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Abstract. We present a typing system for the λ-calculus, with non-idempotent
intersection types. As it is the case in (some) systems with idempotent inter-
sections, a λ-term is typable if and only if it is strongly normalising. Non-
idempotency brings some further information into typing trees, such as a bound
on the longest β-reduction sequence reducing a term to its normal form.
We actually present these results in Klop’s extension of λ-calculus, where the
bound that is read in the typing tree of a term is refined into an exact measure
of the longest reduction sequence.
This complexity result is, for longest reduction sequences, the counterpart of
de Carvalho’s result for linear head-reduction sequences.

1 Introduction

Intersection types were introduced in [CD78], extending the simply-typed λ-
calculus with a notion of finite polymorphism. This is achieved by a new con-
struct A ∩B in the syntax of types and new typing rules such as:

M : A M : B

M : A ∩B
where M :A denotes that a term M is of type A.
One of the motivations was to characterise strongly normalising (SN) λ-terms,
namely the property that a λ-term can be typed if and only if it is strongly
normalising. Variants of systems using intersection types have been studied to
characterise other evaluation properties of λ-terms and served as the basis of
corresponding semantics [Lei86,Ghi96,DCHM00,CS07].
This paper refines with quantitative information the property that typability
characterises strong normalisation. Since strong normalisation ensures that all
reduction sequences are finite, we are naturally interested in identifying the
length of the longest reduction sequence. We do this with a typing system that
is very sensitive to the usage of resources when λ-terms are reduced.
This system results from a long line of research inspired by Linear Logic [Gir87].
The usual logical connectives of, say, classical and intuitionistic logic, are decom-
posed therein into finer-grained connectives, separating a linear part from a part
that controls how and when the structural rules of contraction and weakening
are used in proofs. This can be seen as resource management when hypotheses,
or more generally logical formulae, are considered as resource.
The Curry-Howard correspondence, which originated in the context of intu-
itionistic logic [How80], can be adapted to Linear Logic [Abr93,BBdH93], whose
resource-awareness translates to a control of resources in the execution of pro-
grams (in the usual computational sense). From this, have emerged some ver-
sions of linear logic that capture polytime functions [BM03,Laf04,GR07]. Also
from this has emerged a theory of λ-calculus with resource, with semantical sup-
port (such as the differential λ-calculus) [ER03,BEM10]. In this line of research,



de Carvalho [dC05,dC09] obtained interesting measures of reduction lengths in
the λ-calculus by means of non-idempotent intersection types (as pionnered
by [KW99,NM04]).
Intersections were originally introduced as idempotent, with the equation A ∩
A = A either as an explicit quotient or as a consequence of the system. This
corresponds to the understanding of the judgement M :A∩B as follows: M can
be used as data of type A or data of type B. But the meaning of M :A∩B can be
strengthened in that M will be used once as data of type A and once as data
of type B. With this understanding, A ∩ A 6= A, and dropping idempotency of
intersections is thus a natural way to study control of resources and complexity.
Using this, de Carvalho [dC09] has shown a correspondence between the size of
the typing derivation tree and the number of steps taken by a Krivine machine
to reduce the term. This relates to the length of linear head-reductions, but if
we remain in the realm of intersection systems that characterise strong normal-
isation, then the more interesting measure is the length of the longest reduction
sequence. In this paper we get a result similar to de Carvalho’s, but with the
measure corresponding to strong normalisation.
First we define a system with non-idempotent intersection types. Then we prove
that if a term is typable then it is SN (soundness) and that if a term is SN then
it is typable (correctness). As opposed to idempotent intersection types, the
proof of correctness is very direct: we use a simple measure on typing trees (the
easy proof differs from that in [Val01], in that the typing system itself does not
perform β-reduction).
The proof of soundness gives us immediatly a bound of the maximum number
of β-reductions. So we have an inequality result for complexity. We would like
an equality result.
One of the reasons why we only have an inequality result is because, in a β-
reduction, the argument of the β-redex may disappear (we call this weakening).
One simple way to avoid the weakening problem without blocking computation
is to use Klop’s extension of λ-calculus :

M,N ::= . . . | [M,N ]

In [M,N ], N is a sub-term that was meant to be erased. To avoid weakenings,
we can replace every term λx.M such that x /∈ FV (M) with λx.[M,x].
We refer the reader to [Sør97,Xi97] for a survey on different techniques based
on the λI-calculus to infer normalisation properties. Intersection types in the
framework of Church-Klop’s calculus have been studied in e.g. [DCT07], but, to
our knowledge, they were always considered idempotent. Hence, the quantitative
analysis provided by non-idempotency was not carried out.
In order to obtain the complexity result we want, we still have to expect a
property on typing trees: optimality. This property is mostly on the “interface
types”. It is not too restrictive because the completeness theorem produces such
typing trees, but it is still quite so because we can prove that for each term, the
shape of such a derivation tree is unique (principality).
We can then prove that if π is a optimal-principal typing tree of M then we can
read off π the exact length of the longest reduction sequence starting from M .

2 Syntax and typing

In this section we present the calculus and the typing system that we are going
to use.

2.1 Lambda Calculus with Klop’s extension

As said in the introduction, the language that we are going to type is the pure
λ-calculus extended with Klop’s construct [Klo80]:



Definition 1 (Syntax and reduction rules).
– Terms are defined by the following grammar

M,N ::= x | λx.M |MN | [M,N ]

Unless otherwise stated, we do not consider any restriction on this syntax.

Sometimes we write N
−→
Mi for N M1 . . .Mn (when

−→
Mi is the vector of terms

M1 . . .Mn).
The free variables fv(M) of a term M are defined as usual and terms are
considered up to α-equivalence.

– The reduction rules are β-reduction and π-reduction (see e.g. [Klo80]):

β (λx.M) N −→ M{x := N}
π [M1, N ]M2 −→ [M1 M2, N ]

If S is a rule (such as β or π), or a system of rules (like βπ), we write
M −→S N for the congruent closure of the (system of) rule(s).

An interesting fragment of the calculus is Church-Klop’s λI [Klo80]:

Definition 2 (λI). A term M is in the λI-fragment if any abstraction λx.N
occurring in M is such that x ∈ fv(N).

Remark 1. The λI-fragment is stable under substitution and under −→βπ .
If M −→βπ N then fv(M) = fv(N) and P{x := M}−→+

βπ P{x := N}
provided that x ∈ fv(P ).

Another obvious fragment is the pure λ-calculus.4 Klop’s construct is only useful
here for the complexity results of section 5; we do not need it for soundness or
completeness (section 3). So if one is interested only in the pure λ-calculus, it is
possible to follow the proofs of these theorems while ignoring Klop’s construct.
As we will see later some theorems are not true for every reduction (for example,
the subject expansion property), so we define the reduction M ↪−−→N M ′,
where N is either a term or ε (a dummy placeholder) as follows:

Definition 3 (A restricted reduction relation).

x ∈ FV (M)

(λx.M)N ↪−−→ε M{x := N}

x /∈ FV (M)

(λx.M)N ↪−−→N M

M1 ↪−−→N M ′1

M1M2 ↪−−→N M ′1M2

M2 ↪−−→N M ′2

M1M
′
2 ↪−−→N M1M

′
2

M ↪−−→N M x /∈ FV (N)

λx.M ↪−−→N λx.M [M1, N ]M2 ↪−−→ε [M1 M2, N ]

M1 ↪−−→N M ′1

[M1,M2] ↪−−→N [M ′1,M2]

M2 ↪−−→N M ′2

[M1,M2] ↪−−→N [M1,M
′
2]

Fig. 1. ↪−−→-reduction

Fig. 1 formalises the reduction relation that can be be intuitively described as
follows: M ↪−−→N M ′ if and only if M −→βπ M ′ such that:

– either the reduction M −→βπ M ′ does not erase anything in which case
N = ε.

– or the reduction M −→βπ M ′ erases the term N within M and the free
variables of N are not bound by binders in M .

Remark 2. If M is a λI term then every reduction is in ↪−−→ε.

4 This motivates our choice of sticking to the reduction rules of [Klo80] rather than opting for
the variant in [Bou03] where β-reduction can generate new instances of Klop’s construct.



2.2 Intersection types and contexts

Definition 4 (Intersection types).
Our intersection types are defined by the following grammar :

A,B ::= F | A ∩B
F,G ::= τ | A→F
U, V ::= ω | A (General types)

We consider the types up to associativity and commutativity of intersections.
The notation U ∩V extends the intersection construct to general types using the
following equations:

A ∩ ω = ω ∩A = A ω ∩ ω = ω

As opposed to [CD78,CD80] we do not have idempotency A = A ∩A.

Remark 3.
– It would be possible to formalise the results of this paper without using

general types, but then in many definitions and proofs we would have to
deal with two or three cases instead of one.

– Notice that, by construction, if A → B is a type then B is not an inter-
section. This limitation, which corresponds to the strict types of [vB92], is
useful for the key property of separation (Lemma 1).

Definition 5 (Type inclusion). We define inclusion on types as follows:
U ⊆ V if V = ω, or U = V , or U = A and V = B with A = B ∩C for some C.

Notice that this definition of inclusion is weaker than the traditional one origi-
nating from [BCDC83]. Indeed, inclusions between domains and co-domains of
function types do not induce inclusions between function types.

Remark 4. ⊆ is a partial order.

Definition 6 (Contexts).
– A context Γ is a total map from variables (x, y, z, . . .) to general types

(U, V, . . .) that has finite support, i.e. such that {x | Γ (x) 6= ω} is finite.
– The expression (x1 :U1, ..., xn : Un), where for all i, j, xi 6= xj, is defined

as the context Γ such that:
• For all i, Γ (xi) = Ui
• Γ (y) = ω for any other y

– Given two contexts Γ and ∆,
Γ ∩∆ is defined pointwise as: for all x, (Γ ∩∆)(x) = Γ (x) ∩∆(x), and
we write Γ ⊆ ∆ for either Γ = ∆ or there exists Γ ′ such that Γ = Γ ′ ∩∆

Remark 5.
– ⊆ is a partial order on contexts.
– Γ ⊆ ∆ if and only if for all x, Γ (x) ⊆ ∆(x)

2.3 Typing system and its basic properties

Definition 7 (Typing system).
– Fig. 2 inductively defines the derivability of typing judgements, of the form
Γ `̀̀ M :U . Typing trees will be denoted π, π′. . .

– To prove strong normalisation we will use a simple measure on typing trees:
we just count the number of occurences of rule (App).
So we write Γ `̀̀n M :U (resp. Γ `̀̀≤n M :U , resp. Γ `̀̀<n M :U) if there
exists a typing tree π concluding Γ `̀̀ M :U and in π there are exactly (resp.
less than or equal to, resp. less than) n occurences of rule (App).

– We say that a term M is typable if there exist Γ and A such that Γ `̀̀ M :A



x :F `̀̀ x :F

Γ `̀̀ M :A ∆ `̀̀ M :B

Γ ∩∆ `̀̀ M :A ∩B

Γ, x :U `̀̀ M :F A ⊆ U

Γ `̀̀ λx.M :A→F

Γ `̀̀ M :A→B ∆ `̀̀ N :A
(App)

Γ ∩∆ `̀̀ MN :B

Γ `̀̀ M :F ∆ `̀̀ N :A

Γ ∩∆ `̀̀ [M,N ] :F `̀̀ M :ω

Fig. 2. Typing system

In the rest of this section and for the proof of subject reduction we can ignore
everything about the measure: but taking it into account does not complicate
the proofs.

Remark 6. If Γ `̀̀n M :U and ∆ `̀̀m M :V then Γ ∩∆ `̀̀n+m M :U ∩ V

Lemma 1 (Separation). If Γ `̀̀n M :U1 ∩ U2 then there exist Γ1, Γ2, n1 and
n2 such that Γ = Γ1 ∩ Γ2, n = n1 + n2, and Γ1 `̀̀n1 M :U1 and Γ2 `̀̀n2 M :U2.

Proof. By induction on the typing tree.
– If U1 = ω or U2 = ω it is trivial.

– If
Γ `̀̀n M :C ∆ `̀̀m M :D

Γ ∩∆ `̀̀n+m M :C ∩D
and C ∩D = A1 ∩A2 then there exist U1, U2,

V1, V2 such that C = U1∩U2, D = V1∩V2, A1 = U1∩V1 and A2 = U2∩V2.
By induction, there exist n1, n2, m1, m2, Γ1, Γ2, ∆1, ∆2 such that n =
n1 + n2, m = m1 + m2, Γ = Γ1 ∩ Γ2, ∆ = ∆1 ∩ ∆2, Γ1 `̀̀n1 M : U1,
Γ2 `̀̀n2 M :U2, ∆1 `̀̀m1 M :V1, ∆2 `̀̀m2 M :V2.
So we have Γ1 ∩∆1 `̀̀n1+m1 M :A1 and Γ2 ∩∆2 `̀̀n2+m2 M :A2.

– All the other cases are impossible, especially the application rule: if A→B
is a type, then B is not an intersection. This is why we used this restriction
in the begining.

A useful property can be inferred from the separation property:

Corollary 1 (Weakening). If Γ `̀̀n M : U and U ⊆ V then there exists Γ ′

such that Γ ⊆ Γ ′ and Γ ′ `̀̀≤n M :V .

3 Soundness and completeness of the typing system
w.r.t. strong normalisation

In this section we prove that a term is typable if and only if it is strongly
normalising.

3.1 Soundness

Here we prove that typed terms are strongly normalising.

Lemma 2 (Typing of substitution). If Γ, x :U `̀̀n1 M :V and ∆ `̀̀n2 N :U
then Γ ∩∆ `̀̀n1+n2 M{x := N} :V .

Proof. By induction on the typing tree of M .
– For the variable rule it is trivial.



– For `̀̀0 M : ω with (Γ, x :U) = (), n1 = 0, V = ω. So we have U = ω, so
n2 = 0 and ∆ = (). So we can conclude

– For
Γ, x :U, y :W `̀̀n1 M1 :F A ⊆W

Γ, x :U `̀̀n1 λy.M1 :A→ F
with M = λy.M1, V = A→ F , x 6=

y, y /∈ FV (N). From the induction hypothesis we have Γ, y :W `̀̀n1+n2 M1{x := N} :
F so we can conclude.

– For
Γ1, x :U1 `̀̀m1 M :A Γ2, x :U2 `̀̀m2 M :B

Γ1 ∩ Γ2, x :U1 ∩ U2 `̀̀m1+m2 M :A ∩B
with n1 = m1 + m2, U =

U1 ∩ U2, V = A ∩ B. By the use the Lemma 1, there exists ∆1, ∆2, m3,
m4, such that n2 = m3 +m4, ∆ = ∆1 ∩∆2, ∆1 `̀̀m3 N :U1, ∆2 `̀̀m4 N :U2.
By the induction hypothesis we have Γ1 ∩∆1 `̀̀m1+m3 M{x := N} :A and
Γ2 ∩∆2 `̀̀m2+m4 M{x := N} :B so we can conclude.

– For the application rule and Klop’ construct rule we adapt the proof for the
intersection rule.

Theorem 1 (Subject Reduction for β).
If Γ `̀̀n M :A and M −→β M ′ then there exists Γ ′ such that Γ ′ `̀̀<n M ′ :A
and Γ ⊆ Γ ′.

Proof. First by induction on M −→β M ′ then by induction on A.

– If A is an intersection then we use the Lemma 1.

– For
(λx.M1)M2 −→β M1{x := M2}

with A not an intersection then there

exist B, Γ1, Γ2, n1, n2 such that n = n1+n2+1, Γ = Γ1∩Γ2, Γ1 `̀̀n1 λx.M1 :
B → A and Γ2 `̀̀n2 M2 :B. So there exists U such that B ⊆ U and Γ1, x :
U `̀̀n1 M1 :A. So, from Corollary 1, there exists ∆ such that Γ2 ⊆ ∆ and
∆ `̀̀≤n2 M2 :U . So by the use of the previous lemma we can conclude.

– If
M −→β M ′

λx.M −→β λx.M ′
with A is not an intersection, then there exist U , A2,

A3 such that A = A2 → A3, A2 ⊆ U Γ, x : U `̀̀n M :A3. By the induction
hyptothesis there exist m, ∆, V such that Γ ⊆ ∆, m < n, U ⊆ V and
∆,x : V `̀̀m M ′ :A3. So we have A2 ⊆ V , so we have∆ `̀̀m λx.M ′ :A2 → A3

– The other cases are straightforward.

Lemma 3 (Subject Reduction for π). If Γ `̀̀n M :A and M −→π M ′ then
Γ `̀̀n M ′ :A.

Proof. Again, by induction first on A then on M −→π M ′. All cases are
straightforward.

Corollary 2 (Soundness). If Γ `̀̀ M :A then M is SN.

Proof. The measure is decreased by β-reduction (Theorem 1), is invariant under
π-reduction (Lemma 3), and π-reduction on its own terminates. Strong normal-
isation follows by considering the corresponding lexicographic order.

Notice that in the particular case of ↪−−→, Subject Reduction can be stated
more precisely:

Theorem 2 (Subject Reduction for ↪−−→).
Assume Γ `̀̀ M :B and M ↪−−→N M ′.
If N 6= ε there exist ∆ and A such that ∆ `̀̀ N :A otherwise let ∆ = ().
There exists Γ ′ such that Γ ′ `̀̀ M ′ :B with Γ = Γ ′ ∩∆.

Proof. By investigating the proof of Theorem 1.

In the even more particular case of the λI-fragment, where ↪−−→ε=−→βπ ,
Subject Reduction does not modify the context.



3.2 Completeness

We now prove that strongly normalising terms can be typed.

Lemma 4 (Typing of substitution). If Γ `̀̀ M{x := N} :B then there exist
Γ1, Γ2, U such that Γ = Γ1 ∩ Γ2 and Γ1, x :U `̀̀ M :B and Γ2 `̀̀ N :U .

Proof. By induction on the typing tree for M . If x /∈ fv(M) we take U = ω
and Γ2 = ().

Theorem 3 (Subject Expansion).
Assume Γ `̀̀ M ′ :B and M ↪−−→N M ′.
Assume ∆ `̀̀ N :A if N 6= ε, otherwise let ∆ = ().
We have Γ ∩∆ `̀̀ M :B.

Proof. First by induction on B then by induction on M ↪−−→N M ′. The cases
are exactly those of Subject Reduction.

Remark 7. This is not true with general β-reduction. For example, (λz.a)(λy.yy)
is typable but (λz.(λx.a)(zz))(λy.yy) is not (it is not SN).

Lemma 5 (Shape of ↪−−→-normal forms). If a term cannot be reduced by
↪−−→ then it is of one of the following forms:

– λx.M
– [M,N ]
– xM1 . . .Mn

Proof. Straightforward.

Theorem 4 (Completeness). If M is SN then there exist F and Γ such that
Γ `̀̀ M :F .

Proof. First by induction on the length of the longest −→βπ -reduction sequence
starting from M then by induction on the size of M .

– If there exists M ′ such that M ↪−−→N M ′ then we use the induction hy-
pothesis on M ′ (and if N 6= ε we use it on N too, which is a strict sub-term
of M). Then we conclude with Theorem 3.

– If not then M is of one of these forms:
• If M = λx.N then we apply the induction hypothesis on N .
• If M = [M1,M2] then we apply the induction hypothesis on M1 and
M2

• If M = xM1 . . .Mn then we apply the induction hypothesis on M1, . . . ,
Mn to get Γ1 `̀̀ M1 :F1, . . . , Γn `̀̀ Mn :Fn, so we pick a fresh atomic
type τ and we get:

(x :F1→· · ·→Fn→τ) ∩ Γ1 ∩ . . . ∩ Γn `̀̀ xM1 . . .Mn :τ

In the particular case of the λI-fragment, typing is preserved by arbitrary ex-
pansions, with no modification of context. Since normal forms can be typed,
any weakly normalising term can be typed, and are thus strongly normalising.
Equivalence between weak normalisation and strong normalisation in λI is a
well-known theorem that finds here a simple proof.

3.3 Corollaries

Corollary 3 (Characterisation of Strong Normalisation). M is typable
if and only if M is SN.

With the characterisation of strong normalisation and the subject expansion
theorem we have the following corollary.

Corollary 4. If M ↪−−→N M ′ and N is SN and M ′ is SN then M is SN.

This is a useful result, used for instance in many proofs of strong normalisation
(e.g. by reducibility candidates) for λ-terms that are typed in various systems. It
can also be seen as a generalisation the theorem that in λI, weak normalisation
is equivalent to strong normalisation.



4 Optimal and principal typing

As we showed in the previous section, the typing system of Fig. 2 above char-
acterises strongly normalising terms. Even better, the measure defined on the
typing tree of a term gives a bound on the length of longest reduction sequence.
But the typing system is too coarse to improve on that bound, so in order to
get a better result about complexity (as established in section 5) it needs to be
refined.

4.1 Optimal typing

In this section we first notice that the typing trees produced by the proof of
completeness all satisfy a particular property that we call the optimal property.
This property involves the following notions:

Definition 8 (Subsumption and forgotten types).
– If π is a typing tree, we say that π uses subsumption if it features an occur-

rence of the abstraction rule where the condition A ⊆ U is neither A ⊆ A
nor A ⊆ ω.

– If π is a typing tree with no subsumption then we say that a type A is
forgotten in π if:
• π features an occurence of the abstraction rule where the condition is
A ⊆ ω,

• or π features an occurence of the typing rule for Klop’s construct [M,N ]
where A is the type of N .

The multiset of forgotten types in π is written forg(π).

The optimal property also involves refining the grammar of types:

Definition 9 (Refined intersection types). A+, A− and A−− are defined
by the following grammar:

A+, B+ ::= τ | A−− → B+

A−−, B−− ::= A− | A−− ∩B−−
A−, B− ::= τ | A+ → B−

The degree of a type of the form A+ is the number of arrows in negative posi-
tions:

δ+(τ) := 0
δ+(A−− → B+) := δ−(A−−) + δ+(B+) + 1

δ−(A−− ∩B−−) := δ−(A−−) + δ−(B−−)

δ−(τ) := 0
δ−(A+ → B−) := δ+(A+) + δ−(B−)

We can finally define the optimal property:

Definition 10 (Optimal typing). A typing tree π concluding Γ `̀̀ M :A is
optimal if

– There is no subsumption in π
– A is of the form A+

– For every (x : B) ∈ Γ , B is of the form B−−

– For every forgotten type B in π, B is of the form B+.
We write Γ `̀̀opt M :A+ if there exists such π.
The degree of such a typing tree is defined as

δ(π) = δ+(A+) +Σx : B−−∈Γ δ
−(B−−) +ΣC+∈forg(π)δ

+(C+)

In this definition, A+ is an output type, A− is a basic input type (i.e. for a
variable to be used once), and A−− is the type of a variable that can be used
several times. The intuition behind this asymmetric grammar can be found in
linear logic:



Remark 8. A simple type T can be translated as a type T ∗ of linear logic [Gir87]
as follows:

τ∗ := τ
(T → S)∗ := !S∗ ( T ∗

It can also be translated as T+ and T− as follow :

τ+ := τ τ− := τ
(T → S)+ := !T− ( S+ (T → S)− := T+ ( S−

And we have in linear logic : T− ` T ∗ and T ∗ ` T+

Now we can establish Subject Expansion for optimal trees:

Theorem 5 (Subject Expansion, optimal case).
Assume Γ `̀̀opt M ′ :B and M ↪−−→N M ′.
Assume ∆ `̀̀opt N :A if N 6= ε, otherwise let ∆ = ().
We have Γ ∩∆ `̀̀opt M :B.

Proof. By investigating the proof of Theorem 3, noticing that, in Lemma 4:

– if the typing tree of Γ `̀̀ M{x := N} :B does not use subsumption, neither
do those of Γ1, x :U `̀̀ M :B and Γ2 `̀̀ N :U ;

– the forgotten types in the typing tree of Γ `̀̀ M{x := N} : B are exactly
those in the typing trees of Γ1, x :U `̀̀ M :B and Γ2 `̀̀ N :U .

The multiset of forgotten types in the proof of Γ ∩∆ `̀̀opt M :B is that in the
proof of Γ `̀̀opt M ′ :B (union that in the proof of ∆ `̀̀opt N :A if N 6= ε).

From this we can derive a strengthened completeness theorem:

Theorem 6 (Completeness of optimal typing). If M is SN then there
exist A+ and Γ such that Γ `̀̀opt M :A+.

This raises the question of why we did not set our theory (say, the charac-
terisation of strongly normalising terms) with optimal typing from the start.
First, the optimal property is not preserved when going into sub-terms: if
Γ `̀̀opt (λx.M)N : A+, then it is not necessarily the case that Γ `̀̀opt N : B+

(it could be a type B that is not of the form B+). Second the optimal property
is not preserved by arbitrary reductions, as the use of subsumption for typing
abstractions is necessary for Subject Reduction to hold.

Example 1.

λx.x((λy.z)x) −→β λx.xz

However, Subject Reduction does hold for ↪−−→:

Theorem 7 (Subject Reduction, optimal case).
Assume Γ `̀̀opt M :B and M ↪−−→N M ′.
If N 6= ε there exist ∆ and A such that ∆ `̀̀ N :A , otherwise let ∆ = ().
There exists Γ ′ such that Γ ′ `̀̀opt M ′ :B with Γ = Γ ′ ∩∆.

Proof. By investigating the proof of Theorem 1, noticing that, in Lemma 2:

– if the typing trees of Γ, x : U `̀̀n1 M : V and ∆ `̀̀n2 N : U do not use
subsumption then neither does that of Γ ∩∆ `̀̀n1+n2 M{x := N} :V ;

– the forgotten types in the typing trees of Γ, x :U `̀̀n1 M :V and ∆ `̀̀n2 N :U
are those in Γ ∩∆ `̀̀n1+n2 M{x := N} :V .

Again, the multiset of forgotten types in the proof of Γ `̀̀opt M :B is that in the
proof of Γ ′ `̀̀opt M ′ :B (union that in the proof of ∆ `̀̀opt N :A if N 6= ε).

Remark 9. Notice the particular case of λI, where βπ reductions and expansions
both preserve optimal typings and multisets of forgotten types, and therefore
they preserve the degree of optimal typing trees.



4.2 Principal-optimal typing trees

We now introduce the notion of principal typing, and for that we first define
the commutativity and associativity of the intersection rule.

Definition 11 (AC of the intersection rule). Let ' be the smallest con-
gruence on typing trees containing the two equations

Γ `̀̀ M :A ∆ `̀̀ M :B

Γ ∩∆ `̀̀ M :A ∩ B
'

∆ `̀̀ M :B Γ `̀̀ M :A

Γ ∩∆ `̀̀ M :A ∩ B

Γ1 `̀̀ M :A1 Γ2 `̀̀ M :A2

Γ1 ∩ Γ2 `̀̀ M :A1 ∩ A2 Γ3 `̀̀ M :A3

Γ1 ∩ Γ2 ∩ Γ3 `̀̀ M :A1 ∩ A2 ∩ A3

' Γ1 `̀̀ M :A1

Γ2 `̀̀ M :A2 Γ3 `̀̀ M :A3

Γ2 ∩ Γ3 `̀̀ M :A2 ∩ A3

Γ1 ∩ Γ2 ∩ Γ3 `̀̀ M :A1 ∩ A2 ∩ A3

Definition 12 (Principal typing).
– A substitution σ mapping the atomic types τ1, . . . , τn to the types F1, . . . , Fn

acts on types, contexts, judgements and typing trees, so we can write Aσ,
Γσ, πσ,. . .

– We write π ≤ π′ if there exists a substitution σ such that π′ ' πσ.
(In that case if π concludes Γ `̀̀ M :A then π′ must conclude Γσ `̀̀ M :Aσ.)

– A typing tree π concluding Γ `̀̀opt M :A+ is said to be principal if for any
typing tree π′ concluding Γ ′ `̀̀opt M :A′+ we have π ≤ π′.

Typing trees produced by the proof of the completeness theorem are principal:

Theorem 8 (Principal typing always exists). If M is SN then there exist
F , Γ and a principal typing tree π concluding Γ `̀̀opt M :F .

Proof. The proof follows that of Theorems 4 and 6: first by induction on the
longest reduction sequence starting from M then by induction on the size of M .
The novelty resides in checking principality:

– If there exists M ′ such that M ↪−−→N M ′, we assume another optimal
typing π of M and use Theorem 7 to get an optimal typing π′ for M ′. By
principality, π′ must be an instance of the principal typing tree we have
recursively constructed for M ′ (and similarly for N if N 6= ε). From this we
deduce that π is an instance of the one we got by Subject Expansion.

– If not then M is of one of these forms:
• M = λx.N or M = [M1,M2], in which case we call upon the induction

hypothesis,
• M = xM1 . . .Mn, in which case the induction hypothesis provide prin-

cipal Γ1 `̀̀opt M1 :A+
1 , . . . , Γn `̀̀opt Mn :A+

n , and principality is ensured
by choosing a fresh atomic type τ in the type A+

1→· · ·→A+
n→τ of x.

Remark 10. The shape of an optimal typing tree is unique but it is not syntax-
directed, so we cannot use this unicity to have an algorithm to directly compute
the typing tree (other than “executing” the term).

One can also notice that in λI, there is a direct link between the measure read
off from a principal optimal typing and its degree.

Lemma 6 (Degree of λI’s normal forms). If π is a principal typing tree
of Γ `̀̀nopt M :A, where M is a λI-term in βπ-normal form, then δ(π) = n. It is
also the number of applications in the term M .

Proof. Again, by inspecting the proof of completeness: every time we type M =
xM1 . . .Mn, using Γ1 `̀̀opt M1 :A+

1 , . . . , Γn `̀̀opt Mn :A+
n , we add as many arrows

by constructing the type A+
1 →· · ·→A+

n→τ as we use new occurrences of rule
(App).



5 Complexity

In this section we derive two complexity results, one for each fragment of our
calculus: Church-Klop’s λI-calculus and the pure λ-calculus.

5.1 Complexity result for Church-Klop’s λI

In this section every term is assumed to be in the λI-fragment of the calculus.
Remember that in that fragment, ↪−−→ε is the same as −→βπ .

We first identify a smaller reduction relation
βsmall
↪−−→ (within λI) that will always

decrease the measure of optimal trees exactly by one.

Definition 13 (Small-reduction). Small-reduction, written
βsmall
↪−−→, is defined

in Fig. 3.

(λx.M) N
−→
Ni

βsmall
↪−−→M{x := N}

−→
Ni

N
βsmall
↪−−→ N ′ x /∈ fv(M)

(λx.[M,x]) N
−→
Ni

βsmall
↪−−→ (λx.[M,x]) N ′

−→
Ni

N
βsmall
↪−−→ N ′

x
−→
Ni N

−→
Mj

βsmall
↪−−→ x

−→
Ni N

′ −→Mj

M
βsmall
↪−−→M ′

λx.M
βsmall
↪−−→ λx.M ′

M
βsmall
↪−−→M ′

[M,N ]
βsmall
↪−−→ [M ′, N ]

N
βsmall
↪−−→ N ′

[M,N ]
βsmall
↪−−→ [M,N ′]

Fig. 3. Small-reduction

Remark 11. If a term can be reduced by −→β and not by −→π then it can be

reduced by
βsmall
↪−−→.5

Lemma 7 (Small reduction decreases the measure by 1).

If Γ `̀̀nopt M :A and M
βsmall
↪−−→M ′ then Γ `̀̀n−1

opt M ′ :A.

Proof. The typing tree is the one produced by the proof of Subject Reduction.

Checking that that tree is also optimal with measure n− 1 is done by induction

on M (or equivalently by induction on the derivation of M
βsmall
↪−−→ M ′ then by

induction on n for those rules that feature a series of n applications).

The optimal property of typing is preserved in inductive steps, i.e. while going

into the term M and until the base case of
βsmall
↪−−→ is found (the first rule):

– In the first rule of
βsmall
↪−−→, notice that only one application is removed only

because we are in the λI-fragment.

– In the second rule, x has a type of the form B−, i.e. of the form C+
1 →

· · ·→C+
s → τ (with s ≥ n), so the typing of N is optimal. We can then use

the induction hypothesis to conclude.

5 We could call
βsmall
↪−−→ a strategy, but it does not necessarily determine a unique redex to

reduce.



– In the third rule, the type of x is a forgotten type, so by the optimal property
is must be of the form A+, and by construction N has the very same type.
This makes its typing optimal and we can then use the induction hypothesis
to conclude.

– In the fourth rule, the typing of M is optimal if that of λx.M is.
– In the fifth rule, the typing of M is optimal if that of [M,N ] is (the two

terms have the same type in the same context).
– In the sixth rule, the type of N is a forgotten type, so by optimality is has

to be of the form A+, so again the typing of N is optimal.

Theorem 9 (Complexity result).
If Γ `̀̀nopt M : A with a principal typing tree of degree n′ then there exists a
βπ-normal form M ′ such that

M−→∗π (−→β −→∗π )n−n
′
M ′

This reduction sequence from M to M ′ is of maximal length.6

Proof. By induction on n. We reduce by
βsmall
↪−−→ and −→π until hitting the

normal form M ′, also typed by Γ `̀̀n
′

opt M ′ :A with some principal typing tree of
measure n′. By Lemma 6, n′ is both the number of applications in M ′ and the
degree of its principal typing tree. That degree is not changed by expansions,
so it is also the degree of the principal typing tree of M which we started with.

5.2 Complexity result for pure λ-calculus

In this section we derive a similar result for the pure λ-calculus. For this we
reduce the problem of pure λ to that of λI (treated above).
In order to make the distinction very clear about what terms are in pure λ and
what terms are in λI, we use two different notational styles: t, u, v, . . . for pure
λ-terms and T,U, V, . . . for λI-terms.
We want to exhibit in pure λ-calculus the longest reduction sequences, and show
that their lengths are exactly those that can be predicted in λI.
For the longest reduction sequences we simply use the perpetual strategy from [vRSSX99],
shown in Fig. 4.

x ∈ fv(t) or t′ is a β-normal form

(λx.t) t′
−→
tj  t{x := t′} −→tj

t′  t′′ x /∈ fv(t)

(λx.t) t′
−→
tj  (λx.t) t′′

−→
tj

t t′

x
−→
tj t
−→pj  x

−→
tj t
′ −→pj

t t′

λx.t λx.t′

Fig. 4. A perpetual reduction strategy for λ

Remark 12.  ⊆−→β

If t is not a β-normal form, then there is a λ-term t′ such that t t′.

Although we do not need it here, it is worth mentioning that  defines a
perpetual strategy w.r.t. β-reduction, i.e. if M is not β-strongly normalising
and M  M ′, then neither is M ′ [vRSSX99]. In that sense it can be seen as
the worst strategy (the least efficient). We show here that it is the worst in
a stronger sense: it maximises the lengths of reduction sequences. For that we
show that the length of a reduction sequence produced by that strategy matches
that of the longest reduction sequence in λI. This requires encoding the syntax
of the pure λ-calculus into λI, as shown in Fig. 5 (from [Len05,Len06]).

6 As Subject reduction implies that any other reduction sequence has a length less than or
equal to n− n′.



i(x) := x i(λx.M) := λx.i(M) if x ∈ fv(M)
i(M N) := i(M) i(N) i(λx.M) := λx.[i(M), x] if x /∈ fv(M)

Fig. 5. Encoding from λ to λI

Lemma 8 ([Len05,Len06]). For any λ-terms t and u,
– fv(i(t)) = fv(t)
– i(t){x := i(u)} = i(t{x := u})

But this encoding will not allow the simulation of  by −→βπ in λI. To allow
the simulation we need to generalise the i-encoding into a larger encoding that
needs to be non-deterministic (i.e. to be a relation rather than a function).

Definition 14 (Relation between λ & λI [Len05,Len06]). The relation
G between λ-terms & λI-terms is given by the rules of Fig. 6 and (non-

deterministically) generalises the i encoding.

((λx.t) t′
−→
tj ) G i((λx.t) t′

−→
tj )

t′ G T ′ x /∈ fv(t)

((λx.t) t′
−→
tj ) G (i(λx.t) T ′

−−→
i(tj))

∀j tj G Tj

(x
−→
tj ) G (x

−→
Tj)

t G T x ∈ fv(T )

λx.t G λx.T

t G T N is a normal form for βπ

t G [T,N ]

Fig. 6. Relation between λ & λI

Lemma 9 ([Len05,Len06]).
1. If t is a β-normal form and t G T , then T is a βπ-normal form.
2. For any λ-term t, t G i(t).

In [Len06,KL07] it is shown that the perpetual strategy can be simulated in λI
through the i-encoding:

Theorem 10 (Strong simulation of  in λI [Len06,KL07]).
If t G T and t t′ then there exists T ′ in λIsuch that t′ G T ′ and T−→+

βπ T
′.

By inspecting the proof of the simulation in [Len06,KL07], one notices that

T−→+
βπ T

′ is in fact T (−→∗π
βsmall
↪−−→ −→∗π )T ′, which decreases the measure

read off an optimal typing tree exactly by one.
Now given Lemma 9, this means that the perpetual strategy from [vRSSX99]
generates, from a given term t, a reduction sequence to its normal form t′ of
the same length as a reduction sequence, in λI, from i(t) to its normal form T ′

(with t′ G T ′). This length can be predicted in the measure read off an optimal
typing tree for i(t); and it so happens that it is the same as the measure read
off an optimal typing tree for t:

Lemma 10 (Preservation of optimal typing by i). Let t be a pure λ-
term. If Γ `̀̀nopt t :A then Γ `̀̀nopt i(t) :A. If the typing is principal then it remains
principal and the degree is not changed.

Proof. By induction on the derivation tree we prove that if Γ `̀̀n t : A with
no subsumption then Γ `̀̀n i(t) : A with no subsumption and with the same
forgotten types.

Theorem 11 (Complexity result for λ).
If Γ `̀̀nopt t : A with a principal typing tree of degree n′ then there exists a β-
normal form t′ such that

t −→n−n′
β t′

This reduction sequence from t to t′ is of maximal length.7

7 As Subject reduction implies that any other reduction sequence has a length less than or
equal to n− n′.



6 Conclusion

We have defined a typing system for non-idempotent intersection types. We
have shown that it characterises strongly normalising terms in a more natural
way than idempotent intersection types do. With some reasonable restrictions
on the derivation tree we have obtained results on the maximum number of
β-reductions in a reduction sequence of a λ-term (with Klop’s extension).

We noticed a posteriori that our technology is similar to that which can be
found in e.g. [KW99,NM04]. One of the concerns of this line of research is
how the process of type inference compares to that of normalisation, in terms
of complexity classes (these two problems being parameterised by the size of
terms and a notion of rank for types).

The present paper shows how such a technology can actually provide an exact
equality, specific to each λ-term and its typing tree, between the number read
off the tree and the length of the longest reduction sequence. Of course this only
emphasises the fact that type inference is as hard as normalisation, but type
inference as a process is not a concern of this paper.

Our non-idempotent intersection type system and our results can be lifted to
other calculi featuring e.g. explicit substitutions, combinators, or algebraic con-
structors and destructors (to handle integers, products, sums,. . . ).

Idempotent intersection types have been used to provide model-based proofs of
strong normalisation for well-known typing systems (simple types, system F,
system Fω,. . . ,). Such model constructions (I-filters [CS07], orthogonality) can
also be done with non-idempotent intersection types with no increased difficulty,
and with the extra advantage that the strong normalisation of terms in the
models is much simpler to prove. This is our next paper.
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