
Proofs in Conflict-Driven Theory Combination∗

Maria Paola Bonacina
Dipartimento di Informatica

Università degli Studi di Verona
Verona, Italy

mariapaola.bonacina@univr.it

Stéphane Graham-Lengrand
CNRS - INRIA - École Polytechnique

Palaiseau, France
SRI International, Menlo Park, USA
lengrand@lix.polytechnique.fr

Natarajan Shankar
SRI International
Menlo Park, USA

shankar@csl.sri.com

Abstract
Search-based satisfiability procedures try to construct a mo-
del of the input formula by simultaneously proposing candi-
date models and deriving new formulæ implied by the input.
When the formulæ are satisfiable, these procedures generate
a model as a witness. Dually, it is desirable to have a proof
when the formulæ are unsatisfiable. Conflict-driven proce-
dures perform nontrivial inferences only when resolving
conflicts between the formulæ and assignments representing
the candidate model. CDSAT (Conflict-Driven SATisfiability)
is a method for conflict-driven reasoning in combinations of
theories. It combines solvers for individual theories as the-
ory modules within a solver for the union of the theories. In
this paper we endow CDSAT with lemma learning and proof
generation. For the latter, we present two techniques. The
first one produces proof objects in memory: it assumes that
all theory modules produce proof objects and it accommo-
dates multiple proof formats. The second technique adapts
the LCF approach to proofs from interactive theorem proving
to conflict-driven SMT-solving and theory combination, by
defining a small kernel of reasoning primitives that guaran-
tees that CDSAT proofs are correct by construction.

CCSConcepts •Theory of computation→Automated
reasoning;

Keywords Proof generation, Lemma learning, Theory com-
bination, Satisfiability modulo assignment

∗Part of this research was conducted while the first author was an inter-
national observer at the SRI International Computer Science Laboratory,
whose support is greatly appreciated. This research was funded in part
by the National Science Foundation with grants CCF-1528153 and CNS-
0917375, by DARPA under agreement number FA8750-16-C-0043, and by the
Università degli Studi di Verona with grant “Ricerca di base 2015.” The views
and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA, NSF, or the U.S. Government.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00
https://doi.org/10.1145/3167096

ACM Reference Format:
Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natara-
jan Shankar. 2018. Proofs in Conflict-Driven Theory Combination.
In Proceedings of 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP’18). ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3167096

1 Introduction
The satisfiability problem is one of checking if a given for-
mula has a model. Propositional satisfiability (SAT) is the
problem of finding an assignment of truth values to vari-
ables that satisfies the input propositional formula, typi-
cally given as a set of clauses. Many SAT solvers employ
a conflict-driven search strategy, known as Conflict-Driven
Clause Learning (CDCL), in which the solver extends a par-
tial assignment until it satisfies the formula, or a conflict
arises because the assignment falsifies the formula. Nontriv-
ial inference steps are performed in response to a conflict
to roll back the partial assignment and direct the search
elsewhere [27]. This conflict-driven style inspired the de-
sign of several solvers for quantifier-free fragments of arith-
metic [12, 19, 23–25, 29, 35, 36]. These conflict-driven theory
solvers decide the satisfiability of sets of literals in the theory.
The problem of deciding the satisfiability of sets of clauses in
a theory is known as Satisfiability Modulo a Theory (SMT).
MCSAT, forModel Constructing SATisfiability, is an approach
to conflict-driven SMT [14]. It integrates a CDCL-based SAT-
solver and a conflict-driven theory solver equipped with an
inference system to detect and explain conflicts in the theory.
In MCSAT, both Boolean and first-order variables are given
assignments in a trail representing the candidate model as
a partial assignment. First-order variables are assigned con-
stant symbols representing individuals of the corresponding
sort in a model’s domain. For example, integer variables are
assigned integer constants, and bit vector variables are as-
signed constant bit vectors. MCSAT allows the introduction
of new (i.e., non-input) terms in lemmas as long as these
terms are drawn from a finite basis. The MCSAT approach
has been shown to be quite versatile and efficient [21, 22, 38].
Most problems involve more than one theory, and MC-

SAT is not a combination calculus in general. In prior work,
we designed a method called Conflict-Driven SATisfiability
(CDSAT) to solve in a conflict-driven manner satisfiability
problems in a generic combination of disjoint theories [6, 7].
CDSAT combines multiple theory solvers, all or some of

1

https://doi.org/10.1145/3167096
https://doi.org/10.1145/3167096


CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

which are conflict-driven, into a conflict-driven solver for
the union of the theories. More precisely, CDSAT combines
theory inference systems, called theory modules: the only rele-
vant component of a conflict-driven theory solver is its in-
ference system, since the conflict-driven search is performed
by CDSAT for all theories. A non-conflict-driven solver is
abstracted into a theory module whose only inference rule
invokes the solver to detect unsatisfiability in the theory.
In CDSAT, a common trail contains assignments to both

Boolean and first-order terms. Some assignments are deci-
sions, that is, guesses, and others are propagated because
they are entailed by the formula and prior assignments in the
trail. Theory modules work on this trail to detect conflicts
with any theory-specific input formula. Conflict resolution
rules work to roll back the trail to a prior decision level. The
CDSAT transition system is sound, terminating, and com-
plete, relative to the theory modules and a global finite basis
for all theories. CDSAT generalizes CDCL, MCSAT, and the
equality sharing (Nelson-Oppen) method for combination
of theories [26, 31]: CDSAT reduces to CDCL, if proposi-
tional logic is the only theory, to MCSAT, if the combination
features propositional logic and another theory with conflict-
driven solver, and to equality sharing, if no theory in the
combination has a conflict-driven solver [7].

In this paper we extend CDSAT with lemma learning (Sec-
tion 3) and proof generation (Sections 4 and 5). Lemmas are
formulæ entailed by the input formula. Learning lemmas
from conflicts is a key feature of conflict-driven reasoning
engines, because conflict-driven lemmatization immediately
thwarts any attempt to repeat a failed search path (e.g., [27]).
Proof generating inference systems [33] are important be-
cause for many applications a yes/no answer is not enough,
and solvers are expected to generate either a satisfying as-
signment or a proof of unsatisfiability. For instance, proofs
are useful for extracting interpolants (see [8] for a survey)
to refine abstractions [20] or generate invariants [10].

CDCL-based SAT solvers generate proofs by propositional
resolution [39]. Reasoners based on the DPLL(T ) paradigm
[2, 9, 26, 32] generate proofs by propositional resolution with
proofs of theory lemmas plugged in as external subproofs (see
[8], Section 2.4). This structure reflects a hierarchy where
propositional logic is at the center and the theories are satel-
lites. In DPLL(T ) only propositional reasoning is conflict-
driven, and non-conflict-driven theory solvers are integrated
as black-boxes, so that their proofs also are black-boxes. In
CDSAT, propositional logic and the SAT-solver lose their
centrality as the sole conflict-driven component. Although
propositional logic retains a special role, as all propagated
assignments are Boolean, propositional logic is regarded as
one of the theories, and all theory modules contribute di-
rectly to the proof, including new terms that may appear
on the trail whence in the proof. For all these reasons, CD-
SAT proofs do not fit in the known mold of DPLL(T ) proofs,

and their generation requires machinery that goes beyond
propositional resolution plus theory lemmas.

We present two approaches to proof generation in CDSAT.
The first one is a proof-carrying CDSAT transition system
(Section 4), where proof terms record the information needed
to generate proofs. We describe different ways to turn proof
terms into proofs (Section 5), including producing resolution
proofs with theory lemmas. The proof objects produced by
proof-carrying CDSAT can be directly checked by a verified
checker [34] or exported to a proof format that can be verified
by proof checkers. Thus, proof-carrying CDSAT can slot into
pipelines from proof-search to proof-checking [1, 3, 4], where
a minimal amount of proof information (e.g., an unsatisfiable
core) might be sufficient for a theorem prover to regenerate
a proof in its own format. The second approach consists
of specifying a small kernel of primitives in LCF style [17,
30], as already explored in the Psyche prover [18], so that
building proof objects inmemory can be avoided. If CDSAT is
implemented on top of this kernel, the LCF type abstraction
ensures that an unsat answer is correct by construction, and
CDSAT can be used as a trusted external oracle for interactive
proof tools.

2 Background on CDSAT
CDSAT is an engine to determine the satisfiability of a quan-
tifier-free formula modulo a combination of theories (SMT)
and possibly modulo an initial assignment of values to some
first-order variables or terms that appear in the formula. We
call this generalization of SMT satisfiability modulo assign-
ment (SMA). CDSAT combines in a conflict-driven manner
inference systems, called theory modules, for component the-
ories T1, . . . ,Tn . The component theories are required to be
disjoint so that their signatures Σ1, . . . , Σn share neither pred-
icate nor function symbols, except equality, which is present
in all signatures and for all sorts. In addition to equality, the
theories typically share sorts and constant symbols.
Let T∞ be the union of T1, . . . ,Tn . If Σk=(Sk , Fk ), where

Sk is the set of sorts and Fk is the set of symbols, for all k ,
1 ≤ k ≤ n, the signature of T∞ is given by Σ∞=(S∞, F∞), with
S∞=

⋃n
k=1 Sk and F∞=

⋃n
k=1 Fk . For most problems, one of

the component theories is propositional logic, or the theory
of Booleans, with logical connectives such as ∧, ∨, and ¬ as
function symbols. For deciding the satisfiability of a set of
literals in one or more convex theories (see [8] Definition
14, from [31] page 252), propositional logic is not needed as
a component theory. If there is a non-convex theory (e.g.,
arrays), disjunction and therefore propositional reasoning
are needed. Regardless of whether propositional logic is in-
cluded, all theories T1, . . . ,Tn must be able to interpret the
truth values true and false and therefore their signatures are
required to have the sort prop = {true, false}, where prop
comes from proposition. Then, formulæ are terms of sort
prop. We use l for formulæ and t and u for terms of any sort.

2



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

CDSAT and theory modules manipulate assignments. An
input problem {l1, . . . , lm}, where l1, . . . , lm are formulæ, is
seen as an initial assignment {l1←true, . . . , lm←true}, even
when abbreviated as {l1, . . . , lm}. Assignments, including ini-
tial assignments, are not restricted to assigning truth values;
they can assign values of any sort. For example, with propo-
sitional logic, a fragment of arithmetic, and the theory of ar-
rays, (x > 1)←false, (x > 1)∨(y < 0)←true,y←−1, z←

√
2,

(store(a, i,v) ≃ b)←true, select(a, j)←3, and (select(a, j) ≃
v)←true are all assignments. An assignment that assigns
only values of sort prop is called Boolean. A singleton assign-
ment that is not Boolean is called a first-order assignment, as
it assigns a value to a first-order term. If the input problem is
an SMT problem, it is given to CDSAT as a Boolean assign-
ment; if it is an SMA problem, it may also include first-order
assignments.
First-order assignments are a standard ingredient in the

definition of a first-order model. However, in automated
reasoning, models need to be represented syntactically. First-
order assignments raise the issue of what is a value that can
be assigned. The notion of using ground terms to represent
individuals in a model’s domain and assigning ground terms
to first-order variables does not suffice for assignments such
as select(a, j)←3, where a term gets a value, or z←

√
2, where

√
2 may not be a ground term in the given signature of arith-

metic. A standard solution is to extend the signature with
constant symbols that name all individuals in the domain of
the intended model (e.g., the appropriate set of numerals for
a fragment of arithmetic). Therefore, we introduce for each
theory Tk , 1 ≤ k ≤ n, a conservative extension T +k with signa-
ture Σ+k = (Sk , F

+
k ), where F

+
k adds to Fk a possibly empty

set of new constant symbols, called T +k -values, accompanied
by new axioms as needed (e.g.,

√
2 with

√
2 ·
√
2 ≃ 2). For

numerals, as for true and false, a T +k -value is both the do-
main element and the constant symbol that names it. F+k
may be infinite, but it is countable (e.g., using the algebraic
reals as real numbers), and only a finite subset of it will be
used in any finite derivation. We use symbols such as c, q for
T +k -values reserving b for true or false.
The union of T +1 , . . . ,T

+
n is an extension T +∞ of T∞, with

signature Σ+∞ = (S∞, F
+
∞) for F+∞ =

⋃n
k=1 F

+
k . We assume

that the extended theories are still disjoint except for the
Boolean values true and false. Conservativity of an extension
means that T +k -unsatisfiability implies Tk -unsatisfiability for
formulæ in the original signature Σk , so that the problem
does not change: if CDSAT detects T +k -unsatisfiability, the
problem is Tk -unsatisfiable; if the problem is Tk -satisfiable,
there is a T +k -model that CDSAT can discover.
Definition 2.1 (Assignment). Given a theory T with signa-
ture Σ and extension T +, a T -assignment is a set of pairs
t←c, where t is a term and c a T +-value of the same sort.

We use J for generic T -assignments, A for singleton ones,
and L or K for Boolean singletons. We abbreviate l←true

as l , l←false as l , and t ≃s u ←false as t ;s u, where s is the
sort of t and u, that can be omitted when clear from context.
The flip L of L assigns to the same formula the opposite
Boolean value. We use H and E for T∞-assignments, that we
call assignments for short. Note that replacing a first-order
assignment t←c by (t ≃ c) ← truewould blur the distinction
between terms, on the left of an assignment, and values, on
the right of an assignment.
Since assignments are not formulæ, the notion of en-

dorsement was introduced to relate assignments and models
(see [7], Section 6.3). For the purposes of this paper, it suffices
to say that a T +∞ -modelM endorses an assignmentH if (1) for
every pair (t←c) in H ,M satisfies the Σ+∞-formula t ≃ c; and
(2)M interprets any two distinct values appearing in H as
two distinct elements.1 In the sequel we writeH |= L to state
that every T +∞ -model endorsing H also endorses L. With a
slight abuse of notation and terminology, if no T +∞ -model
endorses H , we write H |= ⊥ and say that H is unsatisfiable.
Since the objective of this paper is proof generation, we are
interested in the situation where CDSAT determines that the
initial assignment is unsatisfiable.
In CDSAT, a theory module is an inference system for

theory Tk , 1 ≤ k ≤ n. Its inferences have the form J⊢⊢⊢kL where
J is a Tk -assignment and L is a Boolean assignment. Theory
modules are required to be sound: if J⊢⊢⊢kL then every model
endorsing J endorses L, so that J |= L.

A CDSAT-derivation transforms a state consisting of a trail
Γ. A trail is a sequence of distinct singleton assignments that
are either decisions, denoted ?A, or justified assignments, de-
noted H ⊢A. A decision is written ?A because it is generally a
guess. The justification H in H ⊢A is a set of singleton assign-
ments that appear before A in the trail. A theory inference
J⊢⊢⊢kL for some k , 1 ≤ k ≤ n, can justify adding J ⊢L to the trail.
Initial assignments are treated as justified assignments with
empty justification, so that a derivation for the input problem
{A1, . . . ,Am} starts with the trail ∅ ⊢A1, . . . , ∅ ⊢Am . Justified
assignments that are neither due to theory inferences nor
initial assignments will be placed on the trail by conflict-
solving transitions. Every assignment on the trail has an
identifier. A trail can be used as an assignment by ignoring
order, justifications, and identifiers, and as an assignment
with identifiers by ignoring order and justifications.

Definition 2.2 (Level). Given a trail Γ with assignments
A0, . . . ,Am , the level of a singleton assignmentAi , 0 ≤ i ≤ m,
is given by levelΓ(Ai ) = 1 + max{levelΓ(Aj ) | j < i}, if Ai
is a decision, and levelΓ(Ai ) = levelΓ(H ), if Ai is a justified
assignment with justificationH . The level of a set of singleton
assignments H ⊆ Γ is given by levelΓ(H ) = 0, if H = ∅, and
levelΓ(H ) = max{levelΓ(A) | A ∈ H }, otherwise.

1The notion of endorsement given here corresponds to that of view-
endorsement (see [7], Definition 7), obtained by combining the notions
of endorsement for a single theory (see [7], Definition 6) and theory view of
an assignment (see [7], Definition 2), omitted here for reasons of space.

3



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

Search rules
Decide Γ −→ Γ, ?A if A is a Tk -assignment for a term that is Tk -relevant for Γ, and

A is acceptable for the Tk -module and its view of Γ, with 1 ≤ k ≤ n
The next three rules share the conditions: J ⊆ Γ, (J⊢⊢⊢kL), and L < Γ, for some k , 1 ≤ k ≤ n.
Deduce Γ −→ Γ, J ⊢L if L < Γ and L is in B
Fail Γ −→ unsat if L ∈ Γ and levelΓ(J ∪ {L}) = 0
ConflictSolve Γ −→ Γ′ if L ∈ Γ, levelΓ(J ∪ {L}) > 0, and ⟨Γ; J ∪ {L}⟩ =⇒∗ Γ′
Conflict resolution rules
Undo

⟨Γ;E ⊎ {A}⟩ =⇒ Γ≤m−1 if A is a first-order decision of levelm > levelΓ(E)
Resolve

⟨Γ;E ⊎ {A}⟩ =⇒ ⟨Γ;E ∪ H ⟩ if H ⊢A is in Γ and H does not contain a
first-order decision A′ whose level is levelΓ(E ⊎ {A})

UndoDecide
⟨Γ;E ⊎ {L}⟩ =⇒ Γ≤m−1, ?L if H ⊢L is in Γ,m = levelΓ(E) = levelΓ(L)

and H contains a first-order decision A′ of levelm
LearnBackjump

⟨Γ;E ⊎ H ⟩ =⇒ Γ≤m , E ⊢L if L is a clausal form of H and is in B,
L < Γ, L < Γ, and levelΓ(E) ≤ m < levelΓ(H )

Figure 1. The CDSAT transition system with lemma learning

An assignment of levelm may be added after one of level
r , r > m; Γ≤m denotes the restriction of Γ to its elements of
level at mostm. The rules of the CDSAT transition system
comprise search rules, whose application is denoted by −→,
and conflict resolution rules, whose application is denoted
by =⇒, with transitive closure =⇒∗ (see Fig. 1). The CD-
SAT rules may place on the trail assignments for new terms,
meaning terms that do not appear in the input. For termi-
nation, these terms must come from a finite set B of terms,
called global basis (cf. [7], Section 6.2). B is a parameter of
the CDSAT transition system, whose instantiation depends
on the input problem. The distinction between terms and
T +-values plays a role here, as terms come from B and T +-
values come from F+∞: B is finite and fixed once the input
is given and throughout the derivation, whereas F+∞ may
be an infinite supply out of which a derivation uses a finite
subset that is not fixed prior to the start of the derivation. An
assignment H is in B if t ∈ B for all t such that (t←c) ∈ H .

RuleDecide adds to the trail Γ a singleton assignment that
is a decision, provided the term is relevant for a theory and
the assignment acceptable for the theory module. Relevance
(see [7], Definition 4) organizes the division of labor among
theories. Acceptability (see [7], Definition 3) prevents adding
an assignment that is already in Γ or that is so immediately
inconsistent with Γ that it would have to be withdrawn
without learning anything, such as adding L if L is in Γ
or 1 ← 3 in arithmetic with 1 a constant symbol in F∞.
Acceptability and relevance also imply that A is in B, which
is relevant for termination [6, 7]. Rule Deduce extends Γ
with a Boolean singleton assignment justified by a theory

inference J⊢⊢⊢kL from assignments J already in Γ. The system
proceeds with decisions and deductions until a conflict arises,
as J⊢⊢⊢kL, for some k , 1 ≤ k ≤ n, and L ∈ Γ: the assignment
J ∪ {L} is a conflict, because it is unsatisfiable. If the conflict
is at level 0, rule Fail reports unsatisfiability. If the conflict is
at a level greater than 0, ruleConflictSolve passes the control
to the conflict resolution rules, and resumes the search from
the trail Γ′ resulting from solving the conflict.

The conflict resolution rules operate on a trail and a conflict
that is an unsatisfiable set of assignments from the trail.
These rules transform the conflict until either it is solved
or it surfaces at level 0 so that Fail fires. The rules use the
notation ⊎ for disjoint set union. Rule Undo applies if the
conflict includes a first-order decision A whose level m is
greater than that of any other element in the conflict: the
effect of the rule is to exit the conflict by jumping back to
levelm − 1, removing A and all its consequences from the
trail. While it may seem that the resulting trail was already
encountered, jeopardising termination, this is not the case [6].
Acceptability ensures that A did not cause an inconsistency
right away when it was added to the trail. If A is now part
of a conflict, it means that some justified assignment L was
added to the trail after decision A even if levelΓ(L) < m (late
propagation). Thus, Γ≤m−1 is new because it contains L.

Rule Resolve explains the conflict, by replacing a justified
assignment A with its justification H , unless H contains a
first-order decision A′ whose levelm is that of the current
conflict. In that case, using Resolve to replace A by its jus-
tification H is forbidden, and it can be shown that A must
be a Boolean assignment L also of levelm so that another

4



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

rule applies [6]. Indeed, if an assignment other than L in the
conflict has levelm, ruleUndoDecide undoesA′ and replaces
it by a Boolean decision on L. If only one of the assignments
in the conflict has the same level as the conflict, then the con-
flict is solved by a Backjump rule [6, 7], replaced here with
LearnBackjump to add learning as illustrated in Section 3.

The CDSAT transition system is non-deterministic as the
rules leave room for heuristic choices. Thus, there are mul-
tiple CDSAT-derivations from a given input problem. In or-
der to get a CDSAT procedure that yields a unique CDSAT-
derivation from a given input, the transition rules must be
coupled with a search plan that drives their application.

3 CDSAT with Lemma Learning
In order to enrich the CDSAT transition system with lemma
learning, we turn assignments into clauses that the system
can learn. First, we do this only for assignments that partake
in conflicts, because in a conflict-driven system learning is
also conflict-driven [27]. Second, only Boolean assignments
can be turned into clauses. Third, in order to write non-unit
clauses, we need disjunction. If propositional logic is not one
of the combined theories, disjunction is not in the combined
signature, and the only assignments that can yield clauses
are singleton Boolean assignments that yield unit clauses.
If propositional logic is one of the combined theories, any
Boolean assignment can yield a clause.
Suppose that E ⊎ H is a conflict, where H contains only

Boolean assignments. This means that E ⊎ H |=⊥. If H is
a singleton L, we have E ⊎ {L} |=⊥, hence E |= L, and the
flip L is the clause associated to assignment L in the conflict.
If H is not a singleton, it can be rewritten as the singleton

((
∧
(l←true)∈H l) ∧ (

∧
(l←false)∈H ¬l))←true

that can be flipped into
((
∧
(l←true)∈H l) ∧ (

∧
(l←false)∈H ¬l))←false.

In order to get a clause, the above assignment can be rewrit-
ten in the equivalent form

((
∨
(l←true)∈H ¬l) ∨ (

∨
(l←false)∈H l))←true

leading to the next definition.
Definition 3.1 (Clausal form of an assignment in a conflict).
Given a conflict E ⊎ H , where H is a Boolean assignment,
the singleton Boolean assignments

((
∨
(l←true)∈H ¬l) ∨ (

∨
(l←false)∈H l))←true

((
∧
(l←true)∈H l) ∧ (

∧
(l←false)∈H ¬l))←false

are clausal forms of H .
We now describe the new rule LearnBackjump, listed last

in Fig. 1. Rule LearnBackjump is quite versatile, since
1. It allows CDSAT to perform learning and backjumping;
2. It allows CDSAT to perform learning and restart;
3. It covers as a special case the Backjump rule of the

basic version of CDSAT [7], adding the capability to
learn assertion clauses.

Input problem H0 including: (¬l4∨l5), (¬l2∨¬l4∨¬l5)
Initial trail Γ0 including: ∅ ⊢(¬l4∨l5), ∅ ⊢(¬l2∨¬l4∨¬l5)
Extending Γ0 into Γ = Γ0, ?A1, ?l2, ?A3, ?l4, (¬l4∨l5), l4 ⊢l5

(involving unrelated decisions A1 and A3)
First conflict: ⟨Γ; (¬l2∨¬l4∨¬l5), l2, l4, l5⟩
Applying Resolve to l5: ⟨Γ; (¬l2∨¬l4∨¬l5), l2, l4, (¬l4∨l5)⟩

Figure 2. Propositional extract from a CDSAT derivation

We consider these three features in this order.
Learning and backjumping is the generic behavior of rule

LearnBackjump. This rule singles out a Boolean subset H of
the conflict E ⊎ H , such that levelΓ(H ) > levelΓ(E). Then, it
solves the conflict by jumping back to a levelm, such that
levelΓ(E) ≤ m < levelΓ(H ), and learning a clausal form L of
H . The system learns L by adding to the trail the justified
assignment E ⊢L, since E ⊎ H |=⊥ implies E |= L, as L is a
clausal form of H . The clausal form L may assign a Boolean
value to a new term, and therefore it must be an element of
B. Note that H does not necessarily contain all the Boolean
assignments in the conflict: the choices of the Boolean subset
H and the destination levelm are left to the search plan.

Example 3.2. Consider the conflict on the last line of Fig. 2.
Assume that LearnBackjump is applied with H = {l2, l4},
E = {(¬l2∨¬l4∨¬l5), (¬l4∨l5)}, where ((¬l2∨¬l4) ← true) is
a clausal form ofH . We have levelΓ(H ) = 4 and levelΓ(E) = 0,
so that any destination level m such that 0 ≤ m < 4 can
be picked. A standard choice for m would be the second
highest level in the conflict, namelym = 2, in which case
the LearnBackjump step jumps over decision A3 and yields

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢(¬l2∨¬l4).

The derivation continues from level 2with the learned lemma
¬l2∨¬l4 added to level 0.

We consider next learning and restart. It is common to
restart after learning a clause, and search plans with aggres-
sive restart proved successful in SAT solving. LearnBackjump
makes this kind of search plan possible in CDSAT. Assume
that the destination levelm is chosen to be the smallest, that
is,m = levelΓ(E). If levelΓ(E) is 0, the shape of the trail after
LearnBackjump is Γ≤0, E ⊢L, which means LearnBackjump
performs a restart and adds E ⊢L to level 0.

Example 3.3. Consider the same LearnBackjump step as in
Example 3.2 except that the destination level ism = 0. We get

Γ0, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢(¬l2∨¬l4)

as all decisions are undone and the derivation restarts with
the learned lemma ¬l2∨¬l4 added to level 0.

In the rest of this section we analyze how LearnBackjump
subsumesBackjump [7] and allows CDSAT to learn assertion
clauses. The Backjump rule applies when CDSAT reaches
a conflict state ⟨Γ;E ⊎ {L}⟩, where levelΓ(L) > m, with

5



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

m = levelΓ(E). Backjump solves such a conflict by producing
Γ≤m , E ⊢L. In words, it jumps back to levelm and adds to the
trail the justified assignment E ⊢L, because E⊎{L} |=⊥ yields
E |= L. Rule LearnBackjump can behave in the same way
by taking as H a singleton L. Indeed, L is a clausal form of
any singleton Boolean assignment L in the conflict. However,
even when it reproduces Backjump, LearnBackjump allows
a choice of destination level: Backjump goes back to level
m = levelΓ(E), while LearnBackjump allows the system to
go back to any levelm such that levelΓ(E) ≤ m < levelΓ(L).

Example 3.4. The conflict on the last line of Fig. 2 contains
an assignment, namely l4, whose level is greater than that of
the rest of the assignment, as levelΓ(l4) = 4 > levelΓ(E) = 2
where E = {(¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)}. Thus, Backjump
could apply and we can see how LearnBackjump mimics
it. A LearnBackjump step with H = {l4} andm = 2 yields

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5) ⊢l4.

Alternatively, ifm = 3, LearnBackjump yields

Γ0, ?A1, ?l2, ?A3, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5) ⊢l4.

The side-condition L < Γ of LearnBackjump prevents
adding to the trail clauses that are already there.

Example 3.5. LearnBackjump can be applied also to the
first conflict in Fig. 2, namely ⟨Γ; (¬l2∨¬l4∨¬l5), l2, l4, l5⟩.
Consider a step with E = {¬l2∨¬l4∨¬l5} and H = {l2, l4, l5},
so that levelΓ(H ) = 4 and levelΓ(E) = 0. Regardless of the
choice of destination levelm, 0 ≤ m < 4, a clausal form of
H is redundant since clause ¬l2∨¬l4∨¬l5 is already on the
trail and LearnBackjump does not add it.

Unlike Backjump, LearnBackjump does not require the
occurrence in the conflict of a singleton assignment L of
level greater than the rest of the conflict.

Example 3.6. In the first conflict in Fig. 2 both l4 and l5
have level 4. If we apply LearnBackjump with H = {l4, l5},
E = {(¬l2∨¬l4∨¬l5), l2}, levelΓ(H ) = 4, levelΓ(E) = 2, and
destination levelm = 2, the resulting trail is

Γ0, ?A1, ?l2, E ⊢¬l4∨¬l5

where (¬l4 ∨ ¬l5) ← true on level 2 is a clausal form of H .

The last conflict clause generated prior to backjumping
is called backjump clause: the system learns this clause and
jumps back to a prior level in such a way to undo at least one
decision and satisfy the learned clause by placing on the trail
one of its literals. The First Unique Implication Point (1UIP)
heuristic [28] picks as the backjump clause the first generated
assertion clause, where an assertion clause is a conflict clause
where only one of its literals, say l , is falsified at the current
level. The Backjump rule of CDSAT generalizes this princi-
ple, because it applies when the conflict contains a singleton
assignment L of level greater than the rest of the conflict (not

necessarily the current one). However, Backjump places L
on the trail without learning an assertion clause. When a
CDSAT conflict contains a singleton assignment L of level
greater than the rest of the conflict, it means it is possible to
extract from the conflict an assertion clause. Thus, with rule
LearnBackjump, CDSAT can learn assertion clauses, and a
CDSAT search plan may choose to restrict the application
of this rule to 1UIP conflict clauses.
Let κ = l1∨· · ·∨lq be an assertion clause that is in the

global basis B. Let lq be the literal of κ made false by the cur-
rent level and L the assignment that makes lq false. In order to
learnκ, it suffices to identify the Boolean partH = H ′⊎{L} of
the conflict that makes κ false: for all i , 1≤i≤q, (li ← true) ∈
H if and only if ¬li ∈ κ and (li ← false) ∈ H if and only if
li ∈ κ. By Definition 3.1, the assignment K = (κ←true) is
a clausal form of H . Let E be the rest of the conflict. Then
the system applies LearnBackjump with destination level
m = levelΓ(E⊎H ′), which meansm = levelΓ(E) if levelΓ(E) >
levelΓ(H ′), m = levelΓ(H ′) if levelΓ(H ′) > levelΓ(E), and
m = levelΓ(H ′) = levelΓ(E) if levelΓ(H ′) = levelΓ(E). This
choice satisfies the condition levelΓ(E) ≤ m < levelΓ(H ),
because levelΓ(E) ≤ levelΓ(E ⊎ H ′) < levelΓ(H ) = levelΓ(L).
This LearnBackjump step yields the trail

Γ≤m , E ⊢K ,

and κ is learned. The theory module for propositional logic
features inference rules for unit propagation (cf. [7], Section
4.1) that allow the inference:

{K} ⊎ H ′⊢⊢⊢BoolL. (1)

Indeed, K is (l1 ∨ . . . ∨ lq−1 ∨ lq) ← true, and H ′ makes
l1, . . . , lq−1 false, so that unit propagation infers lq . Since L
makes lq false, L makes lq true. Because the destination level
m of the LearnBackjump step was chosen in such a way that
m ≥ levelΓ(H ′), the premises K ,H ′ of inference (1) are all
on the trail Γ≤m , E ⊢K . Furthermore, literal lq is in B, since
L was on the trail. Thus, all conditions are met to apply a
Deduce step with inference (1). The resulting trail is

Γ≤m , E ⊢K , {K }⊎H ′ ⊢L

which is similar to the Γ≤m , E⊎H ′ ⊢L produced by Backjump,
except for the learned clause K . The advantage is that K can
be reused in future branches of the search. The level of E ⊢K
is levelΓ(E): the smaller levelΓ(E) is, the longerK may remain
on the trail and be used for inferences.

Example 3.7. Continuing Example 3.2 from
Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢(¬l2∨¬l4),

rule Deduce with inference (1) generates

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢(¬l2∨¬l4), (¬l2∨¬l4), l2 ⊢l4.

CDSAT with lemma learning inherits the soundness, com-
pleteness, and termination properties of CDSAT, under suit-
able assumptions on theorymodules and the input-dependent

6



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

global basis B (see [7], Section 6, and [6], Sections 8 and 9).
Intuitively, B needs to be finite for termination, and suf-
ficiently large for completeness. Informally speaking, the
latter means that B contains all input terms and all terms
that the theory modules may need, as defined by n local
basis for the combined theories T1, . . . ,Tn . Such a global ba-
sis is called stable. The theory modules need to be complete,
which means that when none of them can extend the trail,
the assignment on the trail is endorsed by a T +∞ -model.

Theorem 3.8. CDSAT with lemma learning is sound (if it
derives unsat, the input problem is unsatisfiable), complete
(if the theory modules are complete, and the global basis is
stable, whenever the derivation reaches a state other than unsat
such that no transition rule applies, there exists a model that
endorses the input problem), and terminating (every derivation
with a finite global basis is guaranteed to terminate).

We leave for future work the performance analysis of
different ways to apply LearnBackjump, focusing next on
proof generation.

4 Proof Object Production in CDSAT
In this section we describe the first technique to endow CD-
SATwith proof generation. This technique enables the system
to build proof objects in memory. When a CDSAT derivation
terminates by firing rule Fail and detecting unsatisfiability,
the system engages in an activity called proof reconstruction
[5], which consists of extracting a proof object from the final
state of the derivation. For this, we need to instrument the
transition system in such a way that the final state contains
enough information to reconstruct a proof object.

4.1 Theory-Specific Proofs
Because CDSAT combines theory modules, proof object pro-
duction in CDSAT requires proof object production in every
theory module. Therefore, we assume that each theory mod-
ule is equipped with a proof annotation system that annotates
theory inferences with theory proofs:

J ⊢⊢⊢k jk :L
means that the module for theory Tk infers L from J with
theory proof jk . A theory proof refers to L and the individual
assignments in J by means of identifiers: in J ⊢⊢⊢k jk :L, the
premise J is a Tk -assignment with identifiers, that is, a set
of triples a(t←c), where a is the identifier of the singleton
Tk -assignment t←c.
For instance, inference (1) from Section 3, representing

Unit Propagation (UP) in the theory module for proposi-
tional logic, can be annotated with a theory proof denoted
UP(a, {a1, . . . ,an}), as follows:

{aK} ⊎ H ′ ⊢⊢⊢BoolUP(a, {a1, . . . ,an}) :L
where a1, . . . ,an are the identifiers of the assignments in H ′.
For Linear Rational Arithmetic (LRA) annotated inferences
include instances of Fourier-Motzkin resolution

a1 (t1←c1),
a2 (t2←c2) ⊢⊢⊢eq(a1,a2) : t1 ≃ t2
if c1 and c2 are the same T +-value of sort s

a1 (t1←c1),
a2 (t2←c2) ⊢⊢⊢neq(a1,a2) : t1 ; t2
if c1 and c2 are distinct T +-values of sort s

⊢⊢⊢refl : t ≃ t
a(t1 ≃ t2) ⊢⊢⊢sym(a) : t2 ≃ t1

a1 (t1 ≃ t2),
a2 (t2 ≃ t3) ⊢⊢⊢trans(a1,a2) : t1 ≃ t3

Figure 3. Equality inference rules for terms of sort s

a1 (e1 ≤ t), a2 (t ≤ e2) ⊢⊢⊢LRAFM(a1,a2) : (e1 ≤ e2)

where t , e1, and e2 are rational terms, and evaluation
a1 (x1←q1), . . . ,

am (xm←qm) ⊢⊢⊢LRAeval({a1, . . . ,am}) : l←b
where formula l evaluates to the Boolean b given the first-
order assignmentsx1←q1, . . . ,xm←qm for rational variables.
For Equality with Uninterpreted Functions (EUF), if J is
a1 (t1 ≃ u1), . . . ,

am (tm ≃ um), a congruence inference is:
J ⊢⊢⊢EUFCong(a1, . . . ,am) : f (t1, . . . , tm) ≃ f (u1, . . . ,um).

Theory modules to be combined in CDSAT are required
to contain basic inference rules for equality. This means that
theory modules must provide theory proofs

refl, sym(a), trans(a1,a2), eq(a1,a2), neq(a1,a2),
that annotate equality inferences, as illustrated in Fig. 3.

If an assignment appears on the trail, its identifier in any
theory proof is the same as its identifier on the trail. For ex-
ample, when aDeduce step uses a theory inference J ⊢⊢⊢k jk :L,
the assignments in J appear on the trail Γ, and their iden-
tifiers in jk are the same as in Γ. However, since identifiers
are mere names, theory proof annotations are stable under
permutations of identifiers: any permutation π of identifiers
transforms a theory proof jk into a theory proof π (jk ), such
that, if a1 (t1←c1), . . . , am (tm←cm) ⊢⊢⊢k jk :L then

π (a1)(t1←c1), . . . ,
π (am )(tm←cm) ⊢⊢⊢kπ (jk ) :L.

Example 4.1. If we have
1(x←c1),

4(y←c1) ⊢⊢⊢keq(1, 4) : f (x) ≃ f (y),

π (1) = 4, and π (4) = 1, then we also have
4(x←c1),

1(y←c1) ⊢⊢⊢keq(4, 1) : f (x) ≃ f (y).

The assumption that every theory module has a proof
annotation system is no restriction, as the proof annotation
system can be a trivial one that uses a dummy theory proof
for all theory inferences. The resulting theory proofs convey
no information, which is acceptable if there are no require-
ments on the information they should offer.

4.2 Proof Terms
In order to empower CDSAT to generate proof objects, we
instrument the CDSAT transition system to keep track of
provability invariants. We call the outcome proof-carrying
CDSAT. The provability invariants of a transition system
ensure that the transitions do not change the problem. If

7



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

A is initial

∅ ⊢⊢⊢in(A) :A

J ⊢⊢⊢k jk :L

J ⊢⊢⊢jk :L

E ⊎ H ⊢⊢⊢c :⊥
L is a clausal form of H

E ⊢⊢⊢lem(H .c) :L

J ⊢⊢⊢k jk :L

J ∪ {aL} ⊢⊢⊢cfl(jk ,a) :⊥

H ⊢⊢⊢j :A E, aA ⊢⊢⊢c :⊥

E ∪ H ⊢⊢⊢res(j, aA.c) :⊥

Figure 4. Proof system for the CDSAT proof terms

the transition rules preserve such invariants, they are sound.
The provability invariants of CDSAT are:

1. For every assignment H ⊢A on the trail, H |= A;
2. For every conflict state ⟨Γ;E⟩, E |= ⊥.
Proof-carrying CDSAT keeps track of provability invari-

ants by means of a trace of proof terms. We distinguish be-
tween deduction proof terms and conflict proof terms, intu-
itively related to Invariants (1) and (2), respectively. A de-
duction proof term records why an assignment H ⊢A is on
the trail, while a conflict proof term records why the second
component of a conflict state ⟨Γ;E⟩ is a conflict.

Definition 4.2 (CDSAT proof terms). A CDSAT proof term
is either a deduction proof term

j ::= in(A) jk lem(H .c)

or a conflict proof term
c ::= cfl(jk ,a) res(j, aA.c)

where in, lem, cfl, and res are the CDSAT proof constructors,
jk ranges over theory proofs for Tk , 1 ≤ k ≤ n,A is a singleton
assignment, and H is a Boolean assignment with identifiers;
res(j, aA.c) binds a in c , and lem(H .c) binds the identifiers
of H in c , as represented by the dot.

The proof system of Fig. 4 helps understanding the in-
variants that proof terms keep track of. The first three rules
establish the derivability of judgments of the form H ⊢⊢⊢j :A,
witnessing invariant H |= A. Proof term in(A), where in
stands for initial, witnesses the fact that an initial assign-
ment A holds. The second rule shows that a theory proof
jk can be coerced into a CDSAT deduction proof term. The
rule for lem(H .c), where lem stands for lemma, shows that,
whenever there is a conflict involving a Boolean assignment
H , a clausal form of H is entailed by the rest of the conflict
and therefore it is a lemma. The proof term carries H to
indicate which part of the conflict is turned into a lemma.
Since identifiers of assignments in H may occur in c , such
occurrences are bound in lem(H .c).

The last two rules establish the derivability of judgments
of the form E ⊢⊢⊢c :⊥, witnessing invariant E |= ⊥. Proof term
cfl(jk ,a), where cfl stands for conflict, witnesses the conflict
between the conclusion L of a theory inference and its flip L
(having identifier a). Proof term res(j, aA.c), where res stands
for resolve, is the only construct that combines two subproofs,
connecting the conclusion A of the left premise with the
hypothesis aA of the right premise. Any occurrence of a
in c is bound in res(j, aA.c). Using the soundness of theory
inferences, a structural induction on proof terms turns the
intuition of witnessing invariants into the following theorem.

Theorem 4.3. IfH ⊢⊢⊢j :A, thenH |= A; if E ⊢⊢⊢c :⊥, then E |= ⊥.

This choice of proof terms and proof system allows us
to associate to every rule of the CDSAT transition system
the simplest trace of how the rule transforms the relevant
provability invariant, leading us to the next section.

4.3 Proof-Carrying CDSAT
The proof-carrying CDSAT transition system is given in Fig. 5.
While a decision ?A does not carry a proof term, a justified
assignment H ⊢j :A carries a deduction proof term j such that
H ⊢⊢⊢j :A. Initial assignments take the form ∅ ⊢in(A) :A where
the deduction proof term presents the initial assignment as
a premise of the proof. If a theory inference J⊢⊢⊢kL, 1 ≤ k ≤ n,
supports the justified assignment J ⊢L, the same inference
J ⊢⊢⊢k jk :L annotated with a theory proof supports the justified
assignment J ⊢jk :L (see rule Deduce in Fig. 5).
Because proof terms may use identifiers of assignments,

proof-carrying CDSAT manipulates assignments with identi-
fiers, and the subset relation takes identifiers into account. In
Fig. 5, the condition J ⊆ Γ means that J is a Tk -assignment
with identifiers, and for every a(t←c) in J , the pair t←c ap-
pears in Γ with identifier a. A conflict E is an assignment
with identifiers such that E |=⊥ and E ⊆ Γ with the same
meaning. Conflict resolution rules operate on states of the
form ⟨Γ; E ; c⟩, where c is a conflict proof term. An analysis
of the rules shows that the invariants in Theorem 4.4 hold.

Theorem 4.4. For all proof-carrying CDSAT-derivations
• If a trail containing H ⊢j :A is generated, then H ⊢⊢⊢j :A;
• If a conflict state ⟨Γ; E ; c⟩ is reached, then E ⊢⊢⊢c :⊥.

A difference between the system in Fig. 5 and that in Fig. 1
is that in proof-carrying CDSAT the dichotomy between Fail
and ConflictSolve is based on the outcome of the conflict
resolution phase rather than the level of the conflict. Given
Theorems 4.3 and 4.4, reaching state ⟨Γ; ∅ ; c⟩ means that
the input problem is unsatisfiable in T +∞ and c is a proof
term witnessing its unsatisfiability. If such a state is reached,
Fail fires and terminates the derivation in state unsat(c). It
is simple to show that the conflict resolution rules in Fig. 5
reduce ⟨Γ; E ; c1⟩ to a state of the form ⟨Γ; ∅ ; c⟩ if and only
if levelΓ(E) = 0; and that they solve the conflict producing
some trail Γ′ different from Γ if and only if levelΓ(E) > 0.
The CDSAT transition system of Fig. 1 returns unsat as

soon as a conflict at level 0 is found, because it does not gen-
erate a proof. For proof-carrying CDSAT, detecting a conflict
at level 0 does not suffice: in order to generate a proof of un-
satisfiability of the initial assignment, proof-carrying CDSAT

8



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Search rules
Decide Γ −→ Γ, ?A if A is a Tk -assignment for a term that is Tk -relevant for Γ, and

A is acceptable for the Tk -module and its view of Γ, with 1 ≤ k ≤ n
The next three rules share the conditions: J ⊆ Γ, (J ⊢⊢⊢k jk :L), and L < Γ, for some k , 1 ≤ k ≤ n.
Deduce Γ −→ Γ, J ⊢jk :L if L < Γ and L is in B
Fail Γ −→ unsat(c) if L ∈ Γ with id a, and ⟨Γ; J ∪ {aL} ; cfl(jk ,a)⟩ =⇒∗ ⟨Γ; ∅ ; c⟩
ConflictSolve Γ −→ Γ′ if L ∈ Γ with id a, and ⟨Γ; J ∪ {aL} ; cfl(jk ,a)⟩ =⇒∗ Γ′
Conflict resolution rules
Undo
⟨Γ; E ⊎ {aA} ; c⟩ =⇒ Γ≤m−1 if A is a first-order decision of levelm > levelΓ(E)

Resolve
⟨Γ; E ⊎ {aA} ; c⟩ =⇒ ⟨Γ; E ∪ H ; res(j, aA.c)⟩ if H ⊢j :A is in Γ and H does not contain a

first-order decision A′ whose level is levelΓ(E ⊎ {A})
UndoDecide
⟨Γ; E ⊎ {aL} ; c⟩ =⇒ Γ≤m−1, ?L if H ⊢j :L is in Γ,m = levelΓ(E) = levelΓ(L)

and H contains a first-order decision A′ of levelm
LearnBackjump
⟨Γ; E ⊎ H ; c⟩ =⇒ Γ≤m , E ⊢lem(H .c) :L if L is a clausal form of H and is in B,

L < Γ, L < Γ, and levelΓ(E) ≤ m < levelΓ(H )

Figure 5. The proof-carrying CDSAT transition system

integrates a proof of why E follows from the initial assign-
ment with a proof of why E is unsatisfiable. This is achieved
by proof-carrying Resolve, which combines proof term c , wit-
nessing the unsatisfiability of the conflict, with proof term j
witnessing that one of the assignments in the conflict, named
A, follows from prior assignments: A is retained in the proof
term res(j, aA.c). Proof-carrying LearnBackjump generates
the proof term lem(H .c), recording that the learned lemma
L is a clausal form of H , and turning the conflict proof term
c representing a proof of unsatisfiability of E ⊎ H into a
deduction proof term representing a proof of L from E.

4.4 Example of Proof-Carrying Derivation
We now illustrate some operations of proof-carrying CDSAT.
Fig. 6 gives a refutation for the full version of the example in
Fig. 2. Adding identifiers to the first conflict in Fig. 2 we get

a7 (¬l2∨¬l4∨¬l5),
a2l2,

a4l4,
a5l5.

The proof term for this conflict involves Unit Propagation:
c1 = cfl(UP(a7, {a2,a4}),a5).

The next step replaces l5 in the conflict by its justification
a6 (¬l4∨l5),

a4l4, yielding (Fig. 6, line 2) the conflict proof term
c2 = res(UP(a6, {a4}), a5l5.c1)

where UP(a6, {a4}) is the theory proof that justifies why
l5 is on the trail as a result of Unit Propagation. The con-
flict is solved by LearnBackjump as in Example 3.2, learning
(¬l2∨¬l4) and placing

(¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4)

on the trail (line 3), where j1 = lem({a2l2, a4l4}.c2).

These patterns repeat several times in Fig. 6. For example,
j2, j5, j6, j9, j10 (lines 4,9,10,17,18) are deduction proof terms
of the form UP(_, _), as they support unit propagations, and
similarly to c1, proof term c8 for conflict a(¬l2∨¬l4), a2l2, a4l4
plugs in a unit propagation subproof (line 19):

c8 = cfl(UP(a, {a2}),a4).
The derivation involves the LRA inference (line 5)

a1 (x ← 3/4) ⊢⊢⊢j3 : (x≤0)
where j3 = eval({a1}), and the LRA inference (line 6)

a2 (y≥0), a8 (x+y>0), a9 (x≤0) ⊢⊢⊢c3 :⊥
where c3 = cfl(FM(a2,a8),a9) as

a2 (0 ≤ y), a8 (y ≤ −x) ⊢⊢⊢LRAFM(a2,a8) : (0 ≤ −x).
It also employs the EUF inferences (lines 11 and 12)

a10 (f (z)←blue), a11 (f (y)←red) ⊢⊢⊢j7 : f (z) ; f (y)
a12 (z ≃ y), a13 (f (z) ; f (y)) ⊢⊢⊢c5 :⊥

where j7 = neq(a10,a11) and c5 = cfl(Cong(a12),a13).
Deduction proof terms j4 and j8 (lines 8 and 16) justify

the learning of lemmas ((x≤0)∨¬l2) and (x≤0), respectively:
therefore they instantiate the same pattern as j1, namely
lem({_}._). The conflict proof terms c4, c6, c7, and c9 through
c21 all encode Resolve steps, and therefore are of the form
res(_, _._) like c2. More precisely, c13, c15 − c18, c20, and c21,
are of the form res(in(_), _._), whose effect is simply to re-
move an assignment from the conflict because it is an initial
assignment. In contrast, conflict proof term c19 is of the form

res(j1, a(¬l2∨¬l4).c18),
where a is the identifier of the learned clause (¬l2∨¬l4) (line

9



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

Input problem: (¬l4∨l5), (¬l2∨¬l4∨¬l5), (l2∨(z ≃ y)), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z)←blue), (f (y)←red)
where l2 is (y≥0), and l4 is (x+y>0). Assume decision A1 is (x ← 3/4). Detected conflicts are introduced with symbol !△.
To improve readability, identifiers in justifications and conflicts are omitted; they are determined by the current trail.

!△ ⟨Γ; (¬l2∨¬l4∨¬l5), l2, l4, l5 ; c1⟩ 1
=⇒ ⟨Γ; (¬l2∨¬l4∨¬l5), l2, l4, (¬l4∨l5) ; c2⟩ 2

=⇒ Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4) 3
−→ Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4), (¬l2∨¬l4), l2 ⊢j2 :l4 4
−→ Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4), (¬l2∨¬l4), l2 ⊢j2 :l4, A1 ⊢j3 :(x≤0) =: Γ1 5

!△ ⟨Γ1; l2, l4, (x≤0) ; c3⟩ 6
=⇒ ⟨Γ1; l2, (¬l2∨¬l4), (x≤0) ; c4⟩ 7

=⇒ Γ0, ?A1, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4), A1 ⊢j3 :(x≤0), (¬l2∨¬l4) ⊢j4 :(x≤0)∨¬l2 =: Γ2 8
−→ Γ2,

((x ≤0)∨¬l2), (x ≤0) ⊢j5 :
l2 9

−→ Γ2,
((x ≤0)∨¬l2), (x ≤0) ⊢j5 :

l2,
(l2∨(z ≃ y)), l2 ⊢j6 :

(z ≃ y) 10

−→ Γ2,
((x ≤0)∨¬l2), (x ≤0) ⊢j5 :

l2,
(l2∨(z ≃ y)), l2 ⊢j6 :

(z ≃ y), (f (z)←blue), (f (y)←red) ⊢j7 :(f (z) ; f (y)) =: Γ3 11

!△ ⟨Γ3; (f (z) ; f (y)), (z ≃ y) ; c5⟩ 12
=⇒ ⟨Γ3; (f (z) ; f (y)), (l2∨(z ≃ y)), l2 ; c6⟩ 13
=⇒ ⟨Γ3; (f (z) ; f (y)), (l2∨(z ≃ y)), ((x≤0)∨¬l2), (x≤0) ; c7⟩ 14

=⇒ Γ0, (¬l2∨¬l4∨¬l5), (¬l4∨l5) ⊢j1 :(¬l2∨¬l4), (¬l2∨¬l4) ⊢j4 :(x≤0)∨¬l2, (f (z)←blue), (f (y)←red) ⊢j7 :(f (z) ; f (y)), 15

(f (z) ; f (y)), (l2∨(z ≃ y)), ((x ≤0)∨¬l2) ⊢j8 :(x≤0) =: Γ4 16
−→ Γ4, (¬(x ≤0)∨l2), (x ≤0) ⊢j9 :l2 17
−→ Γ4, (¬(x ≤0)∨l2), (x ≤0) ⊢j9 :l2, (¬(x ≤0)∨l4), (x ≤0) ⊢j10 :l4 =: Γ5 18

!△ ⟨Γ5; (¬l2∨¬l4), l2, l4 ; c8⟩ 19
=⇒ ⟨Γ5; (¬l2∨¬l4), l2, (¬(x≤0)∨l4), (x≤0) ; c9⟩ 20
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (x≤0) ; c10⟩ 21
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z) ; f (y)), (l2∨(z ≃ y)), ((x≤0)∨¬l2) ; c11⟩ 22
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z) ; f (y)), (l2∨(z ≃ y)) ; c12⟩ 23
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z) ; f (y)) ; c13⟩ 24
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z)←blue), (f (y)←red) ; c14⟩ 25
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4), (f (z)←blue) ; c15⟩ 26
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2), (¬(x≤0)∨l4) ; c16⟩ 27
=⇒ ⟨Γ5; (¬l2∨¬l4), (¬(x≤0)∨l2) ; c17⟩ 28
=⇒ ⟨Γ5; (¬l2∨¬l4) ; c18⟩ 29
=⇒ ⟨Γ5; (¬l2∨¬l4∨¬l5), (¬l4∨l5) ; c19⟩ 30
=⇒ ⟨Γ5; (¬l2∨¬l4∨¬l5) ; c20⟩ 31
=⇒ ⟨Γ5; ∅ ; c21⟩ 32

−→ unsat(c21) 33

Figure 6. A proof-carrying continuation of the CDSAT derivation in Fig. 2

30). Note that a occurs twice in c19: once in the subproof c8
(line 19), as seen above, and once in the subproof (line 23)

c12 = res(j4, a14 ((x≤0)∨¬l2).c11),
since j4 = lem({a9 (x≤0), a2l2}.c4) (line 8), c4 = res(j2, a8l4.c3)
(line 7), and j2 = UP(a, {a2}) (line 4). This double occurrence
reflects the fact that lemma (¬l2∨¬l4) has been reused in the
derivation, which is a purpose of learning. Had Backjump
been applied instead of LearnBackjump (cf. Example 3.4),
the trail would have been extended (line 3) with

(¬l2∨¬l4∨¬l5), (¬l4∨l5), l2 ⊢j11 :l4

where the deduction proof j11 = lem({a4l4}.c2) justifies why
l4 is on the trail. If this route had been followed, the conflict
reflected by c8 (line 19) would not have been detected. More
steps would have been necessary to discover it, amounting to
constructing another proof of (¬l2∨¬l4), possibly identical
to the first one that was not recorded.
A full development of the final conflict proof term c21

would show the absence of the deduction proof term j3
10



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

(introduced on line 5). This is a general phenomenon in
CDSAT: first-order decisions play a role in finding models,
not proofs; thus, deduction proof terms referring to first-
order decisions cannot appear in the final proof term, and
an easy optimization is to avoid constructing them.

5 From Proof Terms to Proofs
The CDSAT proof terms record enough information to recon-
struct a proof of unsatisfiability from a CDSAT derivation
concluding unsat. The proof system in Fig. 4 describes how
proof terms specify the proof reconstruction steps to be per-
formed. A deduction proof term j withH ⊢⊢⊢j :A indicates how
to reconstruct a proof of H |= A. A conflict proof term c
with E ⊢⊢⊢c :⊥ indicates how to reconstruct a proof of E |= ⊥.
For instance, the rule for res(j, aA.c) can be read as: if j al-
lows the reconstruction of a proof that A follows from H ,
and if c allows the reconstruction of a proof that E, aA is
unsatisfiable, then res(j, aA.c) allows the reconstruction of
a proof that E ∪ H is unsatisfiable. A solver implementing
the proof-carrying CDSAT transition system can reconstruct
the proof in any proof format that (1) features two kinds
of proofs (deduction proofs and conflict proofs), and (2) is
equipped with proof operations corresponding to the rules
of Fig. 4. In this view, proof reconstruction interprets proof
terms in the desired proof format.
An alternative option is that the CDSAT solver manipu-

lates directly the proofs denoted by the expressions in(A),
jk , lem(H .c), cfl(jk ,a), and res(j, aA.c). The choice between
the two approaches depends on whether the proofs gener-
ated by proof reconstruction are better (e.g., shorter, more
readable) than the proof terms. Another factor is whether
direct manipulation during the derivation causes such a high
runtime overhead that proof reconstruction is preferable. A
third possibility is to consider proof terms themselves as the
proof objects to be produced. Then a proof-checker would
check directly the proof terms, checking that the rules of
Fig. 4 are applied correctly. In the the rest of this section, we
see how CDSAT proof terms can be turned into resolution-
style proofs (Subsection 5.1), and how the LCF approach to
proofs can be applied to CDSAT (Subsection 5.2).

5.1 Proof Format Based on Resolution
Resolution proofs are based on clausal form. A few caveats
are in order. First, CDSAT views logical connectives such
as ∧ and ∨ as interpreted symbols of the Boolean theory.
Second, the existence of assignments such as (l1∨l2)←false
implies that clauses l1∨ · · · ∨lm may not be the only formulæ
in proofs. Third, CDSAT does not assume that its input is in
Conjunctive Normal Form (CNF). Therefore, we distinguish
between object-level clauses, that are the clauses l1∨ · · · ∨lm ,
and CDSAT clauses, that are the clauses in resolution proofs
reconstructed from CDSAT proof terms. A CDSAT clause, or

clause for short when there is no ambiguity, is a set of sin-
gleton Boolean assignments, written L1 | | · · · | | Lm to avoid
confusion with object-level clauses. A CDSAT clause is a
clause in the standard propositional sense, with CDSAT for-
mulæ (i.e., terms of sort prop) in place of Boolean variables
(aka propositional atoms). Since in CDSAT there are first-
order assignments, the resolution proofs reconstructed from
CDSAT proof terms use guarded clauses, written H → C ,
where H is a set of first-order assignments andC is a CDSAT
clause. Guarded or hypothetical clauses are used extensively
in the literature (e.g., [9, 15, 16]).
A resolution proof reconstructed from a CDSAT proof term

is a binary tree such that:
• Every leaf is labeled with either a guarded clause,
called in this case theory lemma, or an input singleton
assignment; and
• Every internal node is labeled with a guarded clause,
and, together with its two children, forms an instance
of one of the following rules:

H1 → C1 | | L H2 → C1 | | L

H1 ∪ H2 → C1 | |C2

L H → C | | L

H → C

A H ,A→ C

H → C

The top rule is binary resolution, generalized to the presence
of first-order assignments which play no role in the rule. In
the bottom two rules, the left premise is a leaf labeled by an
input singleton assignment: the left-hand rule can be seen
as unit resolution; the right-hand rule covers the analogous
case for a first-order assignment A.
In order to illustrate theory lemmas, consider a clausal

form L0 of {L1, . . . ,Lm}. The Boolean theory has the follow-
ing lemmas, that can label the leaves of resolution trees:

∅ → L0 | | L1 | | · · · | | Lm
1≤i≤m

∅ → L0 | | Li
(2)

Since L0 is a clausal form of {L1, . . . ,Lm}, L0 | | L1 | | · · · | | Lm
and L0 | | Li , 1 ≤ i ≤ m, are propositional tautologies. The
first lemma allows the transformation of an object-level
clause, the assignment L0, into a CDSAT clause:

. . .

H → C | | L0 ∅ → L0 | | L1 | | · · · | | Lm

H → C | | L1 | | · · · | | Lm
Conversely, the other lemmas allow the reification of a CD-
SAT clause L1 | | · · · | | Lm into an object-level clause:

. . .

H → C | | L1 | | · · · | | Lm ∅ → L0 | | L1

· · · ∅ → L0 | | Lm

H → C | | L0
These transformations can be expressed compactly as the
derivable inference rules

11



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

⟦∅ ⊢⊢⊢in(A) :A⟧ :=
A

⟦E ⊢⊢⊢lem(H .c) :L⟧ :=

⟦E ⊎ H ⊢⊢⊢c :⊥⟧
EFO → Eclause | |Hclause

EFO → Eclause | | L

⟦J ⊢⊢⊢jk :L⟧ :=
JFO → Jclause | | L

⟦J ⊎ {aL} ⊢⊢⊢cfl(jk ,a) :⊥⟧:= JFO → Jclause | | L
⟦E ∪ H ⊢⊢⊢res(j, aL.c) :⊥⟧
if j is not of the form in(A)

:=

⟦H ⊢⊢⊢j :L⟧
HFO → Hclause | | L

⟦E ⊎ {aL} ⊢⊢⊢c :⊥⟧
EFO → Eclause | | L

HFO∪EFO → Hclause | | Eclause

⟦E ⊢⊢⊢res(in(L), aL.c) :⊥⟧ := L

⟦E ⊎ {aL} ⊢⊢⊢c :⊥⟧
EFO → Eclause | | L

EFO → Eclause

⟦E ⊢⊢⊢res(in(A), aA.c) :⊥⟧
if A is first-order := A

⟦E ⊎ {aA} ⊢⊢⊢c :⊥⟧
EFO,A→ Eclause

EFO → Eclause

Figure 7. Interpretation of proof terms in the resolution proof format

H → C | | L0

H → C | | L1 | | · · · | | Lm

H → C | | L1 | | · · · | | Lm

H → C | | L0
that involve the Boolean theory lemmas only ifm ≥ 2 (i.e.,
the clause is not a unit clause).
Given an assignment H , we write HFO for the greatest

subset of H made of first-order assignments; and we write
Hclause for the clause L1 | | · · · | | Ln where L1, . . . ,Ln are the
singleton Boolean assignments in H .
The resolution proof format for CDSAT interprets
• A deduction proof term ∅ ⊢⊢⊢in(A) :A as a proof conclud-
ing A;
• A deduction proof term H ⊢⊢⊢j :L of another form as a
proof concluding HFO → Hclause | | L;
• A conflict proof term H ⊢⊢⊢c :⊥ as a proof concluding
HFO → Hclause.

The interpretation is defined by induction on proof terms as
shown in Fig. 7. For instance, consider the interpretations
of a deduction proof term and a conflict proof term that
encapsulate a unit propagation, where K is a clausal form of
H = H ′ ⊎ {L} as in inference (1) from Section 3:

⟦{aK} ⊎ H ′ ⊢⊢⊢UP(a, {a1, . . . ,an}) :L⟧
⟦{aK} ⊎ H ′, a0L ⊢⊢⊢cfl(UP(a, {a1, . . . ,an}),a0) :⊥⟧

where a1, . . . ,an are the identifiers of the elements of H ′.
Both become an instance of a Boolean theory lemma (2):

∅ → K | |H ′clause | | L

Since a CDSAT answer of the form unsat(c)means ∅ ⊢⊢⊢c :⊥,
the resolution proof reconstructed from proof term c is a
refutation, as its conclusion is ∅ → ∅, that is, the empty
clause. As already noted in Section 4, first-order decisions do
not appear in proofs. It follows that first-order assignments
may appear in proofs only if they are initial assignments. If
the input problem contains no first-order assignments (i.e.,
it is an SMT problem), the reconstructed proof involves only
singleton Boolean assignments labeling leaves and guarded

clauses of the form ∅ → C labeling leaves or internal nodes.
In other words, the reconstructed proof is a resolution refu-
tation in the standard sense, deriving the empty clause, and
with leaves labeled by input assignments or theory lemmas.

The use of theory lemmas for propositional reasoning is
less usual and it descends from the choice of treating propo-
sitional logic as a theory. Advantages include the possibility
of applying CDSAT to problems that are not in CNF, and
the possibility of transforming object-level clauses into CD-
SAT clauses and vice versa, as shown above. These trans-
formations also provide a native feature for sharing reso-
lution proofs. For instance in the refutation of Section 4.4,
the conflict proof term c19 = res(j1, a(¬l2∨¬l4).c18), with
j1 = lem({a2l2, a4l4}.c2), yields a6L1,

a7L2 ⊢⊢⊢c19 :⊥, where L1
is (¬l4∨l5) and L2 is (¬l2∨¬l4∨¬l5). The resolution proof re-
constructed from c19 is:
⟦a6L1, a7L2, a2l2, a4l4 ⊢⊢⊢c2 :⊥⟧
∅ → L1 | | L2 | | l2 | | l4

∅ → L1 | | L2 | | (¬l2∨¬l4)

⟦a(¬l2∨¬l4) ⊢⊢⊢c18 :⊥⟧
∅ → (¬l2∨¬l4)

∅ → L1 | | L2
The fact that the learned clause ¬l2∨¬l4 is reused in c18, as
described in Section 4.4, means that the resolution proof
⟦a(¬l2∨¬l4) ⊢⊢⊢c18 :⊥⟧ has two leaves labeled by the same the-
ory lemma

∅ → (¬l2∨¬l4) | | l2 | | l4.

An alternative resolution proof with root ∅ → L1 | | L2 can be
obtained by replacing those two leaves with the subproof in-
terpreting c2, and replacing (¬l2∨¬l4) by L1 | | L2 in all nodes
underneath. This avoids the explicit conversions between
the object-level clause ¬l2∨¬l4 and the CDSAT clause l2 | | l4.
However, in this alternative proof, the subtree interpreting
c2 is duplicated. Such duplications happen in the standard
format of resolution trees where there is only one kind of
clauses. By distinguishing between object-level clauses and
CDSAT clauses, and using the former for input clauses and

12



Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

the latter for generated clauses, CDSAT natively supports
the explicit sharing of subproofs as in resolution DAG’s.

5.2 An LCF Architecture for CDSAT
Another example of proof format is the “dummy” one, where
proofs do not contain any information other than what they
are supposed to be the proofs of :

1. A deduction proof j withH ⊢⊢⊢j :L is the pair ⟨H ,L⟩, and
2. A conflict proof c with H ⊢⊢⊢c :⊥ is H .

Although this “proof format” does not allow any proof check-
ing, the trustworthiness of a reasoner producing such proofs
can still be established by the LCF programming abstrac-
tion [17, 30]. This approach uses a type theorem , whose
constructed inhabitants are provable formulæ. Actually, this
type is defined as an alias for the type formula of formulæ,
but this is known only to a fixed and well-identified piece of
code, called the LCF kernel. This kernel hides the definition of
theorem to the outside world and exports a range of kernel
primitives to manipulate inhabitants of type theorem in a
safe and provably correct way. For instance, a primitive
modus_ponens : theorem -> theorem -> theorem

takes as arguments two inhabitants F andG of type theorem,
checks that F is of the form G ⇒ R, and returns R as an
inhabitant of theorem. The kernel can export a primitive
that reveals that any inhabitant of theorem is a formula, but
obviously not one that casts any inhabitant of formula into
type theorem. In this way, the existence of an inhabitant
F of theorem witnesses the fact that F is provable, as an
inhabitant only results from a series of correct manipulations
by the kernel primitives: if the kernel code is trusted, then F
can be trusted to be a theorem, while no proof has ever been
constructed in memory.

CDSAT is well-suited for the LCF approach: given a type
assign for assignments and single_assign for singleton
assignments, a trusted kernel defines types
type deduction = assign*single_assign
type conflict = assign

hides their definitions to the outside world, and exports a
range of primitives corresponding to the proof term con-
structs. The signature in Fig. 8 lists hidden type definitions
and exported primitives. The primitives check that the con-
ditions of the rules in Fig. 4 are met: for instance, in checks
that its argument is one of the initial assignments. Primitive
lem takes as arguments a conflict E and an assignment H ,
checks that H is Boolean and is included in E, computes a
clausal form L of H , and produces the deduction ⟨E\H ,L⟩,
where \ is set subtraction. Primitive res takes a deduction
⟨H ,L⟩ and a conflict, checks that L appears in the conflict,
and returns the conflict where L is replaced by H . Primi-
tives coerc and cfl take as arguments a Tk -theory proof,
1 ≤ k ≤ n, given as an inhabitant of 'k theory_proof, a type
parameterized by k . Their first argument is a handler for the-
ory Tk , whose type 'k theory_handler is parameterized by

type deduction
type conflict
in : single_assign -> deduction
coerc : 'k theory_handler

-> 'k theory_proof -> deduction
lem : conflict -> assign -> deduction
cfl : 'k theory_handler

-> 'k theory_proof -> conflict
res : deduction -> conflict -> conflict
reveal : conflict -> assign

Figure 8. API exported by a CDSAT kernel

a matching k , as implemented for example by a Generalized
Algebraic DataType (GADT) [11, 37]. The handler allows the
primitives to check that Tk is one of the combined theories
before coercing the theory proof, trusted to be correct, into
a deduction or a conflict. Proof-carrying CDSAT can be pro-
grammed on top of this kernel, so that, when it halts with
answer unsat(c), the proof term c is an inhabitant of type
conflict. The reveal primitive applied to c will return the
empty assignment. Although no proof has been constructed
in memory, the answer is correct by construction.

6 Discussion
Conflict-driven satisfiability procedures work by construct-
ing partial assignments, detecting conflicts when the assign-
ment falsifies the input formula, and performing conflict-
driven inferences to learn new formulæ and reorient the
search. In prior work, we presented CDSAT as a combina-
tion procedure for conflict-driven theory satisfiability solvers
for mutually disjoint theories, and proved its termination,
soundness, and completeness under suitable assumptions. In
the present work, we extend the CDSAT transition system
with lemmatization so that new learned clauses can be added
during backjumping from a conflict even in the context of a
partial assignment. We also annotate the transition system
in order to construct a proof object when the procedure dis-
covers that the input problem is unsatisfiable. These proof
objects can be rendered in a number of proof formats and
the resulting proofs checked by a trusted checker or shown
to be correct by construction.

In future work, we plan to implement a reasoner based on
the CDSAT approach exploring different search plans and
proof formats. Search plans play a key role in coordinating
the work of theory modules, including prioritizing them
with respect to both decisions and deductions. Topics for
further investigations include extensions of proofs to account
for preprocessing techniques widely used in SAT and SMT
solving, evaluating the cost of proof generation and proof
checking in CDSAT, and studying proof formats that reduce
it as done for instance in SAT solving [13].

13



CPP’18, January 8–9, 2018, Los Angeles, CA, USA M. P. Bonacina, S. Graham-Lengrand, and N. Shankar

References
[1] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,

Laurent Théry, and Benjamin Werner. 2011. A Modular Integration of
SAT/SMT Solvers to Coq through Proof Witnesses. In Proceedings of
the First International Conference on Certified Programs and Proofs (CPP),
Jean-Pierre Jouannaud and Zhong Shao (Eds.). Springer, Heidelberg,
Germany, EU, 135–150.

[2] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
2006. Splitting on demand in SAT modulo theories. In Proceedings
of the Thirteenth International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR) (Lecture Notes in Artificial
Intelligence), Miki Hermann and Andrei Voronkov (Eds.), Vol. 4246.
Springer, Heidelberg, Germany, EU, 512–526.

[3] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.
2011. Extending Sledgehammer with SMT solvers. In Proceedings of
the Twenty-Third International Conference on Automated Deduction
(CADE) (Lecture Notes in Artificial Intelligence), Nikolaj Bjørner and
Viorica Sofronie-Stokkermans (Eds.), Vol. 6803. Springer, Heidelberg,
Germany, EU, 116–130.

[4] Sascha Böhme and Tjark Weber. 2010. Fast LCF-style proof reconstruc-
tion for Z3. In Proceedings of the International Conference on Interactive
Theorem Proving (ITP) (Lecture Notes in Computer Science), Matt Kauf-
mann and Lawrence C. Paulson (Eds.), Vol. 6172. Springer, Heidelberg,
Germany, EU, 179–194.

[5] Maria Paola Bonacina. 1996. On the reconstruction of proofs in dis-
tributed theorem proving: a modified Clause-Diffusion method. Jour-
nal of Symbolic Computation 21, 4–6 (1996), 507–522.

[6] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan
Shankar. 2016. A model-constructing framework for theory combination.
Technical Report 99/2016. Dipartimento di Informatica, Università
degli Studi di Verona, Verona, Italy, EU. https://hal.archives-ouvertes.
fr/hal-01425305 Also Technical Report of SRI International and INRIA
- CNRS - École Polytechnique; revised November 2017.

[7] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan
Shankar. 2017. Satisfiability modulo theories and assignments. In
Proceedings of the Twenty-Sixth International Conference on Automated
Deduction (CADE) (Lecture Notes in Artificial Intelligence), Leonardo de
Moura (Ed.), Vol. 10395. Springer, Heidelberg, Germany, EU, 42–59.

[8] Maria Paola Bonacina and Moa Johansson. 2015. Interpolation sys-
tems for ground proofs in automated deduction: a survey. Journal of
Automated Reasoning 54, 4 (2015), 353–390.

[9] Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura.
2011. On deciding satisfiability by theorem proving with speculative
inferences. Journal of Automated Reasoning 47, 2 (2011), 161–189.

[10] Ritu Chadha and David A. Plaisted. 1993. On the mechanical derivation
of loop invariants. Journal of Symbolic Computation 15, 5-6 (1993),
705–744.

[11] James Cheney and Ralf Hinze. 2003. First-class phantom types. Techni-
cal Report CUCIS TR2003-1901. Cornell University, Ithaca, NY, USA.

[12] Scott Cotton. 2010. Natural domain SMT: A preliminary assessment. In
Proceedings of the Eighth International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS) (Lecture Notes in Com-
puter Science), Krishnendu Chatterjee and Thomas A. Henzinger (Eds.),
Vol. 6246. Springer, Heidelberg, Germany, EU, 77–91.

[13] Luís Cruz-Felipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kauf-
mann, and Peter Schneider-Kamp. 2017. Efficient certified RAT verifi-
cation. In Proceedings of the Twenty-Sixth International Conference on
Automated Deduction (CADE) (Lecture Notes in Artificial Intelligence),
Leonardo de Moura (Ed.), Vol. 10395. Springer, Heidelberg, Germany,
EU, 220–236.

[14] Leonardo de Moura and Dejan Jovanović. 2013. A model-constructing
satisfiability calculus. In Proceedings of the Fourteenth International
Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI) (Lecture Notes in Computer Science), Roberto Giacobazzi, Josh

Berdine, and Isabella Mastroeni (Eds.), Vol. 7737. Springer, Heidelberg,
Germany, EU, 1–12.

[15] Michael Dierkes. 2001. Model Building for Sets of Guarded Clauses. Ph.D.
Dissertation. Institut National Polytechnique de Grenoble, Grenoble,
France, EU.

[16] Harald Ganzinger and Hans de Nivelle. 1999. A superposition decision
procedure for the guarded fragment with equality. In Proceedings of
the Fourteenth IEEE Symposium on Logic in Computer Science (LICS).
IEEE Computer Society Press, Los Alamitos, CA, USA.

[17] Michael Gordon, Robin Milner, and Christopher Wadsworth. 1979.
Edinburgh LCF: a mechanized logic of computation. Lecture Notes in
Computer Science, Vol. 78. Springer, Heidelberg, Germany, EU.

[18] Stéphane Graham-Lengrand. 2013. Psyche: a proof-search engine
based on sequent calculus with an LCF-style architecture. In Proceed-
ings of the Twenty-Second International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX) (Lec-
ture Notes in Artificial Intelligence), Didier Galmiche and Dominique
Larchey-Wendling (Eds.), Vol. 8123. Springer, Heidelberg, Germany,
EU, 149–156.

[19] Leopold Haller, Alberto Griggio, Martin Brain, and Daniel Kroening.
2012. Deciding floating-point logic with systematic abstraction. In
Proceedings of the Twelfth International Conference on Formal Methods
in Computer Aided Design (FMCAD), Gianpiero Cabodi and Satnam
Singh (Eds.). ACM and IEEE, New York, NY, USA.

[20] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. 2004. Abstractions from proofs. In Proceedings of the Thirty-
First ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), Xavier Leroy (Ed.). ACM, New York, NY, USA, 232–
244.

[21] Dejan Jovanović. 2017. Solving nonlinear integer arithmetic with
MCSAT. In Proceedings of the Eighteenth International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI) (Lec-
ture Notes in Computer Science), Ahmed Bouajjani and David Monniaux
(Eds.), Vol. 10145. Springer, Heidelberg, Germany, EU, 330–346.

[22] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. 2013. The
design and implementation of the model-constructing satisfiability
calculus. In Proceedings of the Thirteenth Conference on Formal Methods
in Computer Aided Design (FMCAD), Barbara Jobstman and Sandip
Ray (Eds.). ACM and IEEE, New York, NY, USA.

[23] Dejan Jovanović and Leonardo de Moura. 2011. Cutting to the chase:
solving linear integer arithmetic. In Proceedings of the Twenty-Third
International Conference on Automated Deduction (CADE) (Lecture
Notes in Artificial Intelligence), Nikolaj Bjørner and Viorica Sofronie-
Stokkermans (Eds.), Vol. 6803. Springer, Heidelberg, Germany, EU,
338–353.

[24] Dejan Jovanović and Leonardo de Moura. 2012. Solving non-linear
arithmetic. In Proceedings of the Sixth International Joint Conference on
Automated Reasoning (IJCAR) (Lecture Notes in Artificial Intelligence),
Bernhard Gramlich, Dale Miller, and Ulrike Sattler (Eds.), Vol. 7364.
Springer, Heidelberg, Germany, EU, 339–354.

[25] Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. 2009.
Conflict resolution. In Proceedings of the Fifteenth International Confer-
ence on Principles and Practice of Constraint Programming (CP) (Lecture
Notes in Computer Science), Ian P. Gent (Ed.), Vol. 5732. Springer, Hei-
delberg, Germany, EU, 509–523.

[26] Sava Krstić and Amit Goel. 2007. Architecting solvers for SAT modulo
theories: Nelson-Oppen with DPLL. In Proceedings of the Sixth Interna-
tional Symposium on Frontiers of Combining Systems (FroCoS) (Lecture
Notes in Artificial Intelligence), Frank Wolter (Ed.), Vol. 4720. Springer,
Heidelberg, Germany, EU, 1–27.

[27] João P. Marques Silva, Inês Lynce, and Sharad Malik. 2009. Conflict-
driven clause learning SAT solvers. In Handbook of Satisfiability,
Armin Biere, Marjin Heule, Hans Van Maaren, and Toby Walsh (Eds.).
Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press,
Amsterdam, The Netherlands, EU, 131–153.

14

https://hal.archives-ouvertes.fr/hal-01425305
https://hal.archives-ouvertes.fr/hal-01425305


Proofs in Conflict-Driven Theory Combination CPP’18, January 8–9, 2018, Los Angeles, CA, USA

[28] João P. Marques Silva and Karem A. Sakallah. 1999. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 5
(1999), 506–521.

[29] Kenneth L. McMillan, A. Kuehlmann, and Mooly Sagiv. 2009. Gen-
eralizing DPLL to richer logics. In Proceedings of the Twenty-First In-
ternational Conference on Computer Aided Verification (CAV) (Lecture
Notes in Computer Science), Ahmed Bouajjani and Oded Maler (Eds.),
Vol. 5643. Springer, Heidelberg, Germany, EU, 462–476.

[30] Robin Milner. 1979. LCF: A Way of Doing Proofs with a Machine. In
Proceedings of the Eighth International Symposium on Mathematical
Foundations of Computer Science (MFCS) (Lecture Notes in Computer
Science), Jirí Becvár (Ed.), Vol. 74. Springer, Heidelberg, Germany, EU,
146–159.

[31] Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating
Decision Procedures. ACM Transactions on Programming Languages
and Systems 1, 2 (1979), 245–257.

[32] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solv-
ing SAT and SAT modulo theories: from an abstract Davis-Putnam-
Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53, 6
(2006), 937–977.

[33] Natarajan Shankar. 2005. Inference Systems for Logical Algorithms.
In FSTTCS 2005: Foundations of Software Technology and Theoretical
Computer Science (Lecture Notes in Computer Science), R. Ramanujam
and Sandeep Sen (Eds.), Vol. 3821. Springer, Heidelberg, Germany, EU,
60–78.

[34] Natarajan Shankar. 2008. Trust and automation in verification tools.
In Sixth International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA) (Lecture Notes in Computer Science),
Sungdeok (Steve) Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and
Mahesh Viswanathan (Eds.), Vol. 5311. Springer, Heidelberg, Germany,

EU, 4–17.
[35] Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta. 2005. De-

ciding separation logic formulae by SAT and incremental negative
cycle elimination. In Proceedings of the Twelfth International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR) (Lecture Notes in Artificial Intelligence), Geoff Sutcliffe and An-
drei Voronkov (Eds.), Vol. 3835. Springer, Heidelberg, Germany, EU,
322–336.

[36] Steven A. Wolfman and Daniel S. Weld. 1999. The LPSAT engine and
its application to resource planning. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), Thomas
Dean (Ed.), Vol. 1. Morgan Kaufmann Publishers, San Francisco, CA,
USA, 310–316.

[37] Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recur-
sive datatype constructors. In Proceedings of the Thirtieth SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
Alex Aiken and Greg Morrisett (Eds.). ACM, New York, NY, USA,
224–235.

[38] Aleksandar Zeljić, Christoph M. Wintersteiger, and Philipp Rümmer.
2016. Deciding bit-vector formulas with mcSAT. In Proceedings of
the Nineteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT) (Lecture Notes in Computer Science), Nadia
Creignou and Daniel Le Berre (Eds.), Vol. 9710. Springer, Heidelberg,
Germany, EU, 249–266.

[39] Lintao Zhang and Sharad Malik. 2003. Validating SAT solvers using
an independent resolution-based checker: practical implementations
and other applications. In Proceedings of the Conference on Design
Automation and Test in Europe (DATE). IEEE, Los Alamitos, CA, USA,
10880–10885.

15


	Abstract
	1 Introduction
	2 Background on CDSAT
	3 CDSAT with Lemma Learning
	4 Proof Object Production in CDSAT
	4.1 Theory-Specific Proofs
	4.2 Proof Terms
	4.3 Proof-Carrying CDSAT
	4.4 Example of Proof-Carrying Derivation

	5 From Proof Terms to Proofs
	5.1 Proof Format Based on Resolution
	5.2 An LCF Architecture for CDSAT

	6 Discussion
	References

