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This talk is about the quantifier-free core of SMT-solving.
It involves

I extending CDCL (Conflict-Driven Clause Learning)
I combining theories

You may have seen the DPLL(T ) framework:

SAT-solver
(CDCL) Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]
The material presented here departs from this picture.
Motivation: conflict-driven reasoning
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Combining conflict-driven reasoning mechanisms

The CDSAT framework

Termination, Soundness and Completeness
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1. Combining conflict-driven reasoning
mechanisms
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Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified
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Conflict-driven reasoning can be used for (other) theories

Examples:
I LPSAT [WW99]
I Separation logic [WIGG05]
I Linear Rational Arithmetic [MKS09, KTV09, Cot10]
I Linear Integer Arithmetic [Jd11]
I Non-Linear Arithmetic [JdM12]

These conflict-driven decision procedures for T -satisfiability
I use assignments to first-order variables (e.g. x ← 3/4)

like CDCL uses Boolean assignments to Boolean variables;
I may explain conflicts by introducing atoms that are not in the

input.
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An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:

I Guess a value, e.g. y←0
Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)
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Using conflict-driven reasoning in the traditional scheme?

SAT-solver
(CDCL)

Comb.

T1

T2

T3

T4

T5

Missing out on tighter integration possibilities,
which overcome some limitations of the DPLL(T ) interfaces
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A recent approach: MCSAT (Model-Constructing Sat.)
MCSAT, introduced in [dMJ13, JBdM13],

I departs from the DPLL(T ) architecture
I organises some combinations into a single conflict-driven loop:

Trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Bool

Bool

EUF

mo
del building

proof buildin
g

. . .

. . .

“Some combinations”:
I Boolean theory

+ 1 generic theory T [dMJ13, Jov17]
I Boolean theory + Linear Rational Arithmetic (LRA)

+ Equality with Uninterpreted Functions (EUF) [JBdM13]
Other MCSAT contributions: bit-vectors [ZWR16, GLJ17]
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Features of model-constructing satisfiability
I Boolean theory can have the same status as other theories.
I Natively overcomes some limitations of the (basic) DPLL(T )

interfaces:
I in order to explain conflicts, terms and literals are exchanged

that do not belong to the original problem, providing in some
cases exponential speed-ups
(already the case in some extensions of DPLL(T ) -

see Splitting on demand [BNOT06]);

I determining the truth-value of a literal can be done by
evaluation (when its variables are assigned values on the trail);

I communicating entailed equalities like t1 ' t2 may be
subsumed by the fact that the putative partial model written
on the trail determines this equality evaluates to true;

I when a theory T has to decide a value for an assignment,
its choice may be informed by inspecting what assignments
other theories have written on the trail.
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Model-constructing sat. / Conflict-driven reasoning

I reserve Model-Constructing satisfiability for the instances of
conflict-driven reasoning where theories have canonical models:
If a formula is not valid, a counter-example can be built in that model.
e.g. Boolean logic, integer arithmetic, real arithmetic, bitvectors. . .

I Interpretation of sorts is fixed and known in advance
(no cardinality issues);

I Symbols are either interpreted or uninterpreted.

Left to be determined:
the interpretation of variables and uninterpreted symbols.
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This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)

I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?
Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?
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The answer: CDSAT
We answer these questions in a framework called CDSAT
for Conflict-Driven Satisfiability.

I CDSAT generalises conflict-driven reasoning to generic
combinations of disjoint theories T1, . . . , Tn

I CDSAT solves the problem of combining multiple
conflict-driven Tk -satisfiability procedures into a
conflict-driven (

⋃n
k=1 Tk)-satisfiability procedure

I CDSAT reduces to MCSAT when it combines Boolean
reasoning with 1 MCSAT-procedure

I CDSAT can integrate black-box procedures,
and reduces to the equality-sharing scheme if only such
procedures are used

We identify sufficient requirements on theory reasoning modules
for the combined system to be sound, complete, and terminating.
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2. The CDSAT framework
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The global picture
. . . is roughly the same as before (all theories somehow participate
to the main conflict-driven loop):

T1

T2

T3

T4

T5

T6
mo
del building

proof buildin

g

. . .

. . .

. . . except that it it now parametric in T1, . . . , Tn.
The trail is made of single assignments t ← c (term+value of
matching sorts) coming from different theories (+ some structure).
Everything is on the trail, including assertions from the input
problem (e.g. C ← true for an input clause C)
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Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool
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What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments
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What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)

I Soundness requirement:
Every model of the premisses is a model of the conclusion
i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck

*

is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements
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What is a theory module? (Equality inferences)

All theory modules have the equality inferences:

t1←c1, t2←c2 ` t1 ' t2 if c1 and c2 are the same value
t1←c1, t2←c2 ` t1 6' t2 if c1 and c2 are distinct values

` t1 ' t1
t1 ' t2 ` t2 ' t1

t1 ' t2, t2 ' t3 ` t1 ' t3
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Trail
. . . is a stack of justified assignments H`(t←c) and decisions ?(t←c)
Justification H: a set of assignments that appear earlier on the trail
Trail initialised with input problem

(assignments with empty justifications).
Example (trail grows downwards):

(l←true) abbreviated as l

Level:
greatest decision involved

Here: conflict of level 1
(if conflict is of level 0. . .
. . . problem is unsat)

id trail items just.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0

3 y←0 ?

1

4 − y < −2 {0, 2}

0
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CDSAT: Search rules

CDSAT is parameterized by finite set of terms B called global basis.

Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if t←c is “relevant & acceptable”
given T ’s view of the trail Γ

Deduce
Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,

and t←b is not in Γ,

and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ

Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .
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An example with arithmetic, arrays, congruence

f (a[i := v ][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0

4 u←c ? 1
5 v←c ? 2
6 a[i := v ][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v ][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v ][j] {4, 6} 3
11 f (u) 6' f (a[i := v ][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v ][j]←c ? 3
7 u ' a[i := v ][j] {4, 6} 3
8 f (u) ' f (a[i := v ][j]) {7} 3

. . .
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3. Termination, Soundness and Completeness
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Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.

How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.
For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X ), called local basis

(those terms possibly introduced by T during the run)
If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)
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What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)
In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.
The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.
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Theory modules given as examples in the paper
I EUF

(T0-complete for all T0)

(ti ' ui )i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

I Arrays: similar, except for extensionality

(T0-complete for all T0 such that. . . )

I LRA: evaluation inference, Fourier-Motzkin resolution
inference as in MCSAT, etc

(T0-complete for all T0 imposing |Q| infinite)
I Black box procedure for equality-sharing: coarse-grain

inferences
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable (as detected by the black box)

(T0-complete for all T0 imposing the cardinality of all known
sorts but Bool to be countably infinite)
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Concluding remarks
I Learning:

Not needed for soundness, completeness, and termination,
but highly desirable - in the paper’s long version

I Proof production: is easy, each theory inference can come with
a proof object, CDSAT only aggregates them in simple ways

I CDSAT is a framework:
leaves large freedom to the design of search plans / strategies

I First-order assignments: I mostly presented them as a way to
build a model of an input formula - they could be part of the
input

l1←b1, . . . , lk←bk , t1←c1, . . . , tj←cj

The question is then “Is there a model of the constraints (in
sort Bool) that extends these first-order assignments?”
Note: the choice of theory extensions impacts the meaning of
the question.
We suggest to call this SMA,
for Satisfiability Modulo Assignments.
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Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool

Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T ) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?
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An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.

I Guess a value, e.g. y←0
Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
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Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items just.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0
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CDSAT: Search rules

Parameterized by finite set of terms B called global basis
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c) if t←c (in T -public sort) does not

immediately violate T ’s view of the trail ΓT
Deduce

Γ −→ Γ, J`L if J `T L and J ⊆ Γ,
and L is not in Γ,
and L is for a formula in B

Conflict
Γ −→ 〈Γ; J , L〉 if J `T L and J ⊆ Γ,

and L is in Γ
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CDSAT: Conflict analysis rules

Fail
〈Γ; ∅〉 −→unsat

Undo
〈Γ;E ,A〉 −→Γ≤m−1 if A is a non-Boolean decision

of level m > levelΓ(E )
Backjump
〈Γ;E , L〉 −→Γ≤m, E`L if levelΓ(L) > m, where m = levelΓ(E )

Resolve
〈Γ;E ,A〉 −→〈Γ;E ∪ H〉 if H`A is in Γ and

H does not contain a non-Boolean decision
whose level is levelΓ(E ,A)

UndoDecide
〈Γ;E , L, L′〉 −→Γ≤m−1, ?L if H`L and H′`L′ are in Γ and

H ∩ H ′ contains a non-Boolean decision
of level m = levelΓ(E , L, L′)37/39



An example with arithmetic, arrays, congruence

f (a[i := v ][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0

4 u←c ? 1
5 v←c ? 2
6 a[i := v ][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v ][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v ][j] {4, 6} 3
11 f (u) 6' f (a[i := v ][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v ][j]←c ? 3
7 u ' a[i := v ][j] {4, 6} 3
8 f (u) ' f (a[i := v ][j]) {7} 3
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Example for LRA
LRA-public sorts: just Q.

LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:

I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)
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