrlCS’97, pages 35-46. IEEEC Society
Press, 1997.

[19] D. Dougherty and P. Lescanne. Reductions, intersectypes, and explicit
substitutions (extended abstract). In S. Abramsky, edtb€A’01, volume 2044 of
Lecture Notes in Computer Scienpages 121-135. Springer-Verlag, 2001.

[20] D. Dougherty and P. Lescanne. Reductions, intersectipes, and explicit
substitutions.Mathematical Structures in Computer Scient®(1):55-85, 2003.

[21] A.G. Dragalin. Mathematical Intuitionism: Introduction to Proof Thegmnolume 67
of Translations of Mathematical Monograph&merican Mathematical Society, 1987.

[22] J. Gallier. Typing untyped lambda terms, or reducipiitrikes againAnnals of Pure
and Applied Logic91:231-270, 1998.

[23] S. Ghilezan. Strong normalization and typability wiithersection typesNotre Dame
Journal of Formal Logi¢37(1):44-52, 1996.

[24] J. Goubault-Larrecq. Lambda-calcul, logique et maekiEcole Normale Supérieure
de Cachan, 2001.

[25] H. Herbelin. Explicit substitutions and reducibility Journal of Logic and
Computation 11(3):429-449, 2001.

[26] F. Kamareddine and A. Rios. Extending a lambda-cakwith explicit substitution
which preserves strong normalisation into a confluent éasoon open termslournal
of Functional Programming7(4):395-420, 1997.

[27] J.-L. Krivine. Lambda-calcul, types et mekks Masson, 1990.
[28] J.-L. Krivine. Lambda calculus, types and modedlis Horwood, 1993.

[29] D. Leivant. Typing and computational properties of lza expressionsTheoretical
Computer Sciencel4(1):51-68, 1986.

[30] S. Lengrand, D. Dougherty, and P. Lescanne. An imprayesiem of intersection
types for explicit substitutions. In R. A. Baeza-Yates, Uoanari and N. Santoro,
editors,Conference on Theoretical Computer Science, IFIP Congpesges 511-524.
Kluwer Academic Publishers, 2002.

[31] P. Lescanne. Fromo to Av: a journey through calculi of explicit substitutions. In
Hans-J. Bohm, editoROPL’'94, pages 60—69. ACM Press, 1994.

32

[32] P. Lescanne and J. Rouyer-Degli. The calculus of ex@idstitutionshv. Technical
Report RR-2222, INRIA-Lorraine, January 1994.

[33] P.-A. Mellies. TypedA-calculi with explicit substitution may not terminate. In
M. Dezani and G. Plotkin, editorsTLCA'95 volume 902 oflLecture Notes in
Computer Scienggages 328-334. Springer-Verlag, 1995.

[34] J.C. Mitchell. Type systems for programming languagesJ. van Leeuwen, editor,
Handbook of Theoretical Computer Scienemlume B, pages 415-431. Elsevier
Science Publishers B.V. (North-Holland), 1990.

[35] J.C. Mitchell. Foundation for Programmimg LanguagedIT Press, 1996.

[36] G. Pottinger. A type assignment for the strongly noiizadle A-terms. In J.P. Seldin
and J.R. Hindley, editorsTo H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalisnpages 561-578. Academic Press, 1980.

[37] E. Ritter. Characterising explicit substitutions wihipreserve termination. In J.-Y.
Girard, editor,TLCA'99, volume 1581 ofLecture Notes in Computer Sciengages
325-339. Springer-Verlag, 1999.

[38] K.H. Rose. Operational Reduction Models for Functional Programmirgnuages
PhD thesis, DIKU, Universitetsparken 1, DK-2100 Kgbenh&nFebruary 1996.
DIKU report 96/1.

[39] P. Sallé. Une extension de la théorie des types-ealcul. In G. Ausiello and C. Bohm,
editors,ICALP’78, volume 62 ofLecture Notes in Computer Scienpages 398—410.
Springer-Verlag, 1978.

[40] W.W. Tait. Intensional interpretations of functiopabf finite type I. Journal of
Symbolic Logic32:198-212, 1967.

33

