
Strong cut-elimination systems for
Hudelmaier’s depth-bounded sequent calculus

for implicational logic

Roy Dyckhoff1, Delia Kesner2, and Stéphane Lengrand1,2

1 School of Computer Science, University of St Andrews, Scotland
2 PPS, CNRS and Université Paris 7, France

Abstract. Inspired by the Curry-Howard correspondence, we study nor-
malisation procedures in the depth-bounded intuitionistic sequent cal-
culus of Hudelmaier (1988) for the implicational case, thus strengthen-
ing existing approaches to Cut-admissibility. We decorate proofs with
terms and introduce various term-reduction systems representing proof
transformations. In contrast to previous papers which gave different ar-
guments for Cut-admissibility suggesting weakly normalising procedures
for Cut-elimination, our main reduction system and all its variations
are strongly normalising, with the variations corresponding to different
optimisations, some of them with good properties such as confluence.

1 Introduction

The sequent calculus G4ip (as it is called in [TS00]) for intuitionistic propo-
sitional logic was independently developed in [Hud89,Hud92] and [Dyc92]; see
also [LSS91]; it has the strong property of being depth-bounded, in that proofs
are of bounded depth and thus (for root-first proof search) no loop-checking is
required. This contrasts with other calculi for this logic such as Kleene’s G3ip,
where proofs can be of unbounded depth. Its essential ingredients appeared al-
ready in 1952 work of Vorob’ev, published in detail in [Vor70].

Its completeness can be shown by various means, either indirectly, using
the completeness of another calculus and a permutation argument [Dyc92], or
directly, such as in [DN00] where cut-admissibility is proved without reference
to the completeness of any other sequent calculus. This admissibility proof could
be seen, via the Curry-Howard correspondence, as a weakly normalising proof-
reduction system. Developing this idea, this paper presents a formulation of
implicational G4ip with derivations represented by terms; strong (instead of
weak) normalisation is proved by the use of a multi-set path ordering. Several
variations, all of them being strongly normalising, are considered.

The merits of G4ip for proof-search and automated reasoning have been dis-
cussed in many papers (see [ORK05] for some recent pointers; note its use of an
old name LJT for G4ip). However, a question that has been less investigated
is the following: what are the proofs expressed in G4ip and what is their se-
mantics ? Here we investigate operational, rather than denotational, semantics

because it is more directly related to inductive proofs of cut-admissibility (such
as in [DN00]). Further work will investigate denotational semantics, by relating
these proofs and their reductions to the simply-typed λ-calculus.

This paper presents G4ip with a term syntax, so sequents are of the form
Γ ⇒ M :A where A is a type, M is a term and Γ is a consistent finite set of
“declarations” of the form x :B, where x is a variable and B a type. Results about
such sequents translate directly to results about traditional “logical sequents”.

Our approach to cut-elimination using terms differs from that in [DN00],
which showed (using logical sequents) first the admissibility of Contraction and
then the admissibility of “context-splitting” (or “multiplicative”) Cut. Given our
interest in term calculi, it is appropriate to use rather a “context-sharing” (or
“additive”) Cut; admissibility of Contraction then follows as a special case of
that of Cut.

To some extent, Matthes [Mat02] also investigated terms and reductions cor-
responding to cut-elimination in G4ip, with a variety of motivations, such as
that of understanding better Pitts’ algorithm [Pit92] for uniform interpolation.
His work is similar to ours in using terms to represent derivations; but it dif-
fers conceptually from ours by considering not the use of explicit operators for
the Cut-rule but the closure of the syntax under (implicit) substitution, as in
pure λ-calculus, where the general syntax of λ-terms may be regarded as the
extension of the normal λ-terms by such a closure. His reduction rules are global
(using implicit substitutions) rather than local (using explicit operators); strong
normalisation is shown for a subset of the reductions, but unfortunately not for
all that are required.

Structure of the paper The paper is organised as follows. Section 2 presents the
term syntax and typing rules of our calculus for G4ip and its auxiliary (admis-
sible) rules. Section 3 studies proof transformations and reduction rules of the
calculus. Section 4 shows a translation from the calculus to a first-order syntax
and Section 5 shows that every reduction step satisfies subject reduction and
decreases first-order terms associated to derivations with respect to a multi-set
path ordering, thus proving strong normalisation. In Section 6 we give different
variants for the reduction system introduced in Section 3, some of them being
confluent. Finally we conclude and give some ideas for further work. We refer
the reader to the full version [DKL06] of this paper for further details such as
complete proofs.

2 Syntax

2.1 Grammar

We assume we are given an infinite set of base types P (known as proposition
variables or atomic formulae in the logical interpretation) and an infinite set
of variables x. We consider the following grammars for types (also known as
formulae) and terms:

2

Definition 1 (Grammar of Types and Terms).

A,B ::= P | A⊃B
M, N ::= x | λx.M | x(y, z.M) | x(u.v.M, z.N) |

inv(x, y.M) | of(M, x) | dec(x, y, z.M) | cut(M, x.N)

In this definition, the first line defines the syntax for types, the second gives
the syntax for normal or constructor terms (corresponding to primitive deriva-
tions) and the third gives the extra syntax for auxiliary terms, which may be
built up using also the “auxiliary constructors” that appear in bold teletype font,
such as cut. Six of the eight term constructors use variable binding: in λx.M ,
x binds in M ; in x(y, z.M), z binds in M ; in x(u.v.M, z.N), u and v bind in
M and z binds in N ; in inv(x, y.M), y binds in M ; in dec(x, y, z.M), z binds
in M ; and in cut(M, x.N), x binds in N . Lack of space here does not allow
a formal treatment of variable binding using e.g. De Bruijn indices or nominal
logic [Pit03].

Barendregt’s convention is used to avoid confusion of free and bound vari-
ables, and α-convertible terms are, as usual, regarded as identical.

Certain constraints on the use of the term syntax will be evident once we
present the typing rules; these constraints are captured by the following notion
of well-formed term:

Definition 2. A term L is well-formed if in any sub-term of the form

– x(y, z.M), we have x 6= y, with x not free in M ;
– x(u.v.M, z.N), we have u 6= v, with x not free in M and not free in N ;
– inv(x, y.M), we have x not free in M ;
– of(M, x), we have x not free in M ;
– dec(x, y, z.M), we have x 6= y, with both of them not free in M .

Definition 3 (Ordering on (multi-sets of) types). The weight w(A) of a
type A is defined by: w(P) = 1 for any base type P and w(A⊃B) = 1 + w(A) +
w(B). Types are compared by their weight, i.e. we say that A is smaller than B
iff w(A) < w(B).

We shall then compare multi-sets of types, equipped with the traditional multi-
set ordering [DM79,BN98], denoted <mul, generated by the order relation on
types.

The weight is chosen to ensure that, for every rule of the logical sequent
calculus G4ip, the multi-set of types appearing in the conclusion is greater than
that of each premiss. Hence, we say that G4ip is depth-bounded. See [Dyc92] or
[TS00] for details, and see the next section for the corresponding property in our
version of G4ip with terms.

2.2 Typing

A context Γ is a finite mapping from variables to types. The variable x is declared
in Γ when Γ (x) is defined. When we write a context in the form Γ , x :A (i.e. the

3

extension of Γ with x 7→ A), it is always implicit that x is not declared in Γ .
We denote by m(Γ) the range (considered as a multi-set) of a context Γ .

A sequent consists of a context Γ , a term M and a type A; it is written
Γ ⇒ M :A.

The next definition adds term notation to the rules for implication of G4ip;
another view is that it shows how the untyped normal terms of the above gram-
mar may be typed.

Definition 4 (Typing Rules for Normal Terms).

Ax
Γ , x :A ⇒ x :A

Γ, x :A ⇒ M :B
R⊃

Γ ⇒ λx.M :A⊃B

Γ, y :A, z :B ⇒ M :E
L0⊃

Γ , x :A⊃B, y :A ⇒ x(y, z.M) :E

Γ, u :C, v :D⊃B ⇒ M :D Γ, z :B ⇒ N :E
L⊃⊃

Γ , x : (C⊃D)⊃B ⇒ x(u.v.M, z.N) :E

These rules only construct well-formed terms; e.g. the notation Γ , x :A⊃B, y :A
in the conclusion of L0⊃ forces x 6= y and x to be not already declared in Γ
(hence not free in M).

These rules are the extensions with terms of the logical rules of G4ip
in [TS00] (note a slight difference of the L⊃⊃ rule from that of [Dyc92]), with
the variation that both in Ax and in L0⊃ the type A need not be atomic. In the
rules R⊃, L0⊃ and L⊃⊃ the types A⊃B, A⊃B and (C⊃D)⊃B respectively are
principal; in L0⊃ the type A is auxiliary. (This use of “auxiliary” is not to be
confused with its use in Definition 1 to describe certain kinds of term.)

Note that in every instance of a rule in Definition 4 with conclusion
Γ ⇒ M :A, each premiss Γ ′ ⇒ N :B is such that m(Γ) ∪ A >mul m(Γ ′) ∪ B,
where ∪ denotes the union of multi-sets. As a consequence, given Γ and A, there
are finitely many derivations concluding, for some (normal) term M , the sequent
Γ ⇒ M :A.

Definition 5 (Typing Rules for Auxiliary Terms).

Γ , y :C⊃D ⇒ M :E
Inv

Γ , x :D ⇒ inv(x, y.M) :E

Γ ⇒ M :A⊃B
Of

Γ , x :A ⇒ of(M, x) :B

Γ, z : (C⊃D)⊃B ⇒ M :A
Dec

Γ , x :C, y :D⊃B ⇒ dec(x, y, z.M) :A

Γ ⇒ M :A x :A,Γ ⇒ N :B
Cut

Γ ⇒ cut(M,x.N) :B

These rules only construct well-formed terms; e.g. the notation Γ , x :A in the
conclusion of Inv forces x to be not declared in Γ and hence not free in M .

In the Cut-rule, we say that A is the cut-type. Derivations are built as usual
from the rules (Definitions 4 and 5). A derivation is normal if it uses only the
primitive rules, i.e. those of Definition 4. The height of a derivation is just its
height as a tree; so a tree with one node has height 0.

4

We will occasionally find it necessary to rename free variables. The renaming
by the variable y of all the free occurrences of x in M , written {y/x}M , is
defined whenever y and x are distinct variables, M is a well-formed term and
y is not free in M . This is an implicit substitution rather than explicit (i.e. a
meta-notation rather than a term constructor). Renaming is sound with respect
to typing, as shown by the first of the two following results of admissibility, in
the standard sense [TS00].

Lemma 1. The following rules are admissible both in the system of normal
derivations and in the full system with auxiliary terms, with the proviso that
y 6= x in the (Ren) rule. (We use dashed lines and parenthesize the names of the
rules to emphasise their admissibility in these systems.)

Γ , x :B ⇒ M :A
−−−−−−−−− − (Ren)
Γ , y :B ⇒ {y/x}M :A

Γ ⇒ M :A
−−−−−−−− (W)
Γ , y :B ⇒ M :A

Proof: Routine induction on the height of the derivation of the premiss.
Some swapping of bound variable names may be necessary. Note that the nota-
tion Γ , y :B forces y to be not declared in Γ and hence not free in M . 2

Remark 1. Note that for each proved sequent Γ ⇒ M :A there is a unique
derivation tree (up to renaming, in sub-derivations, of the variables bound in
M), which can be reconstructed using the structure of the term M that repre-
sents the proof (hence the notion of proof-term).

3 Proof Transformations and Reduction Rules

The starting point of this section is the admissibility in the logical sequent
calculus G4ip of the following inference rules (i.e. the logical counter-part of the
typing rules for auxiliary terms given in Definition 5):

Γ , C⊃D ⇒ E
Inv

Γ , D ⇒ E

Γ ⇒ A⊃B
Of

Γ , A ⇒ B

Γ, (C⊃D)⊃B ⇒ A
Dec

Γ ,C, D⊃B ⇒ A

Γ ⇒ A A, Γ ⇒ B
Cut

Γ ⇒ B

The admissibility of Inv and Of in G4ip can be proved, independently, by
induction on the heights of the derivations of the premisses. For the admissibility
of Dec and Cut we can use a simultaneous induction, the admissibility of one rule
being recursively used for the admissibility of the other. The measure now uses
the multi-set of types appearing in the unique premiss for Dec and in the second
premiss for Cut. In other words, the induction can be done on {{Γ, (C⊃D)⊃B, A}}
for Dec and on {{Γ, A, B}} for Cut.

5

We do not include here the detail of these proofs of admissibility, because the
property turns out to be a consequence (Corollary 2) of our strong normalisation
result for our calculus with terms.

Indeed, the admissibility property means, in our framework with terms, that
a term M with auxiliary constructors inv, of, dec or cut can be transformed
into another term M ′ with the same type in the same context that does not use
these constructors.

This motivates the notion of term-irrelevant admissibility in a system with
terms:

Definition 6. A rule R is term-irrelevantly admissible in system S if, given
an instance with conclusion Γ ⇒ M :A and derivations in system S of its pre-
miss(es), there exists a derivation in S of Γ ⇒ M ′ :A for some term M ′.

Remark that this notion corresponds to the standard notion of admissibility
when term annotations are erased.

Moreover, the inductive arguments of admissibility above can be seen as
weakly normalising term reduction systems that specify how to eliminate the
auxiliary constructors inv, of, dec and cut.

The reduction systems, given hereafter, must satisfy the following properties:

1. A term containing an auxiliary constructor is reducible by these systems.
2. They satisfy the Subject Reduction property, i.e. preservation of typing.
3. They satisfy some termination property.

Concerning point 3, the weak normalisation property of these systems suf-
fices to prove the results of admissibility, and the proofs suggested above can
be expressed as a terminating innermost strategy for these reduction systems.
Nevertheless, we give in this paper reduction systems that are in fact strongly
normalising. While this might be inferred for the orthogonal systems that we
present in Section 6 (since weak innermost normalisation is equivalent to strong
normalisation for orthogonal first-order systems [O’D77]), the result is certainly
not so straightforward for the non-orthogonal ones. However, the measures for
induction mentioned above can be taken as part of a Multi-Set Path Ordering
[KL80,BN98] in order to conclude strong normalisation as well (see Section 4).

We give in Tables 1, 2 and 3 the reduction systems that eliminate the auxiliary
constructors of, inv and dec. All these rules that we call system oid will be part
of the different variants that we are going to introduce.

In order to reduce the cuts we now suggest a general system called cegs for
cut-elimination in Tables 4 and 5 (variants are presented in Section 6). The
whole system is called gs and contains the reduction rules in cegs (Tables 4 and
5) plus the ones in oid (Tables 1, 2 and 3).

Summing up :

Name of the System Reduction Rules
oid Tables 1, 2 and 3
cegs Tables 4, 5
gs oid ∪ cegs

6

of(y, x) −→o1 y(x, z.z)
of(λy.M, x) −→o2 {x/y}M
of(y(z, w.N), x) −→o3 y(z, w.of(N, x))
of(y(u.v.M, w.N), x) −→o4 y(u.v.M, w.of(N, x))

Table 1. Reduction Rules for of-terms

inv(x, y.z) −→i1 z
inv(x, y.y) −→i2 λz.x
inv(x, y.λz.M) −→i3 λz.inv(x, y.M)
inv(x, y.y(w, z.N)) −→i4 {x/z}N
inv(x, y.y(u.v.M, z.N)) −→i5 {x/z}N
inv(x, y.w(y, z.N)) −→i6 w(u.v.x, z.inv(x, y.N))
inv(x, y.y′(w, z.N)) −→i7 y′(w, z.inv(x, y.N))
inv(x, y.y′(u.v.M, z.N)) −→i8 y′(u.v.inv(x, y.M), z.inv(x, y.N))

Table 2. Reduction Rules for inv-terms

dec(x, y, z.w) −→d1
w

dec(x, y, z.z) −→d2
λv.v(x, w.y(w, u.u))

dec(x, y, z.λw.M) −→d3
λw.dec(x, y, z.M)

dec(x, y, z.w(u.v.M, w′.N)) −→d4
w(u.v.dec(x, y, z.M), w′.dec(x, y, z.N))

dec(x, y, z.w(y′, z′.M)) −→d5
w(y′, z′.dec(x, y, z.M))

dec(x, y, z.z(y′, z′.M)) −→d6
y′(x, z′′.y(z′′, z′.inv(z′′, y′.M)))

dec(x, y, z.x′(z, z′.M)) −→d7
x(u.v.v(x, z′′.y(z′′, w.w)), z′.dec(x, y, z.M))

dec(x, y, z.z(u.v.M, z′.N)) −→d8
cut({x/u}{y/v}M, y′.y(y′, z′.N))

Table 3. Reduction Rules for dec-terms

Kind1

cut(M, x.x) −→c1 M
cut(M, x.y) −→c2 y
cut(M, x.λy.N) −→c3 λy.cut(M, x.N)
cut(M, x.y(z, w.N)) −→c4 y(z, w.cut(inv(w, y.M), x.N))
cut(M, x.y(u.v.N ′, w.N)) −→c5 y(u.v.P, w.cut(inv(w, y.M), x.N))

where P = cut(dec(u, v, y.M), x.N ′)
cut(λz.M, x.y(x, w.N)) −→c6 y(u.v.P, w.cut(inv(w, y.λz.M), x.N))

where P = cut(u, z.dec(u, v, y.M))
cut(z, x.y(x, w.N)) −→c7 y(z, w.cut(z, x.N))

Kind2

cut(y(z, w.M), x.N) −→c8 y(z, w.cut(M, x.inv(w, y.N)))
cut(y(u.v.M ′, w.M), x.N) −→c9 y(u.v.M ′, w.cut(M, x.inv(w, y.N)))

Table 4. Cut Elimination Rules cegs (Kind1 and Kind2)

Kind3

cut(M, x.x(z, w.N)) −→A cut(cut(z, y.of(M, y)), w.N)
cut(M, x.x(u.v.N ′, w.N)) −→B cut(P, w.N)

where P = cut(λu.cut(λz.inv(z, y.of(M, y)), v.N ′), y.of(M, y))

Table 5. Cut Elimination Rules cegs (Kind3)

7

As in most cut-elimination systems, the cut-reduction rules can be split into
three kinds (Kind1, Kind2, Kind3), according to whether they push cuts to the
right, to the left, or they break a cut into cuts on smaller types.

Here, owing to the particular inference rules of G4ip and the well-formedness
constraints they impose on terms, the first two kinds must use the auxiliary
constructs inv and dec, rather than just propagate the cuts.

For the third kind of cut-reduction rules, we usually expect both sub-proofs
of the cut to introduce the cut-type (on the right and on the left, respectively). In
particular, this requires the first argument of the cut-constructor to be a value,
i.e. a variable or an abstraction, with a functional type, i.e. an implication A⊃B.
However, just as any λ-term can be turned into a value by an η-expansion, here
any term can be turned into a value by the use of the of constructor, with the
following rule, which we also call η:

M −→η λx.of(M, x) if x /∈ FV (M)

Note that in both cases this is only sound with respect to typing if the type of
the original term is an implication.

Lemma 2. All rules of system gs are such that well-formed terms reduce to
well-formed terms.

Proof. Routine.

4 A First-Order Syntax for Typed G4ip-Terms

Termination of the above rewrite systems on typed terms will be proved by the
decrease of a measure associated to typing derivations. The latter are mapped
to a first-order syntax with the following infinite signature:

Σ = {?/0, I/1,K/2, J/1} ∪ {Dm/1, Cm/2 | m is a multiset of types}

where the notation f/n is used to say that the symbol f has arity n, and the
symbols have the following precedence relation:

Cn Â Dn Â · · · Â · · · Â Cm Â Dm Â J Â K Â I Â ? if n >mul m

The precedence relation on symbols provides a Multi-set Path Ordering
Àmpo (mpo) on first-order terms [KL80,BN98].

Remark 2.

1. The order on types (Def. 3) is well-founded, so >mul is well-founded [DM79].
2. The order >mul is well-founded, so Â is also well-founded.
3. The order Â is well-founded, so the Multi-Set Path Ordering Àmpo is also

well-founded.

8

Derivations are mapped to this first-order syntax. In particular, since each
sequent Γ ⇒ M :A has at most one derivation, we write Γ ⇒ M :A for such a
translation, and even M when the context and type are clear from the text, as
in the right-hand sides of the following definition.

Γ , x :A ⇒ x :A = ?

Γ ⇒ λx.M :A⊃B = I(M)
Γ , x :A⊃B, y :A ⇒ x(y, z.M) :E = I(M)
Γ , x : (C⊃D)⊃B ⇒ x(u.v.M, z.N) :E = K(M, N)
Γ , x :D ⇒ inv(x, y.M) :E = J(M)
Γ , x :A ⇒ of(M,x) :B = J(M)
Γ , x :C, y :D⊃B ⇒ dec(x, y, z.M) :A = Dk(Γ , z : (C⊃D)⊃B ⇒ M :A)

where k = {{Γ , (C⊃D)⊃B,A}}
Γ ⇒ cut(M,x.N) :B = Ck(Γ ⇒ M :A, x :A, Γ ⇒ N :B)

where k = {{Γ, A,B}}

Observe that M = {x/y}M for any renaming of M .

5 Subject Reduction and Strong Normalisation

In this section we show two fundamental properties of system gs. The first one
is subject reduction and it guarantees that types are preserved by the reduction
system. The second one is strong normalisation and it guarantees that there is
no infinite reduction sequence starting from a typed term. Strong normalisa-
tion is shown by a decreasing measure given by the Multi-Set Path Ordering of
Section 4.

Theorem 1. If Γ ⇒ L :E and L −→gs L′, then Γ ⇒ L′ :E and L Àmpo L′.

Proof: By induction on the derivation of Γ ⇒ L :E. For brevity we show only
the most important case of rule B, which reduces cut(M, x.x(u.v.N, z.N ′)) to
cut(cut(λu.cut(λy′.inv(y′, y.of(M,y)), v.N), y.of(M, y)), z.N ′).

The derivation

. . .

Γ ⇒ M : (C⊃D)⊃B

. . .

u :C, v :D⊃B, Γ ⇒ N :D

. . .

z :B, Γ ⇒ N ′ :E
L⊃⊃

x : (C⊃D)⊃B, Γ ⇒ x(u.v.N, z.N ′) :E
Cut

Γ ⇒ cut(M, x.x(u.v.N, z.N ′)) :E

rewrites to

D
Γ ⇒ M ′ :C⊃D

. . .

Γ ⇒ M : (C⊃D)⊃B
Of

Γ , y :C⊃D ⇒ of(M, y) :B
Cut

Γ ⇒ cut(M ′, y.of(M,y)) :B

. . .

z :B, Γ ⇒ N ′ :E
Cut

Γ ⇒ cut(cut(M ′, y.of(M, y)), z.N ′) :E

9

where M ′ = λu.cut(λy′.inv(y′, y.of(M, y)), v.N) and D is the following deriva-
tion:

. . .

Γ ⇒ M : (C⊃D)⊃B
Of

Γ , y :C⊃D ⇒ of(M, y) :B
−−−−−−−−−−−−−−− (W)
Γ , u :C, y :C⊃D ⇒ of(M, y) :B

Inv
Γ , u :C, y′ :D ⇒ inv(y′, y.of(M,y)) :B

R⊃
Γ , u :C ⇒ λy′.inv(y′, y.of(M,y)) :D⊃B

. . .

u :C, v :D⊃B,Γ ⇒ N :D
Cut

Γ , u :C ⇒ cut(λy′.inv(y′, y.of(M, y)), v.N) :D
R⊃

Γ ⇒ λu.cut(λy′.inv(y′, y.of(M, y)), v.N) :C⊃D

Let k = {{(C⊃D)⊃B, Γ ,E}} and j = {{B, Γ,E}} and i = {{Γ , C⊃D,B}} and
h = {{C, D⊃B,Γ , D}}. Since k >mul j, i, h, we have Ck Â I, J, Cj ,Ci, Ch and

L = Ck(M, K(N, N ′)) Àmpo Cj(Ci(I(Ch(I(J(J(M))), N)), J(M)), N ′) = L′

Full details can be found in [DKL06]. 2

Corollary 1 (Strong Normalisation). System gs is strongly normalising on
typed terms.

Proof: This is a consequence of Theorem 1 and Remark 2. 2

Corollary 2. Rules Inv, Of, Dec, and Cut are term-irrelevantly admissible in
the system of Definition 4.

Proof: Every term with an auxiliary constructor is reducible by system gs. 2

6 Variants of reduction systems

We investigate in this section some variants of the cut-elimination system of
Section 3.

We discuss in Section 6.1 the rules of Kind3, noticing that the of-constructor
is only introduced by the reductions of gs in order to include η-conversion in the
system. We present two variations without η-conversion, called system rs and
system ars, that no longer use the of-constructor.

Without η-conversion, the only critical pairs of those variations are between
the rules of Kind1 and those of Kind2, so in Section 6.2, which only concerns rules
of Kind1 and Kind2, we present two ways of removing those critical pairs, i.e. of
making systems rs and ars orthogonal.

10

6.1 Avoiding the of-constructor

In this section we remove η-expansion from the reduction system so that the of-
constructor is no more used by the cut elimination rules. We obtain two variants,
depending on whether we want variables to behave like their η-expansions or we
want the elimination of a cut with a variable to be simpler and closer to renaming.

The rules A and B of system gs (Table 5) introduce the of-constructor to
model η-expansion, turning the first argument of the cut into an abstraction.

Theorem 2. Rule A (resp. B) can be factorised into an η-expansion followed
by rule C (resp. D) below:

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))

−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
Proof:

Rule A: cut(M, x.x(z, w.N))
−→η cut(λy.of(M, y), x.x(z, w.N))
−→C cut(cut(z, y.of(M, y)), w.N)

Rule B: cut(M, x.x(u.v.N ′, w.N))
−→η cut(λy.of(M, y), x.x(u.v.N ′, w.N))
−→D cut(cut(λu.cut(λz.inv(z, y.of(M, y)), v.N ′), y.of(M, y)), w.N)

2

Note that the η-expansion of an abstraction reduces, by direct elimination of
the of, to the abstraction itself:

λy.M −→η λx.of(λy.M, x) −→o2 λx.{x/y}M =α λy.M with x /∈ FV (M)

This justifies the following theorem:

Theorem 3. Rules C and D can be respectively derived from rules A and B
using system oid.

Proof: Similar to Theorem 2. 2

Similarly, direct elimination of the of-constructor is allowed by rule o1 in the
case of a variable (y −→η λx.of(y, x) −→o1 λx.y(x, z.z) with x /∈ FV (M)), so
this suggests that two rules E and F , treating the case of a variable, can also be
derived from rules A and B:

Theorem 4. The following rules E and F can be respectively derived from A
and B using system gs:

cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N))−→F y(u′.v′.cut(u′, u.P), w′.cut(w′, w.inv(w′, y.N)))

where P = dec(u′, v′, y.cut(λy′′.y(u.v.y′′, z.z), v.N ′))

Proof: Similar to Theorem 2. 2

11

Now, by construction, rules E and F make variables have the same functional
behaviour as their η-expansion.

Note also that the new rules C, D, E and F (together with rules c8 and c9)
can now replace any use of rules A and B, thus forming a system, called cers,
that is still complete for cut-elimination and makes no use of the of-constructor.
We show in Table 6 only the cut reduction rules of Kind3, in which cegs and
cers differ, the rules of Kind1 and Kind2 being the same. System cegs can thus
be seen as system cers to which η-expansion has been integrated by the use of
the auxiliary constructor of.

Kind3

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N)) −→F y(u′.v′.cut(u′, u.P), w′.cut(w′, w.inv(w′, y.N)))

where P = dec(u′, v′, y.cut(λy′′.y(u.v.y′′, z.z), v.N ′))

Table 6. Cut Elimination Rules in System cers (Kind3)

The behaviour of functionals is interesting in G4ip, because it is a depth-
bounded calculus: for instance, among all Church’s numerals only 0 and 1 can
be represented in G4ip. So when reducing the term that represents (using cuts)
“1 + 1”, we should expect some semantical anomaly in the reductions (which is
quite similar to the one reported by Vestergaard in [Ves99]). Such an anomaly is
to be found in rules B and D, and for abstractions we have no alternative choice.
However in system rs we have made the choice of making variables have the same
functional behaviour as their η-expansions, hence rule F inherits the anomaly.
But instead we might rather follow the intuition that cutting a variable with a
another variable is almost renaming, and replace rule F with a new rule G, thus
forming system cears presented in Table 7 (again we only show rules of Kind3,
but rules of Kind1 and Kind2 are the same as in cegs or cers). This new rule
is simpler and more natural than rule F ; however the reducts are semantically
different and thus the choice of rule G breaks the property that a variable and
its η-expansion have the same behaviour.

Since all the rules of system rs are derived from system gs, it is clear that the
former inherits from the latter the Subject Reduction property as well as the
Strong Normalisation of typed terms. However, for system ars, those properties
are not inherited, even if it is easy to check that rule G satisfies the Subject
Reduction property and decreases with respect to the multi-set path ordering in
Section 4.

12

Kind3

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N)) −→G y(u′.v′.cut(u′, u.P ′), w′.cut(w′, w.inv(w′, y.N)))

where P ′ = cut(v′, v.dec(u′, v′, y.N ′))

Table 7. Cut Elimination Rules in System cears (Kind3)

The systems presented so far in this paper can be summarised in the following
table:

of, inv and dec cut = (Kind1 + Kind2) + Kind3 Whole system
oid cegs = Table 4 + Table 5 gs
oid cers = Table 4 + Table 6 rs
oid cears = Table 4 + Table 7 ars

6.2 Orthogonal systems

In this section we suggest two ways of restricting the rules of Kind1 and Kind2

to make systems rs and ars orthogonal, and hence confluent.
In the restricted systems gs and ars there are overlaps between the right

and left propagation sub-systems, i.e. there is a critical pair between any rule
in {c1, c2, c3, c4, c5} and any rule in {c8, c9}. This is shown in Table 8, where
column headers represent the different cases concerning the first premiss of the
cut, while row headers represent the different cases for the second one (marking
inside parentheses the status of the cut-type).

Axiom R⊃ L0⊃ L⊃⊃
Axiom (Principal) c1 c1 c1, c8 c1, c9
Axiom (Non-Principal) c2 c2 c2, c8 c2, c9
R⊃ c3 c3 c3, c8 c3, c9
L0⊃ (Non-Principal, Non-Auxiliary) c4 c4 c4, c8 c4, c9
L⊃⊃ (Non-Principal) c5 c5 c5, c8 c5, c9
L0⊃ (Non-Principal, Auxiliary) c7 c6 c8 c9

L0⊃ (Principal) E C c8 c9

L⊃⊃ (Principal)
F (rs)

or G (ars)
D c8 c9

Table 8. Overlaps of reduction rules

13

The overlaps pointed out in Table 8 are well-known in sequent calculus, and
correspond to the choice of whether to push a cut into the proof of its left premiss
or into the proof of its right premiss. The former corresponds to a call-by-value
strategy and the latter corresponds to a call-by-name strategy.

Since the overlaps only concerns cut-reduction rules of Kind1 and Kind2, we
discuss in the following possible ways to make them non-overlapping.

Call-by-name One way to make the system orthogonal is to give preference
to rules c1-c2-c3-c4-c5 over rules c8-c9, thus restricted to the case when N is an
x-covalue Q, i.e. is of the form x(y, w.N) or x(u.v.M,w.N).

Note that in order to reduce a term like cut(M,x.y(x,w.N)), there is no
choice other than left-propagation (rules c8 and c9) until a similar redex is
found in which M is a value, and then only rules c6 or c7 can be applied.

Call-by-value Alternatively, preference might be given to rules c8 and c9, which
we can formalise as restricting rules c1-c2-c3-c4-c5 to the case when M is a value
V (variable or abstraction).

The choice of call-by-value is more natural than that of call-by-name because
the two rules of right-propagation c6 and c7 only apply to cuts whose first argu-
ment is a value. This suggests that G4ip has an inherent call-by-value flavour,
echoing the idea that it is somehow based on the call-by-value sequent calculus
LJQ. Indeed, completeness of LJQ gives a short proof of the completeness of
G4ip [DL06].

We finish this section by stating the following property of cbn and cbv.

Theorem 5. Reduction systems cbn and cbv are confluent.

Proof: Systems cbn and cbv can be seen as particular orthogonal CRS, so they
enjoy confluence (see [vOvR94] for details). 2

7 Conclusion

This paper defines various term calculi for the depth-bounded intuitionistic se-
quent calculus of Hudelmaier. Using standard techniques of rewriting, we prove
subject-reduction and strong normalisation for all of them, so Cut-admissibility
turns out to be a corollary. The cbn and cbv systems presented in this paper are
also orthogonal, which guarantees confluence (and uniqueness of normal forms).

Some relations between G4ip and other calculi for intuitionistic logic are
studied in [DL06]. Also, from our term calculi for G4ip, which use explicit
operators, we could extract term calculi with implicit operators (as in λ-calculus).
This would bring our calculus closer to that of Matthes [Mat02], and with a
strong normalising cut-elimination procedure. As mentioned in the introduction,
defining a denotational semantics for our calculi as well as investigating the
connexions with the simply-typed λ-calculus would reveal more properties of
the proofs in G4ip.

14

References

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[DKL06] R. Dyckhoff, D. Kesner, and S. Lengrand. Strong cut-
elimination systems for Hudelmaier’s depth-bounded sequent cal-
culus for implicational logic, 2006. Full version. Available at
http://www.pps.jussieu.fr/~lengrand/Work/Papers.html.

[DL06] R. Dyckhoff and S. Lengrand. LJQ, a strongly focused calculus for intuition-
istic logic. In A. Beckmann, U. Berger, B. Loewe, and J. V. Tucker, editors,
Proc. of the 2nd Conf. on Computability in Europe (CiE’06), volume 3988
of LNCS. Springer-Verlag, July 2006.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Communications of the ACM, 22(8):465–476, 1979.

[DN00] R. Dyckhoff and S. Negri. Admissibility of structural rules for contraction-
free systems of intuitionistic logic. The Journal of Symbolic Logic,
65(4):1499–1518, 2000.

[Dyc92] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The
Journal of Symbolic Logic, 57(3):795–807, 1992.

[Hud89] J. Hudelmaier. Bounds for Cut Elimination in Intuitionistic Logic. PhD
thesis, Universität Tübingen, 1989.

[Hud92] J. Hudelmaier. Bounds on cut-elimination in intuitionistic propositional
logic. Archive for Mathematical Logic, 31:331–354, 1992.

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path or-
derings. Handwritten paper, University of Illinois, 1980.

[LSS91] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication.
In Proc. of the Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 51–62, Amsterdam, The Netherlands, 1991.

[Mat02] R. Matthes. Contraction-aware λ-calculus, 2002. Seminar at Oberwolfach.
[O’D77] M. J. O’Donnell. Computing in Systems Described by Equations, volume 58

of LNCS. Springer-Verlag, 1977.
[ORK05] J. Otten, T. Raths, and C. Kreitz. The ILTP Library: Benchmarking auto-

mated theorem provers for intuitionistic logic. In B. Beckert, editor, Interna-
tional Conference TABLEAUX-2005, volume 3702 of LNAI, pages 333–337.
Springer Verlag, 2005.

[Pit92] A. M. Pitts. On an interpretation of second order quantification in first-order
intuitionistic propositional logic. Journal of Symbolic Logic, 57:33–52, 1992.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. In-
formation and Computation, 186:165–193, 2003.

[TS00] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2000.

[Ves99] R. Vestergaard. Revisiting Kreisel: A computational anomaly in
the Troelstra-Schwichtenberg g3i system, March 1999. Available at
http://www.cee.hw.ac.uk/~jrvest/.

[Vor70] N. N. Vorob’ev. A new algorithm for derivability in the constructive propo-
sitional calculus. American Mathematical Society Translations, 94(2):37–71,
1970.

[vOvR94] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies conflu-
ence: the higher-order case. In A. Nerode and Y. Matiyasevich, editors, Proc.
of the 3rd Int. Symp. on Logical Foundations of Computer Science, volume
813 of LNCS, pages 379–392. Springer-Verlag, July 1994.

15

