
A Sequent Calculus for Type Theory

Stéphane Lengrand1,2, Roy Dyckhoff1, and James McKinna1

1School of Computer Science, University of St Andrews, Scotland.
2PPS, Université Paris 7, France.
{sl,rd,james}@dcs.st-and.ac.uk

Abstract Based on natural deduction, Pure Type Systems (PTS) can
express a wide range of type theories. In order to express proof-search
in such theories, we introduce the Pure Type Sequent Calculi (PTSC)
by enriching a sequent calculus due to Herbelin, adapted to proof-search
and strongly related to natural deduction.
PTSC are equipped with a normalisation procedure, adapted from Her-
belin’s and defined by local rewrite rules as in Cut-elimination, using
explicit substitutions. It satisfies Subject Reduction and it is confluent.
A PTSC is logically equivalent to its corresponding PTS, and the former
is strongly normalising if and only if the latter is.
We show how the conversion rules can be incorporated inside logical
rules (as in syntax-directed rules for type checking), so that basic proof-
search tactics in type theory are merely the root-first application of our
inference rules.
keywords: Type theory, PTS, sequent calculus, proof-search, strong
normalisation

Introduction

In this paper, we apply to the framework of Pure Type Systems [Bar92] the
insights into the relationship between sequent calculus and natural deduction as
developed in previous papers by Herbelin [Her94,Her95], the second author and
others [DP99b,PD00,DU03].

In sequent calculus the proof-search space is often the cut-free fragment, since
the latter usually satisfies the subformula property. Herbelin’s sequent calculus
LJT has the extra advantage of being closer to natural deduction, in that it is
permutation-free, and it makes proof-search more deterministic than a Gentzen-
style sequent calculus. This makes LJT a natural formalism to organise proof-
search in intuitionistic logic [DP99a], and, its derivations being close to the notion
of uniform proofs, LJT can be used to describe proof-search in pure Prolog and
some of its extensions [MNPS91]. The corresponding term assignment system
also expresses the intimate details of β-normalisation in λ-calculus in a form
closer to abstract (stack-based) machines for reduction (such as Krivine’s [Kri]).

The framework of Pure Type Systems (PTS) [Bar92] exploits and generalises
the Curry-Howard correspondence, and accounts for many systems already ex-
isting, starting with Barendregt’s Cube. Proof assistants based on them, such

as the Coq system [Coq] or the Lego system [LP92], feature interactive proof
construction methods using proof-search tactics. Primitive tactics display an
asymmetry between introduction rules and elimination rules of the underlying
natural deduction calculus: the tactic Intro corresponds to the right-introduction
rule for the Π-type (whether in natural deduction or in sequent calculus), but
the tactics Apply in Coq or Refine in Lego are much closer (in spirit) to the
left-introduction of Π-types (as in sequent calculus) than to elimination rules of
natural deduction.

Although encodings from natural deduction to sequent calculus and vice-
versa have been widely studied [Gen35,Pra65,Zuc74], the representation in se-
quent calculus of type theories is relatively undeveloped compared to the liter-
ature about type theory in natural deduction. An interesting approach to Pure
Type Systems using sequent calculus is in [GR03]. Nevertheless, only the typ-
ing rules are in a sequent calculus style, whereas the syntax is still in a natural
deduction style: in particular, proofs are denoted by λ-terms, the structure of
which no longer matches the structure of proofs.

However, proofs in sequent calculus can be denoted by terms; for instance,
a construction M · l, representing a list of terms with head M and tail l, is
introduced in [Her94,Her95] to denote the left-introduction of implication (in
the sequent calculus LJT):

Γ ` M :A Γ ; B ` l :C

Γ ; A → B ` M ·l :C

This approach is extended to the corner of the Cube with dependent types
and type constructors in [PD00], but types are still built with λ-terms, so the
system extensively uses conversion functions from sequent calculus to natural
deduction and back.

With such term assignment systems, cut-elimination can be done by means
of a rewrite system, cut-free proofs being thus denoted by terms in normal form.
In type theory, not only is the notion of proof-normalisation/cut-elimination
interesting on its own, but it is even necessary to define the notion of typability,
as soon as types depend on terms.

In this paper we enrich Herbelin’s sequent calculus LJT into a collection
of systems called Pure Type Sequent Calculi (PTSC), capturing the traditional
PTS, with the hope to improve the understanding of implementation of proof
systems based on PTS in respect of:

– having a direct analysis of the basic tactics, which could then be moved into
the kernel, rather than requiring a separate type-checking layer for correct-
ness,

– opening the way to improve the basic system with an approach closer to
abstract machines to express reductions, both in type-checking and in exe-
cution (of extracted programs),

– studying extensions to systems involving inductive types/families (such as
the Calculus of Inductive Constructions).

2

Inspired by the fact that, in type theory, implication and universal quan-
tification are just a dependent product, we modify the inference rule above to
obtain the left-introduction rule for a Π-type in a PTSC:

Γ ` M :A Γ ; 〈M/x〉B ` l :C
Π l

Γ ; ΠxA.B ` M ·l :C
We use here explicit substitutions, whose natural typing rule are cuts [BR95].

From our system a version with implicit substitutions can easily be derived, but
this does not allow cuts on an arbitrary formula of a typing environment Γ .
Also, explicit substitutions allow the definition of a normalisation procedure by
local (small-step) rewrite rules in the spirit of Gentzen’s cut-elimination.

Derivability of sequents in a PTSC is denoted by `, while derivability in a PTS
is denoted by `PTS. We establish the logical equivalence between a PTSC and its
corresponding PTS by means of type-preserving encodings. We also prove that
the former is strongly normalising if and only if the latter is. The proof is based
on mutual encodings that allow the normalisation procedure of one formalism
to be simulated by that of the other. Part of the proof also uses a technique by
Bloo and Geuvers [BG99], introduced to prove strong normalisation properties
of an explicit substitution calculus and later used in [DU03].

In order to show the convenience for proof-search of the sequent calculus
approach, we then present a system that is syntax-directed for proof-search, by
incorporating the conversion rules into the typing rules that correspond to term
constructions. This incorporation is similar to the constructive engine of [Hue89],
but different in that proof search takes Γ and A as inputs and produces a (nor-
mal) term M such that Γ ` M :A, while the constructive engine takes Γ and M
as inputs and produces A. Derivability in the proof-search system is denoted by
`PS.

Section 1 presents the syntax of a PTSC and gives the rewrite rules for
normalisation. Section 2 gives the typing system with the parameters specifying
the PTSC, and a few properties are stated such as Subject Reduction. Section 3
establishes the correspondence between a PTSC and its corresponding PTS, from
which we derive confluence. Section 4 presents the strong normalisation result.
Section 5 discusses proof-search in a PTSC.

1 Syntax and operational semantics of a PTSC

The syntax of a PTSC depends on a given set S of sorts, written s, s′, . . ., and a
denumerable set X of variables, written x, y, z, The set T of terms (denoted
M,N,P, . . .) and the set L of lists (denoted l, l′, . . .) are inductively defined as

M, N,A, B ::= ΠxA.B | λxA.M | s | x l | M l | 〈M/x〉N
l, l′ ::= [] | M ·l | l@l′ | 〈M/x〉l

ΠxA.M , λxA.M , and 〈N/x〉M bind x in M , and 〈M/x〉l binds x in l, thus
defining the free variables of terms and lists as well as α-conversion. The set of

3

free variables of a term M (resp. a list l) is denoted FV(M) (resp. FV(l)). We use
Barendregt’s convention that no variable is free and bound in a term in order
to avoid variable capture when reducing it. Let A → B denote ΠxA.B when
x 6∈ FV(B).

This syntax is an extension of Herbelin’s λ [Her95] (with type annotations
on λ-abstractions). Lists are used to represent series of arguments of a function,
the terms x l (resp. M l) representing the application of x (resp. M) to the list
of arguments l. Note that a variable alone is not a term, it has to be applied to a
list, possibly the empty list, denoted []. The list with head M and tail l is denoted
M ·l, with a typing rule corresponding to the left-introduction of Π-types (c.f.
Section 2). Successive applications give rise to the concatenation of lists, denoted
l@l′, and 〈M/x〉N and 〈M/x〉l are explicit substitution operators on terms and
lists, respectively. They will be used in two ways: first, to instantiate a universally
quantified variable, and second, to describe explicitly the interaction between the
constructors in the normalisation process, which is adapted from [DU03] and
shown in Fig. 1. Side-conditions to avoid variable capture can be inferred from
the reduction rules and are ensured by Barendregt’s convention. Confluence of
the system is proved in section 3. More intuition about Herbelin’s calculus, its
syntax and operational semantics is given in [Her95].

B (λxA.M) (N ·l) −→ (〈N/x〉M) l

x

B1 M [] −→ M
B2 (x l) l′ −→ x (l@l′)
B3 (M l) l′ −→ M (l@l′)
A1 (M ·l′)@l −→ M ·(l′@l)
A2 []@l −→ l
A3 (l@l′)@l′′ −→ l@(l′@l′′)

xsubst:

C1 〈P/y〉λxA.M −→ λx〈P/y〉A.〈P/y〉M
C2 〈P/y〉(y l) −→ P 〈P/y〉l
C3 〈P/y〉(x l) −→ x 〈P/y〉l if x 6= y
C4 〈P/y〉(M l) −→ 〈P/y〉M 〈P/y〉l
C5 〈P/y〉ΠxA.B −→ Πx〈P/y〉A.〈P/y〉B
C6 〈P/y〉s −→ s
D1 〈P/y〉[] −→ []
D2 〈P/y〉(M ·l) −→ (〈P/y〉M)·(〈P/y〉l)
D3 〈P/y〉(l@l′) −→ (〈P/y〉l)@(〈P/y〉l′)

Figure 1. Reduction Rules

We denote by −→G the contextual closure of the reduction relation defined
by any system G of rewrite rules (such as B, xsubst, x). The transitive closure of
−→G is denoted by −→+

G , its reflexive and transitive closure is denoted by
−→∗

G , and its symmetric reflexive and transitive closure is denoted by←→∗
G .

4

The set of strongly normalising elements (those from which no infinite −→G -
reduction sequence starts) is SNG. When not specified, G is assumed to be the
system B, x from Fig. 1.

A simple polynomial interpretation shows that system x is terminating. If
we add rule B, then the system fails to be terminating unless we only consider
terms that are typed in a particular typing system.

2 Typing system and properties

Given the set of sorts S, a particular PTSC is specified by a set A ⊆ S2 and a
set R ⊆ S3. We shall see an example in section 4.

Definition 1 (Environments).

– Environments are lists of pairs from X × T denoted (x : A).
– We define the domain of an environment and the application of a substitu-

tion to an environment as follows:

Dom([]) = ∅ Dom(Γ, (x : A)) = Dom(Γ) ∪ {x}
〈P/y〉([]) = [] 〈P/y〉(Γ, (x : A)) = 〈P/y〉Γ, (x : 〈P/y〉A)

– We define the following inclusion relation between environments:
Γ v ∆ if for all (x : A) ∈ Γ , there is (x : B) ∈ ∆ with A←→∗ B

The inference rules in Fig. 2 inductively define the derivability of three kinds
of judgement: some of the form Γ wf, some of the form Γ ` M : A and some
of the form Γ ; B ` l : A. In the latter case, B is said to be in the stoup of
the sequent. Side-conditions are used, such as (s1, s2, s3) ∈ R, x 6∈ Dom(Γ),
A←→∗ B or ∆ v Γ , and we use the abbreviation ∆ v Γ wf for ∆ v Γ and
Γ wf.

Since the substitution of a variable in an environment affects the rest of the
environment (which could depend on the variable), the two rules for explicit
substitutions Cut2 and Cut4 must have a particular shape that is admittedly
complex: thinning (Lemma 3) is built-in by allowing a controlled change of en-
vironment. This may appear artificial, but simpler versions that we have tried
failed the thinning property. More generally, typing rules for explicit substitu-
tions in type theory are known to be a tricky issue (see for instance [Blo01]),
often leading to the failure of subject reduction (Theorem 1). The rules here are
sound in that respect, but more elegant alternatives are still to be investigated,
possibly by enriching the structure of environments as in [Blo01].

The case analysis for C ′ in the rule Cut4 is only necessary for Lemma 1.2 to
hold in the presence of top sorts (untyped sorts), and is avoided in [Blo01] by
not using explicit substitutions for types in sequents. Here we were appealed by
the uniformity of using them everywhere, the use of implicit substitutions for C ′

and the stoup of the third premiss of Π l being only a minor variant.
There are three conversion rules convr, conv′r, and convl in order to deal with

the two kinds of judgements and, for one of them, convert the type in the stoup.
The lemmas of this section are proved by induction on typing derivations:

5

empty
[] wf

Γ ` A :s x /∈ Dom(Γ)
extend

Γ, (x :A) wf

Γ ` A :s
axiom

Γ ; A ` [] :A

Γ ` ΠxA.B :s Γ ` M :A Γ ; 〈M/x〉B ` l :C
Π l

Γ ; ΠxA.B ` M ·l :C

Γ ; C ` l :A Γ ` B :s A←→∗ B
conv′r

Γ ; C ` l :B

Γ ; A ` l :C Γ ` B :s A←→∗ B
convl

Γ ; B ` l :C

Γ ; C ` l′ :A Γ ; A ` l :B
Cut1

Γ ; C ` l′@l :B

Γ ` P :A Γ, (x :A), ∆; B ` l :C Γ, 〈P/x〉∆ v ∆′ wf
Cut2

∆′; 〈P/x〉B ` 〈P/x〉l :〈P/x〉C

Γ wf (s, s′) ∈ A
sorted

Γ ` s :s′

Γ ` A :s1 Γ, (x :A) ` B :s2 (s1, s2, s3) ∈ R
Πwf

Γ ` ΠxA.B :s3

Γ ` ΠxA.B :s Γ, (x :A) ` M :B
Πr

Γ ` λxA.M :ΠxA.B

Γ ; A ` l :B (x :A) ∈ Γ
Selectx

Γ ` x l :B

Γ ` M :A Γ ` B :s A←→∗ B
convr

Γ ` M :B

Γ ` M :A Γ ; A ` l :B
Cut3

Γ ` M l :B

Γ ` P :A Γ, (x :A), ∆ ` M :C Γ, 〈P/x〉∆ v ∆′ wf
Cut4

∆′ ` 〈P/x〉M :C′

where either (C′ = C ∈ S) or C 6∈ S and C′ = 〈P/x〉C

Figure 2. Typing rules of a PTSC

6

Lemma 1 (Properties of typing judgements). If Γ ` M :A
(resp. Γ ; B ` l : C) then FV(M) ⊆ Dom(Γ) (resp. FV(l) ⊆ Dom(Γ)), and the
following judgements can be derived with strictly smaller typing derivations:

1. Γ wf
2. Γ ` A :s for some s ∈ S, or A ∈ S

(resp. Γ ` B :s and Γ ` C :s′ for some s, s′ ∈ S)
Corollary 1 (Properties of well-formed environments).

1. If Γ, x : A, ∆ wf then Γ ` A :s for some s ∈ S with x 6∈ Dom(Γ) ∪ Dom(∆)
and FV(A) ⊆ Dom(Γ) (and in particular x 6∈ FV(A))

2. If Γ,∆ wf then Γ wf.

Lemma 2 (Weakening). Suppose Γ, Γ ′ wf and Dom(Γ ′) ∩ Dom(∆) = ∅.
1. If Γ,∆ ` M :B then Γ, Γ ′,∆ ` M :B.
2. If Γ,∆;C ` l :B, then Γ, Γ ′,∆; C ` l :B.
3. If Γ,∆ wf, then Γ, Γ ′, ∆ wf.

We can also strengthen the weakening property into the thinning property by in-
duction on the typing derivation. This allows to weaken the environment, change
its order, and convert the types inside, as long as it remains well-formed:

Lemma 3 (Thinning). Suppose Γ v Γ ′ wf.

1. If Γ ` M :B then Γ ′ ` M :B.
2. If Γ ;C ` l :B, then Γ ′;C ` l :B.

Using all of the results above, Subject Reduction can be proved (see [LDM]).

Theorem 1 (Subject Reduction in a PTSC).

1. If Γ ` M :A and M −→ M ′, then Γ ` M ′ :A
2. If Γ ;A ` l :B and l −→ l′, then Γ ;A ` l′ :B

3 Correspondence with Pure Type Systems

There is a logical correspondence between a PTSC given by the sets S, A and
R and the PTS given by the same sets.

We briefly recall the syntax and semantics of the PTS. The terms have the
following syntax:

t, u, v, T, U, V, . . . ::= x | s | ΠxT .t | λxT .t | t u

which is equipped with the β-reduction rule (λxv.t) u −→β t{x = u}, in which
the substitution is implicit, i.e. is a meta-operation.

The terms are typed by the typing rules in Fig. 3, which depend on the sets S,
A and R. PTS are confluent and satisfy subject reduction and thinning [Bar92].

7

[] wf

Γ `PTS T :s x /∈ Dom(Γ)

Γ, (x : T) wf

Γ wf (x : T) ∈ Γ

Γ `PTS x :T

Γ wf (s, s′) ∈ A
Γ `PTS s :s′

Γ `PTS U :s1 Γ, (x : U) `PTS T :s2 (s1, s2, s3) ∈ R
Γ `PTS ΠxU .T :s3

Γ `PTS ΠxU .V :s Γ, (x : U) `PTS t :V

Γ `PTS λxU .t :ΠxU .V

Γ `PTS t :ΠxT .U Γ `PTS u :T

Γ `PTS t u :U{x = u}

Γ `PTS t :U Γ `PTS V :s U←→∗
β V

Γ `PTS t :V

Figure 3. Typing rules of a PTS

In order to encode the syntax of a PTS into that of a PTSC, it is convenient
to re-express the syntax of a PTS with a grammar closer to that of a PTSC as
follows:

w ::= s | ΠxT .U | λxT .t

t, u, v, T, U, V, . . . ::= w | x
−→
t | w u

−→
t

where −→t represents a list of “t-terms” of arbitrary length. The grammar is sound
and complete with respect to the usual one presented at the begining of the
section, and it has the advantage of isolating redexes in one term construction
in a way similar to a PTSC.

Given in the left-hand side of Fig. 4, the encoding into the corresponding
PTSC, is threefold: hw applies to “w-terms”, h applies to “t-terms”, and hl to lists
of “t-terms”. The right-hand side of Fig. 4 shows the encoding from a PTSC to
a PTS. We prove the following theorem by induction on t and M :

Theorem 2 (Properties of the encodings).

1. h(t) is always an x-normal form, and 〈h(t)/x〉h(u)−→∗
x h(u{x = t}).

2. k(h(t)) = t
3. If M is an x-normal form, then M = h(k(M))
4. M−→∗

x h(k(M))
5. If t −→β u then h(t)−→+ h(u)
6. If M −→ N then k(M)−→∗

β k(N)

Now we use Theorem 2 to prove the confluence of PTSC and the equivalence of
the equational theories.

Corollary 2 (Confluence). −→x and −→ are confluent.

8

hw(s) = s
hw(Πxv.v′) = Πxh(v).h(v′)
hw(λxv.t) = λxh(v).h(t)
h(w) = hw(w)
h(x

−→
t) = x hl(

−→
t)

h(w u
−→
t) = hw(w) (h(u)·hl(

−→
t))

hl(
−→∅) = []

hl(−−−−−−→u1 . . . ui) = h(u1)·hl(−−−−−−→u2 . . . ui)

From a PTS to a PTSC

k(ΠxA.B) = Πxk(A).k(B)
k(λxA.M) = λxk(A).k(M)
k(s) = s
k(x l) = kz(l){z = x} z fresh
k(M l) = kz(l){z = k(M)} z fresh
k(〈P/x〉M) = k(M){x = k(P)}
ky([]) = y
ky(M ·l) = kz(l){z = y k(M)} z fresh
ky(l@l′) = kz(l′){z = ky(l)} z fresh
ky(〈P/x〉l) = ky(l){x = k(P)}

From a PTSC to a PTS

Figure 4. Mutual encodings between a PTS and a PTSC

Proof: We use the technique of simulation: consider two reduction
sequences starting from a term in a PTSC. They can be simulated through k
by β-reductions, and since a PTS is confluent, we can close the diagram. Now
the lower part of the diagram can be simulated through h back in the PTSC,
which closes the diagram there as well. The diagrams can be found in [LDM]. 2

Corollary 3 (Equational theories).
t←→∗

β u if and only if h(t)←→∗ h(u)
M←→∗ N if and only if k(M)←→∗

β k(N)

Regarding typing, we first define the following operations on environments:

h([]) = [] k([]) = []
h(Γ, (x : v)) = h(Γ), (x : h(v)) k(Γ, (x : A)) = k(Γ), (x : k(A))

Preservation of typing is proved by induction on the typing derivations:

Theorem 3 (Preservation of typing 1).

1. If Γ `PTS t :T then h(Γ) ` h(t) :h(T)
2. If (Γ `PTS ti :Ti{x1 = t1} . . . {xi−1 = ti−1})i=1...n

and h(Γ) ` h(Πx1
T1Πxn

Tn .T) :s
then h(Γ); h(Πx1

T1Πxn
Tn .T) ` hl(t1 . . . tn) :h(T{x1 = t1} . . . {xn = tn})

3. If Γ wf then h(Γ) wf

Theorem 4 (Preservation of typing 2).

1. If Γ ` M :A then k(Γ) `PTS k(M) :k(A)
2. If Γ ;B ` l :A then k(Γ), y : k(B) `PTS ky(l) :k(A) for a fresh y
3. If Γ wf then k(Γ) wf

9

4 Equivalence of Strong Normalisation

Theorem 5. A PTSC given by the sets S, A, and R is strongly normalising if
and only if the PTS given by the same sets is.

Proof: Assume that the PTSC is strongly normalising, and let us consider
a well-typed t of the corresponding PTS, i.e. Γ `PTS t : T for some Γ, T . By
Theorem 3, h(Γ) ` h(t) : h(T) so h(t) ∈ SN. Now by Theorem 2, any reduction
sequence starting from t maps to a reduction sequence of at least the same length
starting from h(t), but those are finite.

Now assume that the PTS is strongly normalising and that Γ ` M : A
in the corresponding PTSC. We shall now apply Bloo and Geuvers’ technique
from [BG99]. By subject reduction, any N such that M−→∗ N satisfies Γ ` N :A
and any sub-term P (resp. sub-list l) of any such N is also typable. By Theorem 4,
for any such P (resp. l), k(P) (resp. ky(l)) is typable in the PTS, so it is strongly
normalising by assumption and we denote by]k(P) (resp.]ky(l)) the length of
the longest β-reduction sequence reducing it.

We now encode any such P and l into a first-order syntax given by the
following ordered infinite signature:

? ≺ i(_) ≺ ii(_,_) ≺ cutn(_,_) ≺ subn(_,_)

for all integers n. Moreover, we set subn(_,_) ≺ cutm(_,_) if n < m. The
order is well-founded, and the lexicographic path ordering (lpo) that it induces
on the first-order terms is also well-founded (definitions and results can be found
in [KL80]). The encoding is given in Fig 5. An induction on terms shows that
reduction decreases the lpo. 2

T (s) = ?
T (λxA.M) = T (ΠxA.M) = ii(T (A), T (M))
T (x l) = i(T (l))

T (M l) = cut]k(M l)(T (M), T (l))

T (〈M/x〉N) = sub]k(〈M/x〉N)(T (M), T (N))
T ([]) = ?
T (M ·l) = ii(T (M), T (l))
T (l@l′) = ii(T (l), T (l′))
T (〈M/x〉l) = sub]ky(〈M/x〉l)(T (M), T (l)) where y is fresh

Figure 5. First-order encoding

Examples of strongly normalising PTS are the systems of Barendregt’s Cube,
including the Calculus of Constructions [CH88] on which the proof-assistant Coq
is based [Coq] (but it also uses inductive types and local definitions), for all of
which we now have a corresponding PTSC that can be used for proof-search.

10

5 Proof-search

In contrast to propositional logic where cut is an admissible rule of sequent
calculus, terms in normal form may need a cut-rule in their typing derivation.
For instance in the rule Π l, a type which is not normalised (〈M/x〉B) must
appear in the stoup of the third premiss, so that cuts might be needed to type
it inside the derivation. However if we modify Π l by now using an implicit
substitution B{x = M}, normal forms can then be typed not using Cut2 and
Cut4, but still using Cut1 and Cut3.

In this section we present a system for proof-search that avoids all cuts, is
complete and is sound provided that types are checked independently. In proof-
search, the inputs are an environment Γ and a type A, henceforth called goal,
and the output is a term M such that Γ ` M :A. When we look for a list, the
type in the stoup is also an input. The inference rules now need to be directed by
the shape of the goal (or of the type in the stoup), and the proof-search system
(PS, for short) can be obtained by optimising the use of the conversion rules as
shown in Fig. 6. The incorporation of the conversion rules into the other rules is
similar to that of the constructive engine in natural deduction [Hue89,JMP94];
however the latter was designed for type synthesis, for which the inputs and
outputs are not the same as in proof-search, as mentioned in the introduction.

A←→∗ A′

axiomPS
Γ ; A `PS [] : A′

D−→∗ ΠxA.B Γ `PS M : A Γ ; 〈M/x〉B `PS l : C
Π lPS

Γ ; D `PS M ·l : C

C−→∗ s3 (s1, s2, s3) ∈ R Γ `PS A : s1 Γ, (x : A) `PS B : s2

ΠwfPS
Γ `PS ΠxA.B : C

C−→∗ s′ (s, s′) ∈ A
sortedPS

Γ `PS s : C

(x : A) ∈ Γ Γ ; A `PS l : B
Selectx

Γ `PS x l : B

C−→∗ ΠxA.B A is a normal form Γ, (x : A) `PS M : B
ΠrPS

Γ `PS λxA.M : C

Figure 6. Rules for Proof-search

Notice than in PS there are no cut-rules. Indeed, even though in the original
typing system cuts are required in typing derivations of normal forms, they only
occur to check that types are well-typed themsleves. Here we removed those
type-checking constraints, relaxing the system, because types are the input of
proof-search, and they would be checked before starting the search. PS is sound
and complete in the following sense:

11

Theorem 6.

1. (Soundness) Provided Γ ` A :s, if Γ `PS M : A then Γ ` M :A and M is a
normal form.

2. (Completeness) If Γ ` M :A and M is a normal form, then Γ `PS M : A.

Proof: Both proofs are done by induction on typing derivations, with similar
statements for lists. For Soundness, the type-checking proviso is verified every
time we need the induction hypothesis. For Completeness, the following lemma
is required (and also proved inductively): assuming A←→∗ A′ and B←→∗ B′, if
Γ `PS M : A then Γ `PS M : A′, and if Γ ; B `PS l : A then Γ ; B′ `PS l : A′. 2

Note that neither part of the theorem relies on the unsolved problem of ex-
pansion postponement [JMP94,Pol98]. Indeed, PS does not check types. When
recovering a full derivation tree from a PS one by the soundness theorem, ex-
pansions and cuts might be introduced at any point, coming from the derivation
of the type-checking proviso.

The condition that A is in normal form in rule ΠrPS is not problematic for
completeness: whether or not the PTSC is strongly normalising, such a normal
form is given as the type annotation of the λ-abstraction, in the term M of
the hypothesis of completeness. On the other hand, the condition allows the
soundness theorem to state that all terms typable in system PS are normal forms.
Without it, terms would be in normal forms but for their type annotations in
λ-abstractions.

Basic proof-search can be done in the proof-search system simply by reducing
the goal, or the type in the stoup, and then, depending on its shape, trying to
apply one of the inference rules bottom-up.

There are three points of non-determinism in proof-search:

– The choice of a variable x for applying rule Selectx, knowing only Γ and B
(this corresponds in natural deduction to the choice of the head-variable of
the proof-term). Not every variable of the environment will work, since the
type in the stoup will eventually have to be unified with the goal, so we still
need back-tracking.

– When the goal reduces to a Π-type, there is an overlap between rules ΠrPS
and Selectx; similarly, when the type in the stoup reduces to a Π-type, there
is an overlap between rules Π lPS and axiomPS. Both overlaps disappear when
Selectx is restricted to the case when the goal does not reduce to a Π-type
(and sequents with stoups never have a goal reducing to a Π-type). This
corresponds to looking only for η-long normal forms in natural deduction.
This restriction also brings the derivations in LJT (and in our PTSC) closer
to the notion of uniform proofs. Further work includes the addition of η to
the notion of conversion in PTSC.

– When the goal reduces to a sort s, three rules can be applied (in contrast to
the first two points, this source of non-determinism does not already appear
in the propositional case).

12

The non-determinism is already present in natural deduction, but the sequent
calculus version conveniently identifies where it occurs exactly.

We now give the example of a derivation in PS. We consider the PTSC equiv-
alent to system F , i.e. the one given by the sets:
S = {Type,Kind}, A = {(Type,Kind)}, and R = {(Type,Type), (Kind,Type)}.

For brevity we omit the types on λ-abstractions, we abbreviate x [] as x
for any variable x and simplify 〈N/x〉P as P when x 6∈ FV(P). We also write
A ∧ B for ΠQType.(A → (B → Q)) → Q. Trying to find a term M such that
A : Type, B : Type ` M : (A ∧B) → (B ∧A), we get the PS-derivation below:

πB

Γ `PS NB : B

πA

Γ `PS NA : A
axiomPS

Γ ; Q `PS [] : Q
Π lPS

Γ ; A → Q `PS NA ·[] : Q
Π lPS

Γ ;B → (A → Q) `PS NB ·NA ·[] : Q
Selecty

Γ `PS y NB ·NA ·[] : Q
== ΠrPS
A : Type, B : Type `PS λx.λQ.λy.y NB ·NA ·[] : (A ∧B) → (B ∧A)

where Γ = A : Type, B : Type, x : A ∧ B,Q : Type, y : B → (A → Q), and πA is
the following derivation (NA = x A·(λx′ .λy′ .x′)·[]):

Γ ;Type `PS [] : Type

Γ `PS A : Type

Γ, x′ : A, y′ : B;A `PS [] : A

Γ, x′ : A, y′ : B `PS x′ : A
==========================
Γ `PS λx′ .λy′ .x′ : A → (B → A) Γ ; A `PS [] : A

Γ ; 〈A/Q〉(A → (B → Q)) → Q `PS (λx′ .λy′ .x′)·[] : A

Γ ; A ∧B `PS A·(λx′ .λy′ .x′)·[] : A

Γ `PS x A·(λx′ .λy′ .x′)·[] : A

and πB is the derivation similar to πA (NB = x B ·(λx′ .λy′ .y′)·[]) with conclusion
Γ `PS x B ·(λx′ .λy′ .y′)·[] : B.

This example shows how the non-determism of proof-search is sometimes
quite constrained by the need to eventually unify the type in the stoup with the
goal. For instance in πA (resp. πB), the resolution of Γ ` Q :Type by A (resp.
B) could be inferred from the unification in the right-hand side branch.

In Coq [Coq], the proof-search tactic apply x can be decomposed into the
bottom-up application of Selectx followed by a series of bottom-up applications
of Π lPS and finally axiomPS, but it either delays the resolution of sub-goals or
automatically solves them from the unification attempt, often avoiding obvious
back-tracking.

In order to mimic even more closely this basic tactic, delaying the resolution
of sub-goals can be done by using meta-variables, to be instantiated later with
the help of the unification constraint. By extending PTSC with meta-variables,
we can go further and express a sound and complete algorithm for type inhabi-
tant enumeration (similar to Dowek’s [Dow93] and Muñoz’s [Mun01] in natural

13

deduction) simply as the bottom-up construction of derivation trees in sequent
calculus.

Proof-search tactics in natural deduction simply depart from the simple
bottom-up application of the typing rules, so that their readability and usage
would be made more complex. Just as in propositional logic [DP99a], sequent
calculi can be a useful theoretical approach to study and design those tactics, in
the hope to improve semi-automated reasoning in proof-assistants such as Coq.

Conclusion and Further Work

We have defined a parameterised formalism that gives a sequent calculus for
each PTS. It comprises a syntax, a rewrite system and typing rules. In constrast
to previous work, the syntax of both types and proof-terms of PTSC is in a
sequent-calculus style, thus avoiding the use of implicit or explicit conversions
to natural deduction [GR03,PD00].

A strong correspondence with natural deduction has been established (re-
garding both the logic and the strong normalisation), and we derive from it the
confluence of each PTSC. We can give as examples the corners of Barendregt’s
Cube, for which we now have a elegant theoretical framework for proof-search:
We have shown how to deal with conversion rules so that basic proof-search
tactics are simply the root-first application of the typing rules.

Further work includes studying direct proofs of strong normalisation (such
as Kikuchi’s for propositional logic [Kik04]), and dealing with inductive types
such as those used in Coq. Their specific proof-search tactics should also clearly
appear in sequent calculus. Finally, the latter is also more elegant than natural
deduction to express classical logic, so it would be interesting to build classical
Pure Type Sequent Calculi.

References

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabby, and T. S. E. Maibaum, editors, Hand. Log. Comput. Sci., volume 2,
chapter 2, pages 117–309. Oxford University Press, 1992.

[BG99] R. Bloo and H. Geuvers. Explicit substitution: on the edge of strong nor-
malization. Theoret. Comput. Sci., 211(1-2):375–395, 1999.

[Blo01] R. Bloo. Pure type systems with explicit substitution. Math. Structures in
Comput. Sci., 11(1):3–19, 2001.

[BR95] R. Bloo and K. H. Rose. Preservation of strong normalisation in named
lambda calculi with explicit substitution and garbage collection. In Com-
puting Science in the Netherlands (CSN ’95), pages 62–72, Koninklijke Jaar-
beurs, Utrecht, 1995.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Inf. Comput.,
76(2–3):95–120, 1988.

[Coq] The Coq Proof Assistant. http://coq.inria.fr/.
[Dow93] G. Dowek. A complete proof synthesis method for type systems of the cube.

J. Logic Comput., 1993.

14

[DP99a] R. Dyckhoff and L. Pinto. Proof search in constructive logics. In Sets and
proofs (Leeds, 1997), pages 53–65. Cambridge Univ. Press, Cambridge, 1999.

[DP99b] R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent
calculi. Theoret. Comput. Sci., 212(1–2):141–155, 1999.

[DU03] R. Dyckhoff and C. Urban. Strong normalization of Herbelin’s explicit
substitution calculus with substitution propagation. J. Logic Comput.,
13(5):689–706, 2003.

[Gen35] G. Gentzen. Investigations into logical deduction. In Gentzen collected
works, pages 68–131. Ed M. E. Szabo, North Holland, (1969), 1935.

[GR03] F. Gutiérrez and B. Ruiz. Cut elimination in a class of sequent calculi for
pure type systems. In R. de Queiroz, E. Pimentel, and L. Figueiredo, editors,
ENTCS, volume 84. Elsevier, 2003.

[Her94] H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style se-
quent calculus structure. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, 8th Int. Work., CSL ’94, volume 933 of LNCS, pages 61–75.
Springer, 1994.

[Her95] H. Herbelin. Séquents qu’on calcule. PhD thesis, Université Paris 7, 1995.
[Hue89] G. Huet. The constructive engine. World Scientific Publishing, Commemo-

rative Volume for Gift Siromoney, 1989.
[Kik04] K. Kikuchi. A direct proof of strong normalization for an extended

Herbelin’s calculus. In Y. Kameyama and P. J. Stuckey, editors, Proc. of the
7th Int. Symp. on Functional and Logic Programming (FLOPS’04), volume
2998 of LNCS, pages 244–259. Springer-Verlag, 2004.

[KL80] S. Kamin and J.-J. Lévy. Attempts for generalizing the recursive path or-
derings. Handwritten paper, University of Illinois, 1980.

[Kri] J.-L. Krivine. Un interpréteur du λ-calcul. available at
http://www.pps.jussieu.fr/˜krivine/.

[LDM] S. Lengrand, R. Dyckhoff, and J. McKinna. A sequent
calculus for type theory - longer version. available at
http://www.pps.jussieu.fr/˜lengrand/Work/Reports/Proofs.ps.

[LP92] Z. Luo and R. Pollack. LEGO Proof Development System: User’s Manual.
Technical Report ECS-LFCS-92-211, School of Informatics, University of
Edinburgh, 1992.

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. Ann. Pure Appl Logic, 51:125–157, 1991.

[Mun01] C. Munoz. Proof-term synthesis on dependent-type systems via explicit
substitutions. Theor. Comput. Sci., 266(1-2):407–440, 2001.

[PD00] L. Pinto and R. Dyckhoff. Sequent calculi for the normal terms of the ΛΠ
and ΛΠΣ calculi. In D. Galmiche, editor, ENTCS, volume 17. Elsevier,
2000.

[Pol98] E. Poll. Expansion Postponement for Normalising Pure Type Systems. J.
Funct. Programming, 8(1):89–96, 1998.

[Pra65] D. Prawitz. Natural deduction. a proof-theoretical study. In Acta Univer-
sitatis Stockholmiensis, volume 3. Almqvist & Wiksell, 1965.

[JMP94] B. van Benthem Jutting, J. McKinna, and R. Pollack. Checking Algorithms
for Pure Type Systems. In H. Barendregt and T. Nipkow, editors, Types for
Proofs and Programs, volume 806 of LNCS. Springer-Verlag, 1994.

[Zuc74] J. Zucker. The correspondence between cut-elimination and normalization.
Annals of Mathematical Logic, 7:1–156, 1974.

15

