
Satisfiability Modulo Theories and Assignments

Maria Paola Bonacina, Stéphane Graham-Lengrand,
and Natarajan Shankar

Uni. degli Studi di Verona - CNRS - SRI International

CADE, 8th August 2017

1/39

This talk is about the quantifier-free core of SMT-solving.
It involves

I extending CDCL (Conflict-Driven Clause Learning)
I combining theories

You may have seen the DPLL(T) framework:

SAT-solver
(CDCL) Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]
The material presented here departs from this picture.
Motivation: conflict-driven reasoning

2/39

This talk is about the quantifier-free core of SMT-solving.
It involves

I extending CDCL (Conflict-Driven Clause Learning)
I combining theories

You may have seen the DPLL(T) framework:

SAT-solver
(CDCL) Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]

The material presented here departs from this picture.
Motivation: conflict-driven reasoning

2/39

This talk is about the quantifier-free core of SMT-solving.
It involves

I extending CDCL (Conflict-Driven Clause Learning)
I combining theories

You may have seen the DPLL(T) framework:

SAT-solver
(CDCL) Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]
The material presented here departs from this picture.
Motivation: conflict-driven reasoning

2/39

Combining conflict-driven reasoning mechanisms

The CDSAT framework

Termination, Soundness and Completeness

3/39

1. Combining conflict-driven reasoning
mechanisms

4/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a

ba b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a b

a b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a

a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a b

a b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a
a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a b

a

b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a
a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a b

a b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a
a

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a b

a b

5/39

Conflict-driven reasoning
2-player game to determine whether a problem is sat.
It involves a trail where a putative model is being described.
It relies on a notion of conflict between the putative model and the
constraints it should satisfy.
Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified

a⇒ b
b ⇒ a
a⇒ b
b ⇒ a
a
⊥

mod
el building

SAT
player

UNSAT
player

proof building

. . .

. . .

conflict

conflict
fixed

dec
isio

n ma
king, propagations

backjumping, conflict
ana

lys
is

?a ba b

5/39

Conflict-driven reasoning can be used for (other) theories

Examples:
I LPSAT [WW99]
I Separation logic [WIGG05]
I Linear Rational Arithmetic [MKS09, KTV09, Cot10]
I Linear Integer Arithmetic [Jd11]
I Non-Linear Arithmetic [JdM12]

These conflict-driven decision procedures for T -satisfiability
I use assignments to first-order variables (e.g. x ← 3/4)

like CDCL uses Boolean assignments to Boolean variables;
I may explain conflicts by introducing atoms that are not in the

input.

6/39

Conflict-driven reasoning can be used for (other) theories

Examples:
I LPSAT [WW99]
I Separation logic [WIGG05]
I Linear Rational Arithmetic [MKS09, KTV09, Cot10]
I Linear Integer Arithmetic [Jd11]
I Non-Linear Arithmetic [JdM12]

These conflict-driven decision procedures for T -satisfiability
I use assignments to first-order variables (e.g. x ← 3/4)

like CDCL uses Boolean assignments to Boolean variables;
I may explain conflicts by introducing atoms that are not in the

input.

6/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:

I Guess a value, e.g. y←0
Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0

Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.

I and so on. . .
(when there is no guess to undo, problem is UNSAT)

7/39

An example in Linear Rational Arithmetic

l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA. Here’s how it could start:
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, range of possible values for x is empty
What to do? just undo y←0 and remember that y 6= 0?

I No! Clash of bounds suggests a better conflict explanation,
by inferring l0 + 2l2, i.e. l3 : (−y < −2)
It rules out y←0,
but also many values that would fail for the same reasons.

I Now undo the guess but keep l3.
I and so on. . .

(when there is no guess to undo, problem is UNSAT)
7/39

Using conflict-driven reasoning in the traditional scheme?

SAT-solver
(CDCL)

Comb.

T1

T2

T3

T4

T5

Missing out on tighter integration possibilities,
which overcome some limitations of the DPLL(T) interfaces

8/39

Using conflict-driven reasoning in the traditional scheme?

SAT-solver
(CDCL)

Comb.

T1

T2

T3

T4

T5

Missing out on tighter integration possibilities,
which overcome some limitations of the DPLL(T) interfaces

8/39

Using conflict-driven reasoning in the traditional scheme?

SAT-solver
(CDCL)

Comb.

T1

T2

T3

T4

T5

Missing out on tighter integration possibilities,
which overcome some limitations of the DPLL(T) interfaces

8/39

A recent approach: MCSAT (Model-Constructing Sat.)
MCSAT, introduced in [dMJ13, JBdM13],

I departs from the DPLL(T) architecture
I organises some combinations into a single conflict-driven loop:

Trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Bool

Bool

EUF

mo
del building

proof buildin
g

. . .

. . .

“Some combinations”:
I Boolean theory

+ 1 generic theory T [dMJ13, Jov17]
I Boolean theory + Linear Rational Arithmetic (LRA)

+ Equality with Uninterpreted Functions (EUF) [JBdM13]
Other MCSAT contributions: bit-vectors [ZWR16, GLJ17]

9/39

A recent approach: MCSAT (Model-Constructing Sat.)
MCSAT, introduced in [dMJ13, JBdM13],

I departs from the DPLL(T) architecture
I organises some combinations into a single conflict-driven loop:

Trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Bool

T

Bool

T

EUF

mo
del building

proof buildin
g

. . .

. . .

“Some combinations”:
I Boolean theory

+ 1 generic theory T [dMJ13, Jov17]

I Boolean theory + Linear Rational Arithmetic (LRA)
+ Equality with Uninterpreted Functions (EUF) [JBdM13]

Other MCSAT contributions: bit-vectors [ZWR16, GLJ17]

9/39

A recent approach: MCSAT (Model-Constructing Sat.)
MCSAT, introduced in [dMJ13, JBdM13],

I departs from the DPLL(T) architecture
I organises some combinations into a single conflict-driven loop:

Trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Bool

LRA

Bool

LRA

EUF

mo
del building

proof buildin
g

. . .

. . .

“Some combinations”:
I Boolean theory

+ 1 generic theory T [dMJ13, Jov17]
I Boolean theory + Linear Rational Arithmetic (LRA)

+ Equality with Uninterpreted Functions (EUF) [JBdM13]

Other MCSAT contributions: bit-vectors [ZWR16, GLJ17]

9/39

A recent approach: MCSAT (Model-Constructing Sat.)
MCSAT, introduced in [dMJ13, JBdM13],

I departs from the DPLL(T) architecture
I organises some combinations into a single conflict-driven loop:

Trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Bool

Bool

EUF

mo
del building

proof buildin
g

. . .

. . .

“Some combinations”:
I Boolean theory

+ 1 generic theory T [dMJ13, Jov17]
I Boolean theory + Linear Rational Arithmetic (LRA)

+ Equality with Uninterpreted Functions (EUF) [JBdM13]
Other MCSAT contributions: bit-vectors [ZWR16, GLJ17]

9/39

Features of model-constructing satisfiability
I Boolean theory can have the same status as other theories.
I Natively overcomes some limitations of the (basic) DPLL(T)

interfaces:
I in order to explain conflicts, terms and literals are exchanged

that do not belong to the original problem, providing in some
cases exponential speed-ups
(already the case in some extensions of DPLL(T) -

see Splitting on demand [BNOT06]);

I determining the truth-value of a literal can be done by
evaluation (when its variables are assigned values on the trail);

I communicating entailed equalities like t1 ' t2 may be
subsumed by the fact that the putative partial model written
on the trail determines this equality evaluates to true;

I when a theory T has to decide a value for an assignment,
its choice may be informed by inspecting what assignments
other theories have written on the trail.

10/39

Features of model-constructing satisfiability
I Boolean theory can have the same status as other theories.
I Natively overcomes some limitations of the (basic) DPLL(T)

interfaces:
I in order to explain conflicts, terms and literals are exchanged

that do not belong to the original problem, providing in some
cases exponential speed-ups
(already the case in some extensions of DPLL(T) -

see Splitting on demand [BNOT06]);
I determining the truth-value of a literal can be done by

evaluation (when its variables are assigned values on the trail);

I communicating entailed equalities like t1 ' t2 may be
subsumed by the fact that the putative partial model written
on the trail determines this equality evaluates to true;

I when a theory T has to decide a value for an assignment,
its choice may be informed by inspecting what assignments
other theories have written on the trail.

10/39

Features of model-constructing satisfiability
I Boolean theory can have the same status as other theories.
I Natively overcomes some limitations of the (basic) DPLL(T)

interfaces:
I in order to explain conflicts, terms and literals are exchanged

that do not belong to the original problem, providing in some
cases exponential speed-ups
(already the case in some extensions of DPLL(T) -

see Splitting on demand [BNOT06]);
I determining the truth-value of a literal can be done by

evaluation (when its variables are assigned values on the trail);
I communicating entailed equalities like t1 ' t2 may be

subsumed by the fact that the putative partial model written
on the trail determines this equality evaluates to true;

I when a theory T has to decide a value for an assignment,
its choice may be informed by inspecting what assignments
other theories have written on the trail.

10/39

Features of model-constructing satisfiability
I Boolean theory can have the same status as other theories.
I Natively overcomes some limitations of the (basic) DPLL(T)

interfaces:
I in order to explain conflicts, terms and literals are exchanged

that do not belong to the original problem, providing in some
cases exponential speed-ups
(already the case in some extensions of DPLL(T) -

see Splitting on demand [BNOT06]);
I determining the truth-value of a literal can be done by

evaluation (when its variables are assigned values on the trail);
I communicating entailed equalities like t1 ' t2 may be

subsumed by the fact that the putative partial model written
on the trail determines this equality evaluates to true;

I when a theory T has to decide a value for an assignment,
its choice may be informed by inspecting what assignments
other theories have written on the trail.

10/39

Model-constructing sat. / Conflict-driven reasoning

I reserve Model-Constructing satisfiability for the instances of
conflict-driven reasoning where theories have canonical models:
If a formula is not valid, a counter-example can be built in that model.
e.g. Boolean logic, integer arithmetic, real arithmetic, bitvectors. . .

I Interpretation of sorts is fixed and known in advance
(no cardinality issues);

I Symbols are either interpreted or uninterpreted.

Left to be determined:
the interpretation of variables and uninterpreted symbols.

11/39

Model-constructing sat. / Conflict-driven reasoning

I reserve Model-Constructing satisfiability for the instances of
conflict-driven reasoning where theories have canonical models:
If a formula is not valid, a counter-example can be built in that model.
e.g. Boolean logic, integer arithmetic, real arithmetic, bitvectors. . .

I Interpretation of sorts is fixed and known in advance
(no cardinality issues);

I Symbols are either interpreted or uninterpreted.

Left to be determined:
the interpretation of variables and uninterpreted symbols.

11/39

Model-constructing sat. / Conflict-driven reasoning

I reserve Model-Constructing satisfiability for the instances of
conflict-driven reasoning where theories have canonical models:
If a formula is not valid, a counter-example can be built in that model.
e.g. Boolean logic, integer arithmetic, real arithmetic, bitvectors. . .

I Interpretation of sorts is fixed and known in advance
(no cardinality issues);

I Symbols are either interpreted or uninterpreted.

Left to be determined:
the interpretation of variables and uninterpreted symbols.

11/39

This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)

I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?
Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?

12/39

This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)
I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?
Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?

12/39

This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)
I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?
Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?

12/39

This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)
I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?

Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?

12/39

This leaves open the following questions
I Specific combinations of MCSAT theories seem simple. . .

. . . once we know how all sorts are interpreted,
and for each sort there is a clear theory that “owns” it

(i.e. is in charge of proposing assignments in that sort)
I What about the generic combination of n MCSAT theories
T1, . . . , Tn?
What do we need to know about them?
i.e. what requirements can we enforce to ensure soundness,
completeness, and termination of their combination?

I What about the generic combination of n theories in general?
(e.g. it is not clear which sorts they “own”,
they may not have a canonical model, etc)

In particular, what about theories for which we have a black
box fit for the equality-sharing / Nelson-Oppen scheme?
Is there a way to integrate or generalize both MCSAT and the
equality sharing scheme?

12/39

The answer: CDSAT
We answer these questions in a framework called CDSAT
for Conflict-Driven Satisfiability.

I CDSAT generalises conflict-driven reasoning to generic
combinations of disjoint theories T1, . . . , Tn

I CDSAT solves the problem of combining multiple
conflict-driven Tk -satisfiability procedures into a
conflict-driven (

⋃n
k=1 Tk)-satisfiability procedure

I CDSAT reduces to MCSAT when it combines Boolean
reasoning with 1 MCSAT-procedure

I CDSAT can integrate black-box procedures,
and reduces to the equality-sharing scheme if only such
procedures are used

We identify sufficient requirements on theory reasoning modules
for the combined system to be sound, complete, and terminating.

13/39

The answer: CDSAT
We answer these questions in a framework called CDSAT
for Conflict-Driven Satisfiability.

I CDSAT generalises conflict-driven reasoning to generic
combinations of disjoint theories T1, . . . , Tn

I CDSAT solves the problem of combining multiple
conflict-driven Tk -satisfiability procedures into a
conflict-driven (

⋃n
k=1 Tk)-satisfiability procedure

I CDSAT reduces to MCSAT when it combines Boolean
reasoning with 1 MCSAT-procedure

I CDSAT can integrate black-box procedures,
and reduces to the equality-sharing scheme if only such
procedures are used

We identify sufficient requirements on theory reasoning modules
for the combined system to be sound, complete, and terminating.

13/39

2. The CDSAT framework

14/39

The global picture
. . . is roughly the same as before (all theories somehow participate
to the main conflict-driven loop):

T1

T2

T3

T4

T5

T6
mo
del building

proof buildin

g

. . .

. . .

. . . except that it it now parametric in T1, . . . , Tn.
The trail is made of single assignments t ← c (term+value of
matching sorts) coming from different theories (+ some structure).
Everything is on the trail, including assertions from the input
problem (e.g. C ← true for an input clause C)

15/39

The global picture
. . . is roughly the same as before (all theories somehow participate
to the main conflict-driven loop):

T1

T2

T3

T4

T5

T6
mo
del building

proof buildin

g

. . .

. . .

. . . except that it it now parametric in T1, . . . , Tn.

The trail is made of single assignments t ← c (term+value of
matching sorts) coming from different theories (+ some structure).
Everything is on the trail, including assertions from the input
problem (e.g. C ← true for an input clause C)

15/39

The global picture
. . . is roughly the same as before (all theories somehow participate
to the main conflict-driven loop):

T1

T2

T3

T4

T5

T6
mo
del building

proof buildin

g

. . .

. . .

. . . except that it it now parametric in T1, . . . , Tn.
The trail is made of single assignments t ← c (term+value of
matching sorts) coming from different theories (+ some structure).

Everything is on the trail, including assertions from the input
problem (e.g. C ← true for an input clause C)

15/39

The global picture
. . . is roughly the same as before (all theories somehow participate
to the main conflict-driven loop):

T1

T2

T3

T4

T5

T6
mo
del building

proof buildin

g

. . .

. . .

. . . except that it it now parametric in T1, . . . , Tn.
The trail is made of single assignments t ← c (term+value of
matching sorts) coming from different theories (+ some structure).
Everything is on the trail, including assertions from the input
problem (e.g. C ← true for an input clause C)

15/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language.

T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

Where are the values taken from?
For each theory T to combine, and each sort that it knows of,
we must specify a pool of T -values to use in assignments:
e.g., if we want to solve (x · x ' 2), we may want to write x ←

√
2.

Typically for MCSAT theories,
T -values are the domain elements in the canonical model.

Values can be seen as new constants extending T ’s language.

These new constants satisfy some particular properties w.r.t T
(e.g.

√
2 ·
√
2 ' 2): these are specified in an extension T + of T in

the extended language. T + must be a conservative extension of T
(problems in the original language that are T +-unsat are T -unsat).

We may leave some or all of the sorts without T -values:
T will not publish on the trail assignments for terms of those sorts.

Exception:
every theory uses the two values true and false for sort Bool

16/39

What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments

17/39

What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments

17/39

What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments

17/39

What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments

17/39

What does each theory see of the trail?

When combining T and T ′, if T writes u ← c on the trail, what
can T ′ understand from it?

Not much!

Only that if T writes u1 ← c and u2 ← c,
T ′ understands the trail as if it contained u1 ' u2.

Similarly if T writes u1 ← c1 and u2 ← c2 with two distinct values,
T ′ understands the trail as if it contained u1 6' u2.

This is formalised as the T -view of the trail
(this is a theoretical concept, no need to eagerly compute the
equalities/disequalities at runtime)

Exception: all theories understand Boolean assignments

17/39

What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)

I Soundness requirement:
Every model of the premisses is a model of the conclusion
i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck

*

is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements

18/39

What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)
I Soundness requirement:

Every model of the premisses is a model of the conclusion

i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck

*

is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements

18/39

What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)
I Soundness requirement:

Every model of the premisses is a model of the conclusion
i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck

*

is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements

18/39

What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)
I Soundness requirement:

Every model of the premisses is a model of the conclusion
i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck

*

is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements

18/39

What is a theory module?
A set of inferences of the form

t1 ← c1, . . . , tk ← ck ` l ← b

where
I each ti ← ci is a single T -assignment

(a term and a T -value of matching sorts)
I l ← b is a single Boolean assignment

(a term of sort Bool and a truth value)
I Soundness requirement:

Every model of the premisses is a model of the conclusion
i.e. any T +-model of t1'c1 ∧ . . . ∧ tk'ck* is a model of l'b

Example: (x ←
√
2), (y ←

√
2) ` x · y ' 2 (evaluation inference)

*that interprets distinct constants within c1, . . . , ck by distinct
elements

18/39

What is a theory module? (Equality inferences)

All theory modules have the equality inferences:

t1←c1, t2←c2 ` t1 ' t2 if c1 and c2 are the same value
t1←c1, t2←c2 ` t1 6' t2 if c1 and c2 are distinct values

` t1 ' t1
t1 ' t2 ` t2 ' t1

t1 ' t2, t2 ' t3 ` t1 ' t3

19/39

Trail
. . . is a stack of justified assignments H`(t←c) and decisions ?(t←c)
Justification H: a set of assignments that appear earlier on the trail
Trail initialised with input problem

(assignments with empty justifications).
Example (trail grows downwards):

(l←true) abbreviated as l

Level:
greatest decision involved

Here: conflict of level 1
(if conflict is of level 0. . .
. . . problem is unsat)

id trail items just.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0

3 y←0 ?

1

4 − y < −2 {0, 2}

0

20/39

Trail
. . . is a stack of justified assignments H`(t←c) and decisions ?(t←c)
Justification H: a set of assignments that appear earlier on the trail
Trail initialised with input problem

(assignments with empty justifications).
Example (trail grows downwards):

(l←true) abbreviated as l

Level:
greatest decision involved

Here: conflict of level 1
(if conflict is of level 0. . .
. . . problem is unsat)

id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

20/39

Trail
. . . is a stack of justified assignments H`(t←c) and decisions ?(t←c)
Justification H: a set of assignments that appear earlier on the trail
Trail initialised with input problem

(assignments with empty justifications).
Example (trail grows downwards):

(l←true) abbreviated as l

Level:
greatest decision involved

Here: conflict of level 1
(if conflict is of level 0. . .
. . . problem is unsat)

id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

20/39

CDSAT: Search rules

CDSAT is parameterized by finite set of terms B called global basis.

Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if t←c is “relevant & acceptable”
given T ’s view of the trail Γ

Deduce
Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,

and t←b is not in Γ,

and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ

Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .

21/39

CDSAT: Search rules

CDSAT is parameterized by finite set of terms B called global basis.

Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if t←c is “relevant & acceptable”
given T ’s view of the trail Γ

Deduce
Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,

and t←b is not in Γ,

and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ
Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .

21/39

CDSAT: Search rules

CDSAT is parameterized by finite set of terms B called global basis.

Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if t←c is “relevant & acceptable”
given T ’s view of the trail Γ

Deduce
Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,

and t←b is not in Γ,
and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ
Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .

21/39

CDSAT: Search rules
CDSAT is parameterized by finite set of terms B called global basis.
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if t←c is “relevant & acceptable”
given T ’s view of the trail Γ

Deduce
Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,

and t←b is not in Γ,
and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ
Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .

21/39

CDSAT: Search rules
CDSAT is parameterized by finite set of terms B called global basis.
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c) if t←c is “relevant & acceptable”

given T ’s view of the trail Γ
Deduce

Γ −→ Γ, J`(t←b) if J `T (t←b) and J ⊆ Γ,
and t←b is not in Γ,
and t is in B

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `T (t←b) and J ⊆ Γ,

and t←b is in Γ
Conflict states 〈Γ;E 〉 (E conflicting set of assignments from Γ)
are subject to conflict-solving rules similar to MCSAT and CDCL,
like resolve:
〈Γ;E , (t←c)〉 −→ 〈Γ;E ∪ H〉 if H`(t←c) is in Γ and. . .

21/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0

4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1

5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2

6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3

7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4

8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5

9 f (u)←−2 ? 6
10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3

11 f (u) 6' f (a[i := v][j]) {8, 9} 6
conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6
10 u ' a[i:= v][j] {4, 6} 3
11 f(u) 6' f(a[i:= v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6
10 u ' a[i:= v][j] {4, 6} 3
11 f(u) 6' f(a[i:= v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6
10 u ' a[i:= v][j] {4, 6} 3
11 f(u) 6' f(a[i:= v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

. . .

22/39

3. Termination, Soundness and Completeness

23/39

Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.

How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.
For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X), called local basis

(those terms possibly introduced by T during the run)
If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)

24/39

Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.
How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.

For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X), called local basis

(those terms possibly introduced by T during the run)
If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)

24/39

Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.
How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.
For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X), called local basis

(those terms possibly introduced by T during the run)

If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)

24/39

Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.
How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.
For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X), called local basis

(those terms possibly introduced by T during the run)
If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)

24/39

Termination and Soundness
Termination:
Theorem: If the global basis B is finite, CDSAT terminates.
How to determine B? It should be sufficiently large to allow each
theory module to explain its conflicts via deductions.
For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X), called local basis

(those terms possibly introduced by T during the run)
If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)

24/39

What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)
In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.
The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.

25/39

What happens if we never get unsat?
Do we have a model?
This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)

In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.
The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.

25/39

What happens if we never get unsat?
Do we have a model?
This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)
In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.

The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.

25/39

What happens if we never get unsat?
Do we have a model?
This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)
In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.
The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).

Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.

25/39

What happens if we never get unsat?
Do we have a model?
This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,

I Either There exists a T +-model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in

the local basis)
In a combination though, the Tk -models have to agree on the
sorts’ cardinalities and equalities between shared variables/terms.
The paper has a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used
to synchronise cardinalities (for a combination of stably infinite
theories, take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other
theories have T0-complete modules.
If CDSAT cannot make any further transitions, then the trail
describes a model for the union of the (extended) theories.

25/39

Theory modules given as examples in the paper
I EUF

(T0-complete for all T0)

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

I Arrays: similar, except for extensionality

(T0-complete for all T0 such that. . .)

I LRA: evaluation inference, Fourier-Motzkin resolution
inference as in MCSAT, etc

(T0-complete for all T0 imposing |Q| infinite)
I Black box procedure for equality-sharing: coarse-grain

inferences
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable (as detected by the black box)

(T0-complete for all T0 imposing the cardinality of all known
sorts but Bool to be countably infinite)

26/39

Theory modules given as examples in the paper
I EUF

(T0-complete for all T0)

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

I Arrays: similar, except for extensionality

(T0-complete for all T0 such that. . .)

I LRA: evaluation inference, Fourier-Motzkin resolution
inference as in MCSAT, etc

(T0-complete for all T0 imposing |Q| infinite)

I Black box procedure for equality-sharing: coarse-grain
inferences

l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable (as detected by the black box)

(T0-complete for all T0 imposing the cardinality of all known
sorts but Bool to be countably infinite)

26/39

Theory modules given as examples in the paper
I EUF (T0-complete for all T0)

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `EUF ⊥

I Arrays: similar, except for extensionality
(T0-complete for all T0 such that. . .)

I LRA: evaluation inference, Fourier-Motzkin resolution
inference as in MCSAT, etc

(T0-complete for all T0 imposing |Q| infinite)
I Black box procedure for equality-sharing: coarse-grain

inferences
l1←b1, . . . , ln←bn `T ⊥

where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable (as detected by the black box)
(T0-complete for all T0 imposing the cardinality of all known
sorts but Bool to be countably infinite)

26/39

Concluding remarks
I Learning:

Not needed for soundness, completeness, and termination,
but highly desirable - in the paper’s long version

I Proof production: is easy, each theory inference can come with
a proof object, CDSAT only aggregates them in simple ways

I CDSAT is a framework:
leaves large freedom to the design of search plans / strategies

I First-order assignments: I mostly presented them as a way to
build a model of an input formula - they could be part of the
input

l1←b1, . . . , lk←bk , t1←c1, . . . , tj←cj

The question is then “Is there a model of the constraints (in
sort Bool) that extends these first-order assignments?”
Note: the choice of theory extensions impacts the meaning of
the question.
We suggest to call this SMA,
for Satisfiability Modulo Assignments.

27/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool

Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool
Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool
Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool
Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool
Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

Further work

I State of the implementation:
An OCaml prototype implements the CDSAT framework (with
learning), with theory module Bool
Now needs to be populated by other theories

I Lay down on paper:
how a single E-graph can factor equality reasoning in CDSAT.
The trail + E-graph become the front-end of architecture
(as opposed to DPLL(T) where it is the SAT-solver)

I Non-disjoint theories?

I How to handle quantifiers?
Technically, MCSAT has to do with quantifier elimination.
How can this be exploited for quantified problems in
combinations of theories?

28/39

C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Splitting on demand in SAT Modulo Theories.
In M. Hermann and A. Voronkov, editors, Proc. of the the 13th
Int. Conf. on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’06), volume 4246 of LNCS, pages 512–526.
Springer-Verlag, 2006.

S. Cotton.
Natural domain SMT: A preliminary assessment.
In K. Chatterjee and T. A. Henzinger, editors, Proceedings of the
Eighth International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS), volume 6246 of Lecture Notes in
Computer Science, pages 77–91. Springer, 2010.

L. M. de Moura and D. Jovanovic.
A model-constructing satisfiability calculus.
In R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Proc. of the
14th Int. Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI’13), volume 7737 of LNCS, pages 1–12.
Springer-Verlag, 2013.

29/39

S. Graham-Lengrand and D. Jovanović.
An MCSAT treatment of bit-vectors.
In M. Brain and L. Hadarean, editors, 15 Int. Work. on
Satisfiability Modulo Theories (SMT 2017), 2017.

D. Jovanović, C. Barrett, and L. de Moura.
The design and implementation of the model constructing
satisfiability calculus.
In Proc. of the 13th Int. Conf. on Formal Methods In
Computer-Aided Design (FMCAD ’13). FMCAD Inc., 2013.
Portland, Oregon

D. Jovanović and L. de Moura.
Cutting to the chase: solving linear integer arithmetic.
In N. Bjørner and V. Sofronie-Stokkermans, editors, Proc. of the
23rd Int. Conf. on Automated Deduction (CADE’11), volume 6803
of LNCS, pages 338–353. Springer-Verlag, 2011.

30/39

D. Jovanović and L. de Moura.
Solving non-linear arithmetic.
In B. Gramlich, D. Miller, and U. Sattler, editors, Proc. of the 6th
Int. Joint Conf. on Automated Reasoning (IJCAR’12), volume
7364 of LNCS, pages 339–354. Springer-Verlag, 2012.

D. Jovanović.
Solving nonlinear integer arithmetic with MCSAT.
In A. Bouajjani and D. Monniaux, editors, Proc. of the 18th Int.
Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI’17), volume 10145 of LNCS, pages 330–346.
Springer-Verlag, 2017.

K. Korovin, N. Tsiskaridze, and A. Voronkov.
Conflict resolution.
In I. P. Gent, editor, Proceedings of the Fifteenth International
Conference on Principles and Practice of Constraint Programming
(CP), volume 5732 of Lecture Notes in Computer Science, pages
509–523. Springer, 2009.

31/39

K. L. McMillan, A. Kuehlmann, and M. Sagiv.
Generalizing DPLL to richer logics.
In A. Bouajjani and O. Maler, editors, Proceedings of the
Twenty-First International Conference on Computer Aided
Verification (CAV), volume 5643 of Lecture Notes in Computer
Science, pages 462–476. Springer, 2009.

G. Nelson and D. C. Oppen.
Simplification by cooperating decision procedures.
ACM Press Trans. on Program. Lang. and Syst., 1(2):245–257,
1979.
C. Wang, F. Ivančić, M. Ganai, and A. Gupta.
Deciding separation logic formulae by SAT and incremental
negative cycle elimination.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), volume 3835 of Lecture Notes
in Artificial Intelligence, pages 322–336. Springer, 2005.

32/39

S. A. Wolfman and D. S. Weld.
The LPSAT engine and its application to resource planning.
In T. Dean, editor, Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI), volume 1, pages
310–316. Morgan Kaufmann Publishers, 1999.

A. Zeljic, C. M. Wintersteiger, and P. Rümmer.
Deciding bit-vector formulas with mcsat.
In N. Creignou and D. L. Berre, editors, Proc. of the 19th Int.
Conf. on Theory and Applications of Satisfiability Testing
(RTA’06), volume 9710 of LNCS, pages 249–266. Springer-Verlag,
2016.

33/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.

I Guess a value, e.g. y←0
Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0

Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ?

No:
I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)

indeed violated by the guess y←0
I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.

I Try new guess, say y←4
l1 yields upper bound x < −4, l0 yields lower bound x > −2

I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)
indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2

I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)
indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4

I Undo guess, keep l4
l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y

I Suggests to infer l3 + l4, i.e. l5 : 0 < −2
No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT

34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 + 2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
34/39

An example in Linear Rational Arithmetic
l0 : (−2·x−y < 0), l1 : (x+y < 0), l2 : (x < −1)

unsatisfiable in LRA.
I Guess a value, e.g. y←0

Then l0 yields lower bound x > 0
Together with l2, space of possible values for x is empty
What to do? just undo y←0 ? No:

I Clash of bounds suggests to infer l0 +2l2, i.e. l3 : (− y < −2)
indeed violated by the guess y←0

I Now undo the guess but keep l3.
I Try new guess, say y←4

l1 yields upper bound x < −4, l0 yields lower bound x > −2
I Clash of bounds suggests to infer l0 + 2l1, i.e. l4 : (y < 0)

indeed violated by the guess y←4
I Undo guess, keep l4

l3 and l4 give clash of bounds for y
I Suggests to infer l3 + l4, i.e. l5 : 0 < −2

No guess to undo, problem is UNSAT
34/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items just.

lev.

0 −2·x − y < 0 {}

0

1 x + y < 0 {}

0

2 x < −1 {}

0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1

4 − y < −2 {0, 2} 0
conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1

id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0

4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1

5 y < 0 {0, 1} 0
conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0

5 0 < −2 {3, 4} 0
conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 0

35/39

Trail
Trail = stack of justified assignments H`(t←c) and decisions ?(t←c),
Trail initialised with input problem (assign. with empty justifications)

(l←true) abbrev. as l

Level:
greatest decision involved

If conflict is of level 0. . .
. . . problem is unsat

Phase 1
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 y←0 ? 1
4 − y < −2 {0, 2} 0

conflict E 1: {3, 4} 1

Phase 2
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y←4 ? 1
5 y < 0 {0, 1} 0

conflict E 2: {4, 5} 1

Phase 3
id trail items just. lev.
0 −2·x − y < 0 {} 0
1 x + y < 0 {} 0
2 x < −1 {} 0
3 −y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E 3: {5} 035/39

CDSAT: Search rules

Parameterized by finite set of terms B called global basis
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c) if t←c (in T -public sort) does not

immediately violate T ’s view of the trail ΓT
Deduce

Γ −→ Γ, J`L if J `T L and J ⊆ Γ,
and L is not in Γ,
and L is for a formula in B

Conflict
Γ −→ 〈Γ; J , L〉 if J `T L and J ⊆ Γ,

and L is in Γ

36/39

CDSAT: Search rules

Parameterized by finite set of terms B called global basis
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c) if t←c (in T -public sort) does not

immediately violate T ’s view of the trail ΓT
Deduce

Γ −→ Γ, J`L if J `T L and J ⊆ Γ,
and L is not in Γ,
and L is for a formula in B

Conflict
Γ −→ 〈Γ; J , L〉 if J `T L and J ⊆ Γ,

and L is in Γ

36/39

CDSAT: Conflict analysis rules

Fail
〈Γ; ∅〉 −→unsat

Undo
〈Γ;E ,A〉 −→Γ≤m−1 if A is a non-Boolean decision

of level m > levelΓ(E)
Backjump
〈Γ;E , L〉 −→Γ≤m, E`L if levelΓ(L) > m, where m = levelΓ(E)

Resolve
〈Γ;E ,A〉 −→〈Γ;E ∪ H〉 if H`A is in Γ and

H does not contain a non-Boolean decision
whose level is levelΓ(E ,A)

UndoDecide
〈Γ;E , L, L′〉 −→Γ≤m−1, ?L if H`L and H′`L′ are in Γ and

H ∩ H ′ contains a non-Boolean decision
of level m = levelΓ(E , L, L′)37/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0

4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1

5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2

6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3

7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4

8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5

9 f (u)←−2 ? 6
10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3

11 f (u) 6' f (a[i := v][j]) {8, 9} 6
conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v][j] {4, 6} 3
11 f (u) 6' f (a[i := v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6
10 u ' a[i:= v][j] {4, 6} 3
11 f(u) 6' f(a[i:= v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

f (a[i := v][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

Phase 1
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v][j])←0 ? 5
9 f (u)←−2 ? 6
10 u ' a[i:= v][j] {4, 6} 3
11 f(u) 6' f(a[i:= v][j]) {8, 9} 6

conflict E 1: {10, 11} 6

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3

9 f (u) ' w {0, 8} 3
10 w−2 ' w {1, 9} 3

conflict E 2
1 : {10} 3

conflict E 2
2 : {1, 9} 3

conflict E 2
3 : {0, 1, 8} 3

conflict E 2
4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f (u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3
conflict E 2

1 : {10} 3
conflict E 2

2 : {1, 9} 3
conflict E 2

3 : {0, 1, 8} 3
conflict E 2

4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f (u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3

conflict E 2
1 : {10} 3

conflict E 2
2 : {1, 9} 3

conflict E 2
3 : {0, 1, 8} 3

conflict E 2
4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f (u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3
conflict E 2

1 : {10} 3

conflict E 2
2 : {1, 9} 3

conflict E 2
3 : {0, 1, 8} 3

conflict E 2
4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f(u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f(u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3
conflict E 2

1 : {10} 3
conflict E 2

2 : {1, 9} 3

conflict E 2
3 : {0, 1, 8} 3

conflict E 2
4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f(a[i:= v][j]) ' w {} 0
1 w−2 ' f(u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i := v][j] {4, 6} 3
8 f(u) ' f(a[i:= v][j]) {7} 3
9 f (u) ' w {0, 8} 3
10 w−2 ' w {1, 9} 3

conflict E 2
1 : {10} 3

conflict E 2
2 : {1, 9} 3

conflict E 2
3 : {0, 1, 8} 3

conflict E 2
4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f(a[i:= v][j]) ' w {} 0
1 w−2 ' f(u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i:= v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f (u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3
conflict E 2

1 : {10} 3
conflict E 2

2 : {1, 9} 3
conflict E 2

3 : {0, 1, 8} 3
conflict E 2

4 : {0, 1, 7} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 2
id trail items just. lev.
0 f(a[i:= v][j]) ' w {} 0
1 w−2 ' f(u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
6 a[i := v][j]←c ? 3
7 u ' a[i:= v][j] {4, 6} 3
8 f (u) ' f (a[i := v][j]) {7} 3
9 f (u) ' w {0, 8} 3

10 w−2 ' w {1, 9} 3
conflict E 2

1 : {10} 3
conflict E 2

2 : {1, 9} 3
conflict E 2

3 : {0, 1, 8} 3
conflict E 2

4 : {0, 1, 7} 3

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0

5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i := v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1

6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i := v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2

7 a[i := v][j]←d ? 3
8 v 6' a[i := v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3

8 v 6' a[i := v][j] {6, 7} 3
conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i := v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i:= v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i:= v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase 4
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 v ' a[i := v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

An example with arithmetic, arrays, congruence

Phase 3
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i := v][j] {0, 1} 0
5 u←c ? 1
6 v←c ? 2
7 a[i := v][j]←d ? 3
8 v 6' a[i := v][j] {6, 7} 3

conflict E 3: {2, 8} 3

Phase 4
id trail items just. lev.
0 f (a[i := v][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u 6' a[i:= v][j] {0, 1} 0
5 v ' a[i:= v][j] {2} 0

conflict E 4: {3, 4, 5} 0

38/39

Example for LRA
LRA-public sorts: just Q.

LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:

I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

39/39

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial

(Some) LRA-inferences:
I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

39/39

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:

I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments

I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

39/39

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:

I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)

39/39

Example for LRA
LRA-public sorts: just Q. LRA-values: Q. LRA+: trivial
(Some) LRA-inferences:

I Evaluations:

t1←q1, . . . , tn←qn `LRA l←b

where l evaluates to b under the assignments
I Fourier-Motzkin resolutions:

(e1 l1 x), (x l2 e2) `LRA (e1 l3 e2)

where l is < or ≤. . .
(triggered only where e1 and e2 have been assigned values)

I Treatment of disequality:

(e1 ≤ x), (x ≤ e2), (e1 ' e0), (e2 ' e0), (x 6' e0) `LRA ⊥

(triggered only where e0, e1 and e2 have been assigned values)
39/39

	Combining conflict-driven reasoning mechanisms
	The CDSAT framework
	Termination, Soundness and Completeness

