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Abstract
We present a typing system of non-idempotent intersection types that characterises
strongly normalising λ-terms and can been seen as a big-step operational semantics: we
prove that a strongly normalising λ-term accepts, as its type, the structure of its normal
form. As a by-product of identifying such semantical components in typing trees, we
are able to define a trivial measure (the number of times a typing rule is applied) that
exactly captures the length of the longest β-reduction sequence starting from a given
typable term.

1 Introduction

Operational semantics describes the behaviour of programs using syntax, in other words
without (explicitly) constructing a denotational model (for example, a Scott Domain [15]).
While small-steps operational semantics is based on the step-by-step evaluation of a
program (usually by means of a rewrite system or an abstract machine), a big-step
operational semantics directly relates a program to its final value / normal form (if it
exists): judgements of the form M ↓ v (where M is a program and v the value of M
after computation) can be derived with inference rules such as

M1 ↓ λx.M3 M2 ↓M4 M3{x := M4} ↓M5

M1M2 ↓M5
in the case of λ-calculus.
In this paper we provide a typing system for the λ-calculus that can serve as an

inference system deriving a big-step semantics for all strongly normalising λ-terms.
Not only is this system following the traditional concepts and notations of typing,

it more fundamentally differs from standard big-step semantics in that at no point of
derivation trees is a substitution ever computed (unlike the rule above).

Moreover, while most big-step semantics correspond to an (often strict) evaluation
strategy that is neither the least nor the most efficient, our typing system is related to
longest β-reduction sequences. It therefore provides a semantics to strongly normalising
terms only, but on the other hand it provides quantitative information about reduction:
a trivial measure on the typing derivation relating a term M to its semantics provides
the exact length of the longest β-reduction sequence starting from M .

To build this semantics for all strongly normalising terms, we naturally use intersec-
tion types. Originally introduced in [5], intersection types extend simple types with the
constructor ∩ (if A and B are types, then A ∩B is a type) and additional typing rules
such as:

M : A M : B

M : A ∩B
Intersection type systems relate typing to various evaluation properties of λ-terms

(see e.g. [2, 12, 16, 10, 8, 9, 1]). Most importantly for us, they can be tuned to characterise
strongly normalising terms (a term is typable if and only if it is strongly normalising).

Moreover, we can consider types as information about how a λ-term is used and
M : A means that M will be used as A. Then, M : A ∩ B means that M will be used
as A and B. One way or another, typing systems using intersections usually feature
idempotency: A ∩A is equivalent to A. If we choose to drop idempotency, then we can
distinguish M : A and M : A ∩ A (M will be used as A exactly twice), and a typing
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2 A big-step operational semantics via non-idempotent intersection types

judgement gives us quantitative information. This idea is mainly inspired by linear
logic [11] and denotational models built on multisets.

For example, de Carvalho [6, 7] introduced a typing system with non-idempotent
intersections, and found a relation between the size of a typing tree and the length of
linear head-reduction sequences (as can be found in some abstract machines).

In a previous paper [3], we gave a typing system that (unlike de Carvalho’s) charac-
terises strongly normalising terms, and a trivial measure on typing trees (the number of
uses of the rule typing applications) strictly decreases with each β-reduction. Therefore,
strong normalisation is a corollary of Subject Reduction and the measure provides a
bound on the length of the longest β-reduction sequence.

Refining the bound into an exact measurement was the challenge of the latter part
of [3], which provided a convoluted solution: First, the exact length of the longest
reduction sequence could only be obtained by considering the typing trees satisfying a
particular condition called optimality. Then, another quantitative information about
typing trees, the degree, had to be read, and the exact length was finally computed as
the measure of an optimal typing tree of smallest degree minus that degree. Moreover,
the result was obtained indirectly via the study of the above notions in Church-Klop’s
λI-calculus and then transposed into the pure λ-calculus by a sophisticated simulation.

However, it can be noticed that
the degree is a quantitative data related to the normal form of a term;
going via the λI-calculus is required because longest β-reduction sequences in the
pure λ-calculus sometimes have to erase sub-terms in normal form.

The present paper develops the idea of incorporating information about normal forms
into typing trees: for every normal form M , its structure v yields a special type [v].1

Pushing this idea further leads to a non-idempotent intersection typing system where
typing trees can be viewed as the derivations of a big-step semantics.

As a by-product, the system improves the results of [3] and simplifies their proofs: the
length of the longest β-reduction sequence starting from a pure and strongly normalising
λ-term M is simply the number of times a typing rule occurs in an optimal typing tree
for M . The notion of optimality itself is actually much simpler, the notion of degree
becomes useless, and no detour via λI is required.

The trick is that the typing tree for a given term directly indicates which λ-abstractions
and applications will be consumed by β-reduction and which will remain in the normal
form. These additional typing rules ensure that the measure of an optimal typing tree
for a term in normal form is zero.

This enhancement of the typing system does not make the proofs of Soundness
(typable implies strongly normalising) and Completeness (strongly normalising implies
typable) more complicated.

In contrast to other semantics built with intersection types (for example [2, 4]), this
semantics does not use filters of intersection types. However, since the typing system is
different, we have to do the study of the typing system entirely, especially because it is
a little less syntax-directed. On the other hand, this paper is self-contained: the reader
does not need to have read [3] to understand definitions, lemmas, theorems and proofs.

In Section 2, we give the basic definitions and properties. In Section 3, we prove
Soundness (typable implies strongly normalising) and Completeness (strongly normalis-
ing implies typable). In Section 4, we give more refined properties in the case where the
typing tree is optimal. In particular, we prove the Complexity Result (Theorem 33) and
the relation between the type of a term and its normal form (Theorem 35). In Section 5,
we give a brief study of alternative definitions of the typing system. In Appendix A, we
give detailed proofs of some lemmas and theorems.

1 The structure of a normal form is the normal form where all variable names are forgotten.
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(λx.M)N −→β M{x := N}

M −→β M ′

λx.M −→β λx.M ′

M −→β M ′

MN −→β M ′N

N −→β N ′

MN −→β MN ′

Figure 1 β-reduction

2 Basic definitions and properties

In Section 2.1, we review basic concepts of λ-calculus. In Section 2.2, we define the
intersection types used in this paper, the contexts of the typing judgements and we
prove some basic properties. In Section 2.3, we present the typing system and its basics
properties.

2.1 Syntax
We review the λ-calculus and the concepts that are of interest for this paper.

I Definition 1 (λ-terms). Terms are defined in the usual way with the following gram-
mar:

M,N ::= x | λx.M | MN

Free variables fv(M) and substitutions M{x := N} are defined in the usual way
and terms are considered up to α-equivalence.

The notion of reduction is the usual β-reduction:

I Definition 2 (β-reduction). M −→β M ′ is defined inductively by the rules of Figure 1.

To make some proofs and theorems about strong normalisation more readable, we
use the following notations:

I Definition 3 (Strongly normalising terms). Assume n is an integer.
We write SN for the set of strongly normalising terms for −→β .
We write SN=n for the set of strongly normalising terms for −→β such that the

length of longest β-reduction sequence is equal to n.
The set SN≤n is defined by:

SN≤n :=
⋃
m≤n SN=m

We now proceed towards the notion of perpetual reduction which is used:
to express the longest reduction sequence in Theorem 33
as a reduction strategy to prove Theorem 29

In order to define it formally, we also define acc(M) (that characterize terms of the form
x M1 . . .Mn) and ⇒ as follows:

I Definition 4 (Accumulators and perpetual reduction). acc(M) is inductively defined by
the following rules:

acc(x)

acc(M)

acc(MN)
M ⇒M ′ and M  M ′ are mutually defined by the rules of Figure 2.

Notice that this is the same perpetual reduction strategy used in [3]. However, the
presentation is different (we did not used ⇒). The presentation given in this paper
avoids informal notations such as xM1 . . .Mn, which is here very cumbersome for case
analyses: since there are two ways to type an application, there are 2n ways to type the
above.

Examples for  :
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x ∈ fv(M)
(λx.M)N ⇒M{x := N}

x /∈ fv(M) N  N ′

(λx.M)N ⇒ (λx.M)N ′

x /∈ fv(M) N cannot be reduced by −→β

(λx.M)N ⇒M

M ⇒M ′

MN ⇒M ′N

acc(M) N  N ′

MN ⇒MN ′

M ⇒M ′

M  M ′

M  M ′

λx.M  λx.M ′

Figure 2 Perpetual reduction

(λx.M)NN1 . . . Nn  M{x := N}N1 . . . Nn if x ∈ fv(M).
If M  M ′, then xM  xM ′.
It is possible to haveM  M ′ without having (λx.M)N  (λx.M ′)N . For example,
we have (λy.a)(xx) a but we do not have (λx.(λy.a)(xx))(λz.zz) (λx.a)(λz.zz).
However, we do have (λx.(λy.a)(xx))(λz.zz) (λy.a)((λz.zz)(λz.zz)).

Every lemma and theorem based on a syntactical analysis of a term in normal term uses
the following lemma:

I Lemma 5 (Shape of a normal form). If M cannot be reduced by −→β , then
either we have acc(M),
or M is of the form λx.M1.

Proof. By induction on M . See Appendix A. J

One of the reasons why  is used in Theorems 29 and 33, is that it is possible to
reach the normal form by using  only. More formally:

I Lemma 6 (Applicability of  ). If M can be reduced by −→β , then M can be reduced
by  .

Proof. We prove by induction on M that if M can be reduced by −→β then:
If M is of the form λx.M1, then there exists M ′ such that M  M ′.
If not, then there exists M ′ such M ⇒M ′.

Therefore, in both cases there exists M ′ such that M  M ′. See Appendix A. J

An optimal typing tree for a term M does not give the exact normal form M ′ of M
but the structure of M ′ (Theorem 35), which is M ′ where the names of variables are
forgotten. More formally:

I Definition 7 (Structures). Structures v are defined by the following grammar:
v ::= λv | k
k ::= O | kv

For every term M , struct(M) is partially defined as follows:
struct(x) := O
struct(λx.M) := λstruct(M)
struct(MN) := struct(M)struct(N) (struct(M) is of the form k)

struct(M) is coherent with α-equivalence because: If struct(M) is well-defined, then
struct(M{x := y}) is well-defined and struct(M{x := y}) = struct(M).

I Lemma 8 (Structure of a normal term). M cannot be reduced by −→β if and only if
struct(M) is well-defined. Moreover, if we have acc(M), then struct(M) is of the form
k.



A. Bernadet and S. Graham-Lengrand 5

Proof. By induction on M . See Appendix A. J

I Remark. struct(λfλx.fnx) = λλOnO.
Hence, Church’s integers all have different structures.
Structures cannot distinguish Church’s booleans:
struct(λx.λy.x) = struct(λx.λy.y) = λλO. However, this problem disappears if
booleans are encoded as Church’s integers (0 for “false” and 1 for “true”). More
generally, the inhabitants of any enumerated type can be encoded in a way such
that their structures remain distinct.
Similarly, Church’s encoding of pairs is preserved in the structures:
AssumeM andN cannot be reduced. We have struct(λx.xMN) = λOstruct(M)struct(N).
Therefore, if struct(λx.xMN) = struct(λx.xM ′N ′), then struct(M) = struct(M ′)
and struct(N) = struct(N ′).
Consequently, the inhabitants of any algebraic data type (for example lists, trees,
etc . . . ) can be encoded in a way such that their structures remain disinct.
Therefore structures can be considered a reasonable semantics.

2.2 Intersection types and contexts
First, we define the intersection types used in this paper and we show basic definitions
and properties about them. Second, we define the contexts used in the typing derivations
used in this paper and we show basic definitions and properties about them.

2.2.1 Intersection types
In this paper, intersection types are defined as follows:

F,G ::= [v] | A→ F

A,B,C ::= F | A ∩B
U, V ::= A | ω

I Definition 9 (Intersection types).
F -types, A-types and U -types are defined by gram-
mar on the right, where v ranges over structures
(Definiton 7). With this grammar, U ∩V is defined
if and only if U and V are A-types. Therefore, by defining A ∩ ω := A, ω ∩ A := A

and ω ∩ ω := ω, we have U ∩ V defined for all U and V .

Some remarks:
The property that, in an arrow A → B, B is not an intersection, is the standard
restriction of strict types [16] and is used here to prove Lemma 20.1.
ω is a device that allows synthetic formulations of definitions, properties and proofs:
U -types are not defined by mutual induction with A-types and F -types, but sepa-
rately, and we could have written the paper without them (only with more cases in
statements and proofs).
[v] is a type used to give information about the normal form of a term and is used to
type applications and abstractions that are not meant to be used in a β-reduction.

For example, ([O(λO)]→ [λO]) ∩ [O] is an A-type.
To define the notion of optimality, which is used in Theorems 33 and 35, we need to

define the notions of input types and output types:
An input is an intersection of [O].
An output is of the form [v].

More formally:

I Definition 10 (Inputs and outputs).
The judgement input(U) is defined with the following rules:

input([O])

input(A) input(B)

input(A ∩B) input(ω)
We write output(F ) if and only if F is of the form [v].
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F ≈ F A ∩B ≈ B ∩A (A ∩B) ∩ C ≈ A ∩ (B ∩ C)

A ∩ (B ∩ C) ≈ (A ∩B) ∩ C
A ≈ A′ B ≈ B′

A ∩B ≈ A′ ∩B′ ω ≈ ω

A ≈ B B ≈ C

A ≈ C

Figure 3 Equivalence between types

To prove Subject Reduction and Subject Expansion (Theorems 23, 32 and 28) by
using Lemmas 22 and 25, we have to define equivalence ≈ and inclusion ⊆ between
types. Here is the formal definitions and basic properties (notice that we do not have
A ≈ A ∩A):

I Definition 11 (Equivalence between types).
Assume U and V are U -types. We define U ≈ V with the rules given in Figure 3.

The fact that ≈ is an equivalence relation can be easily proved (Lemma 12.4). There-
fore, adding rules for reflexivity, symmetry and transitivity is superfluous and only adds
more cases to treat in the proofs of statements where such a relation is assumed (e.g.
Lemma 20.2).

We could have represented intersection types with multisets (and correspondingly
used the type inclusion symbol ⊆ the other way round). We chose to keep the standard
notation A ∩ B, with the corresponding inclusion satisfying A ∩ B ⊆ A, since these
are interpreted as set intersection and set inclusion in some models (e.g. realisability
candidates). This way, we can also keep the equivalence relation explicit in the rest of
the paper, which gives finer-grained results. For example, the equivalence only appears
where it is necessary and the proof of Lemma 20.2 shows the mechanism that propagates
the equivalence through the typing trees. These presentation choices are irrelevant to
the key ideas of the paper.

I Lemma 12 (Properties of ≈).
1. Neutrality of ω: U ∩ ω = ω ∩ U = U .
2. Strictness of F -types: If U ≈ F , then U = F .
3. Strictness of ω: If U ≈ ω, then U = ω.
4. ≈ is an equivalence relation.
5. Commutativity of ∩: U ∩ V ≈ V ∩ U
6. Associativity of ∩: U1 ∩ (U2 ∩ U3) ≈ (U1 ∩ U2) ∩ U3
7. Stability of ∩: If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
8. If U ∩ V = ω, then U = V = ω.
9. If U ∩ V ≈ U , then V = ω.

10. If U ≈ V and input(U), then input(V ).
11. input(U ∩ V ) if and only if input(U) and input(V ).

Proof. Similar to the proof in [4]. See Appendix A. J

I Definition 13 (Sub-typing).
Assume U and V are U -types. We write U ⊆ V if and only if there exists a U -type

U ′ such that U ≈ V ∩ U ′.

I Lemma 14 (Properties of ⊆).
1. ⊆ is a partial pre-order and ≈ is the equivalence relation associated to it: U ⊆ V

and V ⊆ U if and only if U ≈ V .
2. Projections: U ∩ V ⊆ U and U ∩ V ⊆ V .
3. Stability of ∩: If U ⊆ U ′ and V ⊆ V ′, then U ∩ V ⊆ U ′ ∩ V ′.
4. Greatest element: U ⊆ ω.
5. If U ⊆ V and input(U), then input(V ).

Proof. Straightforward. J
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2.2.2 Contexts
To define typing judgements (Definition 18), we need to define contexts and give their
basic properties. We naturally define pointwise the notion of equivalence, inclusion and
input for contexts. More formally:

I Definition 15 (Contexts).
A context Γ is a total map from the set of variables to the set of U -types such that

the domain of Γ defined by:
Dom(Γ) := {x | Γ(x) 6= ω}

is finite.
∩, ≈ and ⊆ for contexts are defined pointwise:

(Γ ∩∆)(x) := Γ(x) ∩∆(x)
Γ ≈ ∆ ⇔ ∀x,Γ(x) ≈ ∆(x)
Γ ⊆ ∆ ⇔ ∀x,Γ(x) ⊆ ∆(x)

Notice that if Dom(Γ) and Dom(∆) are finite, then Dom(Γ ∩∆) is finite. Therefore
Γ ∩∆ is indeed a context in the case where Γ and ∆ are contexts.

The empty context () is defined as follows: ()(x) := ω for all x.
Assume Γ is a context, x1, . . . , xn are distinct variables and U1, . . .Un are U -types

such that for all i, xi /∈ Dom(Γ). Then, the context (Γ, x1 : U1, . . . , xn : Un) is defined
as follows:

(Γ, x1 : U1, . . . , xn : Un)(xi) := Ui
(Γ, x1 : U1, . . . , xn : Un)(y) := Γ(y) (∀i, y 6= xi)

(Γ, x1 : U1, . . . , xn : Un) is indeed a context and ((), x1 : U1, . . . , xn : Un) is written
(x1 : U1, . . . , xn : Un).

I Definition 16 (Input contexts).
We write input(Γ) if and only if for all x, we have input(Γ(x)).

I Lemma 17 (Properties of contexts).
1. ≈ for contexts is an equivalence relation.
2. ⊆ for contexts is a partial pre-order and ≈ is its associated equivalence relation:

Γ ⊆ ∆ and ∆ ⊆ Γ if and only if Γ ≈ ∆.
3. Projections: Γ ∩∆ ⊆ Γ and Γ ∩∆ ⊆ ∆.
4. Alternative definition: Γ ⊆ ∆ if and only if there exists a context Γ′ such that

Γ ≈ ∆ ∩ Γ′.
5. Commutativity of ∩: Γ ∩∆ ≈ ∆ ∩ Γ.
6. Associativity of ∩: (Γ1 ∩ Γ2) ∩ Γ3 ≈ Γ1 ∩ (Γ2 ∩ Γ3).
7. Stability of ∩: If R is either ≈ or ⊆, Γ R Γ′ and ∆ R ∆′, then Γ ∩∆ R Γ′ ∩∆′.
8. Greatest context: Γ ⊆ ().
9. (Γ, x : U) ⊆ Γ.

10. If Γ ⊆ ∆ and input(Γ), then input(∆).
11. If input(Γ) and input(∆), then input(Γ ∩∆)

Proof. Straightforward. J

2.3 Typing system
We now have all the elements to present the typing system:

I Definition 18 (Typing system).
Assume Γ is a context, M is a term, n is an integer, and U is a U -type. The

judgement Γ `n M : U is inductively defined by the rules given in Figure 4.
We write Γ ` M : U if there exists n such that Γ `n M : U .

Some remarks:
In Γ `n M : U , n is the number of uses of the rule (App1) and it is the trivial
measure on typing trees that we use.
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(V ar)
x : F `0 x : F

Γ `n M : A ∆ `m M : B
(∩)

Γ ∩∆ `n+m M : A ∩B
(ω)

`0 M : ω

Γ, x : U `n M : F A ⊆ U
(Fun1)

Γ `n λx.M : A→ F

Γ, x : U `n M : [v] input(U)
(Fun2)

Γ `n λx.M : [λv]

Γ `n M : A→ F ∆ `m N : A
(App1)

Γ ∩∆ `n+m+1 MN : F

Γ `n M : [k] ∆ `m N : [v]
(App2)

Γ ∩∆ `n+m MN : [kv]

Figure 4 Typing rules

The rule (ω) is a device to simplify some definitions, proofs and properties: it is
independent from the other rules and this paper could have been written without it
(only with more cases in statements and proofs). In particular, ` M : ω gives no
information about M and, for example, Theorem 24 uses A instead of U .
(App2) (resp. (Fun2)) is used to type applications (resp. abstractions) that are not
meant to be used in a β-reduction.
Condition A ⊆ U in rule (Fun1) is called subsumption and is used to make Subject
Reduction (Theorem 23) hold when the reduction is under a λ: After a subject
reduction, U can turn into a different U ′ without changing A.
Another advantage in having the type ω for the presentation of the typing system:
Without the notation U or V , we would have to duplicate each abstraction rules
that types λx.M (one case where x ∈ fv(M) and one case where x /∈ fv(M)). That
would make four rules instead of two.

To define optimality, we first need to formally define what the absence of subsump-
tions means:

I Definition 19 (No subsumptions).
In a derivation of Γ `n M : U , we say that there are no subsumptions if and only if

every occurence of rule (Fun1)
∆, x : V `n M1 : F A ⊆ V

∆ `n λx.M1 : A→ F
is such that:
either A = V

or both V = ω and output(A).

If Γ `n M : U with no subsumptions, then we write Γ `nns M : U and we write
Γ `ns M : U if there exists n such that Γ `nns M : U .

Another way of expressing the absence of subsumptions is that (Fun1) is only used
in one of the two following ways:

Γ, x : A ` M : F

Γ ` λx.M : A→ F

Γ ` M : F x /∈ Dom(Γ)

Γ ` λx.M : [v]→ F

Typing satisfies the following basic properties:

I Lemma 20 (Basic properties of typing).
1. Γ `n M : U ∩ V (resp. Γ `nns M : U ∩ V ) if and only if there exist Γ1, Γ2, n1 and

n2 such that Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `n1 M : U (resp. Γ1 `n1
ns M : U) and

Γ2 `n2 M : V (resp. Γ2 `n2
ns M : V ).

2. If Γ `n M : U (resp. Γ `nns M : U) and U ≈ V , then there exists ∆ such that Γ ≈ ∆
and ∆ `n M : V (resp. ∆ `nns M : V ).

3. If Γ `n M : U (resp. Γ `nns M : U) and U ⊆ V , then there exist ∆ and m such that
Γ ⊆ ∆, m ≤ n and ∆ `m M : V (resp. ∆ `mns M : V ).

4. If Γ ` M : A, then Dom(Γ) = fv(M).
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5. If Γ ` M : U , then Dom(Γ) ⊆ fv(M).

Proof. 1. Straightforward.
2. By induction on U ≈ V .
3. Corollary of 1 and 2.
4. By induction on Γ ` M : A.
5. Corollary of 4.

J

We now have all the elements to define optimality: the property that a typing tree
should satisfy if it should be viewed as the derivation of a big-step semantics or if we want
to read from it the length of the longest β-reduction sequence (Theorems 35 and 33).

I Definition 21 (Optimal typing tree).
Assume Γ is a context, n is an integer, M is a term and F is a F -type.
We write Γ `nopt M : F if and only if:
We have Γ `nns M : F .
We have input(Γ) and output(F ).

We write Γ `opt M : F if and only if there exists n such that Γ `nopt M : F .

Example:
(V ar)

x : [λO] `0 x : [λO]
(Fun1)

`0 λx.x : [λO]→ [λO]

(V ar)
y : [O] `0 y : [O]

(Fun2)
`0 λy.y : [λO]

(App1)
`1
opt (λx.x)(λy.y) : [λO]

3 Characterisation of the typing system

In Section 3.1, we prove Subject Reduction and Soundness (typable implies strongly
normalising). In Section 3.2, we prove Subject Expansion and Completeness (strongly
normalising implies typable).

3.1 Soundness
As usual for the proof of Subject Reduction, we first prove a substitution lemma:

I Lemma 22 (Substitution lemma).
If Γ, x : U `n M : A and ∆ `m N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆ and

Γ′ `n+m M{x := N} : A.

Proof. By induction on Γ, x : U ` M : A. The measure of the final typing tree is n+m

because, by the fact that the intersection types are non-idempotent, this proof does not
do any duplications. See Appendix A. J

I Theorem 23 (Subject Reduction).
If Γ `n M : A and M −→β M ′, then there exist Γ′ and n′ such that Γ ⊆ Γ′, n > n′

and Γ′ `n′
M ′ : A.

Proof. First by induction on M −→β M ′, then by induction on A. See Appendix A.
The rules (Fun2) and (App2) do not create any problem because we have to use the
rules (Fun1) and (App1) to type a β-redex. J

In Theorem 23, we have n > n′ because, by the fact that types are non-idempotent,
we do not do any duplications in the proof of Subject Reduction. Therefore, by Subject
Reduction, for each β-reduction, the measure of the typing tree strictly decreases and
then, we have Soundness as a corollary.

I Theorem 24 (Soundness).
If Γ `n M : A, then M ∈ SN≤n.
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Proof. Corollary of Theorem 23: We prove by induction on n that if Γ `n M : A then
M ∈ SN≤n.

Let M ′ be a term such that M −→β M ′. By Theorem 23, there exist Γ′ and n′

such that n′ < n and Γ′ `n′
M ′ : A. By induction hypothesis, M ′ ∈ SN≤n′ . Hence,

M ′ ∈ SN≤n−1 because n′ ≤ n− 1.
Therefore, M ∈ SN≤n. J

Theorem 24 gives us a bound on the length of the longest β-reduction sequence. For
a more precise result, see Theorem 33.

3.2 Completeness
We prove Subject Expansion for  . We could prove Subject Expansion for a larger
subset of −→β . However, the main purpose of this paper is to emphasize the new
complexity result and Theorem 35. Therefore, we prove Subject Expansion for  ,
which is enough to prove Completeness (Theorem 29).

As usual for the proof of Subject Expansion, we first prove an anti-substitution
lemma:

I Lemma 25 (Anti-substitution lemma).
If Γ `ns M{x := N} : A, then there exist Γ′, ∆ and U such that:
Γ ≈ Γ′ ∩∆.
Γ′, x : U `ns M : A and ∆ `ns N : U .
For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. First by induction on M , then by induction on A. See Appendix A. The last
property is necessary to preserve the absence of subsumptions in the induction. J

Notice that, in Lemma 25, if x /∈ fv(M), then U = ω and we do not have any typing
information on N .

In  , if a term is erased, then it is a normal form. Therefore, to prove Subject
Expansion, we need to be able to type normal terms. This is also used in Theorem 29.
To prove this, we need to know what is the type of an accumulator (when the context
is an input).

I Lemma 26 (Typing accumulators).
If Γ ` M : F , input(Γ) and acc(M), then F is of the form [k].

Proof. By induction on acc(M). See Appendix A. J

I Lemma 27 (Typing normal forms).
If M cannot be reduced by −→β , then there exist Γ and v such that Γ `opt M : [v].

Proof. By induction on M . In particular, we use Lemma 5 and Lemma 26. See Ap-
pendix A. J

I Theorem 28 (Subject Expansion).
If Γ′ `opt M

′ : F and M  M ′, then there exists Γ such that Γ ⊆ Γ′ and Γ `opt M :
F .

Proof.  is mutually defined with ⇒. We therefore prove, by simultaneous induction
on M  M ′ and M ⇒ M ′, a stronger statement that forms an appropriate induction
hypothesis:

If Γ′ `ns M : F and input(Γ′), and if we are in one of the following cases:
We have M ⇒M ′

We have M  M ′ and output(F ).
Then, there exists Γ such that Γ ⊆ Γ′, input(Γ), and Γ `ns M : F .

See the details in Appendix A.
J
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Finally, we can prove Completeness:

I Theorem 29 (Completeness).
If M ∈ SN, then there exist Γ and F such that Γ `opt M : F .

Proof. By induction on the size of the longest β-reduction sequence:
If M cannot be reduced by −→β : By Lemma 27, there exist Γ and F such that
Γ `opt M : F .
IfM can be reduced by −→β : By Lemma 6, there existsM ′ such thatM  M ′. By
induction hypothesis, there exist Γ′ and F such that Γ′ `opt M ′ : F . By Theorem 28,
there exists Γ such that Γ `opt M : F .

J

I Remark. The proof of Theorem 29 gives us an algorithm that builds an optimal typing
tree from a strongly normalising term. Hence, if we consider an optimal typing tree as
the derivation in a semantics, then this semantics is indeed an operational semantics,
and β-reduction is only a tool to build the derivation.

This algorithm is based on the worst reduction (see Section 4.1), i.e. not very efficient.
But even if there may be more efficient ways of building an typing tree forM , they have
to construct, at the end of the day, something whose size is at least the length of
the longest β-reduction sequence. We are therefore only interested in this as a purely
theoretical construction.

Notice that we could have proved completeness (a strongly normalising term is ty-
pable) without the notion of optimality. But proving it with optimality gives more value
to Theorems 33 and 35: Indeed, if a term is typable, then it is strongly normalising, so
it is typable with an optimal typing tree, and therefore we can apply Theorems 33 and
35 to it.

4 Refined soundness

The purpose of this section is to prove results when we have an optimal typing tree. In
Section 4.1, we prove a refined Subject Reduction property and the Complexity Result.
In Section 4.2, we prove that the type of a term in an optimal typing gives the structure
of its normal form, which allows us to see typing as a derivation of semantics.

4.1 Complexity
Proving the complexity result is shorter than that of [3], as we benefit from the seman-
tical elements that we have here added to typing trees.

To prove Theorem 32 (a refined version of Theorem 23), we need a refined Substitu-
tion Lemma to preserve the absence of subsumptions:

I Lemma 30 (Refined Substitution Lemma).
If Γ, x : U `nns M : A and ∆ `mns N : U , then there exists Γ′ such that:
Γ′ ≈ Γ ∩∆.
Γ′ `n+m

ns M{x := N} : A.
For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. By induction on Γ, x : U `ns M : A. We adapt the proofs of Lemmas 22 and 25.
See Appendix A. J

The last property of Lemma 30 has the same purpose as in Lemma 25.
One of the main advantage of this typing system compared to the one in [3] is that

the measure of an optimal typing tree for a normal term is equal to zero:

I Lemma 31 (Measure of normal forms).
If Γ `n M : F , M cannot be reduced by −→β , input(Γ) and output(F ), then n = 0.
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Proof. By induction on M with the use of Lemmas 5 and 26. Only rule (App2) (resp.
(Fun2)) can be used to type an application (resp. an abstraction). Hence, the measure
of the typing tree is indeed 0. See the details in Appendix A. J

In Theorem 23, the measure can decrease by more than one. However, under the
assumption of optimality and using Lemma 31, we can prove a refined version of Subject
Reduction:

I Theorem 32 (Refined Subject Reduction).
If Γ `nopt M : F and M  M ′, then there exists Γ′ such that Γ ⊆ Γ′ and Γ′ `n−1

opt
M ′ : F .

Proof. As in Theorem 28, we have a stronger result with⇒. We prove, by simultaneous
induction onM  M ′ andM ⇒M ′, the following statement that forms an appropriate
induction hypothesis:

If Γ `nns M : F , input(Γ), and if we are in one the following cases:
We have M  M ′ and output(F ).
We have M ⇒M ′.

Then, there exists Γ′ such that Γ ⊆ Γ′, Γ′ `n−1
ns M ′ : F and then, by Lemma 17.10, we

have input(Γ′).
We adapt the proof of Theorem 23.
In particular, if erases a term, then this term is a normal term and, by Lemma 31,

the measure of its typing tree is equal to zero. Also, by the fact that there are no
subsumptions, we never have to discard a part of a typing tree. Moreover, by the fact
that in the induction, the type of a term is not an intersection, the induction does not
have to deal with the intersection rule. All of these reasons make the measure strictly
decrease by one and only one. See Appendix A for details. J

Therefore, we can have a refined version of Theorem 24:

I Theorem 33 (Complexity Result).
If Γ `nopt M : F , then M ∈ SN=n.

Proof. By induction on n and by Theorem 32, and Lemmas 6 and 31, there exists a
β-reduction sequence from M of length n. By Theorem 24, M ∈ SN≤n. Therefore,
M ∈ SN=n. J

Theorems 23 and 24 are still useful because they require a weaker hypothesis than
Theorems 32 and 33. In fact, Theorems 24 and 32 are both used to prove Theorem 33.2

4.2 Viewing optimal typing as a big-step semantics
Section 4.1 gives us the length of the longest β-reduction sequence from an optimal
typing tree. Similarly, optimality (using the refined Subject Reduction property) allows
us to derive our final result: viewing the typing tree as the derivation of a big-step
semantics.

We first need a result about normal forms:

I Lemma 34 (Structure of a typed normal term).
If Γ `opt M : [v] and M cannot be reduced by −→β , then struct(M) = v.

Proof. By induction on M : By Lemma 5, we have acc(M) or M is of the form λx.M1.
By Definition 21, we have Γ `ns M : [v] and input(Γ).

If M is of the form λx.M1: Then, because [v] is not an arrow A→ F , there exist U
and v1 such that input(U), v = λv1 and Γ, x : U `ns M1 : [v1]. Hence, input(Γ, x : U).
Therefore, Γ, x : U `opt M1 : [v1]. By induction hypothesis, struct(M1) = v1. There-
fore, struct(M) = struct(λx.M1) = λstruct(M1) = λv1 = v.

2 We can notice that, although the results of this section are a refined version of what we prove
in Section 3.1, the structure of the lemmas and proofs is closer to the ones in Section 3.2.
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If M is of the form x: Then, we have Γ = (x : [v]). Hence, we have input(x : [v])
and input([v]). Therefore, v = O and we have struct(x) = O = v.
If M is of the form M1M2 with acc(M1): Then, we are in one of the two following
cases:

There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ [v] and
Γ2 `ns M2 : A. By Lemma 17.10, we have input(Γ1). By Lemma 26, A → [v] is
of the form [k]. Contradiction.
There exist Γ1, Γ2, k and v1 such that Γ = Γ1 ∩ Γ2, v = kv1, Γ1 `ns M1 : [k] and
Γ2 `ns M2 : [v1]. By Lemma 17.10, we have input(Γ1) and input(Γ2). Therefore,
Γ1 `opt M1 : [k] and Γ2 `opt M2 : [v1]. By induction hypothesis, struct(M1) = k

and struct(M2) = v1. Therefore, struct(M1M2) = struct(M1)struct(M2) = kv1 =
v.

J

I Theorem 35 (Structure of the normal form of a typed term).
If Γ `opt M : [v] and M ′ is the normal form of M , then struct(M ′) = v.

Proof. By Theorem 24, M is strongly normalising. We prove the result by induction
on the longest β-reduction sequence.

IfM cannot be reduced by −→β , thenM = M ′ and, by Lemma 34, we can conclude.
If M can be reduced by −→β , then, by Lemma 6, there exists M ′′ such that
M  M ′′. By Theorem 32, there exists Γ′′ such that Γ ⊆ Γ′′ and Γ′′ `opt M ′′ : [v].
M ′ is also the normal form of M ′′. By induction hypothesis, struct(M ′) = v.

J

Theorem 35 gives us the structure of the normal form of a term. A more precise
result is discussed in Section 5.2.

We can also notice that non-idempotency and the absence of subsumptions is not
used to prove Theorem 35.

I Remark. Assume M is a closed strongly normalising term such that its normal form
is a Church integer. Then, there exists a type A such that, for all closed strongly
normalising terms N whose normal form is a Church integer, `opt N : A if and only if
M and N are β-equivalent.3

We can notice that our results are concerning β-reduction/expansion/equivalence.
It does not give any results on η-reduction/expansion/equivalence. Indeed, our typing
system is not “η-friendly”: we do not have subject reduction nor expansion for η.

5 Alternative systems

In Section 5.1, we give a simpler variant that provides the Complexity Result (still much
simpler than in [3]) without giving information about the normal form. In Section 5.2,
we study the issue of how to obtain a more precise information about the normal form.

5.1 Variant with no information about the normal form
This paper improves the Complexity Result of [3] and brings a new result about the
normal form of a term. But if the point is only improving [3], we do not need to go as
far; consider the grammar of F -types is defined as follows:

F,G ::= O | δ | A→ F

All the types [kv] in this paper are simply collapsed into O, while all the types [λv]
are collapsed into δ.

3 This is similar to a result by Salvati [14] who provides a type system `Sal satisfiying: given a
simply-typed λ-term M , there exist a context Γ and a type A such that

Γ `Sal N : A if and only if M =βη N
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We therefore defined input(U) if and only if U is an intersection of O and output(U)
if and only if U = O or U = δ.

Moreover, the rules (Fun2) and (App2) are defined as follows:
Γ, x : U `n M : F input(U) output(F )

Γ `n λx.M : δ

Γ1 `n1 M1 : O Γ2 `n2 M2 : F output(F )

Γ1 ∩ Γ2 `n1+n2 M1M2 : O
The proofs of Soundness, Completeness and the Complexity Result are similar.

5.2 Obtaining the exact normal form
It would be interesting to enrich the typing system of this paper to improve Theorem 35,
so that the type of a term gives the exact normal form instead of just its structure. To
highlight the separation between terms and types, even when these denote terms in
normal form, we use a different syntax in the enriched grammar for v and k:

v ::= λx.M | k
k ::= x | kv

where x, y, z are labels, which differ from λ-term variables in that we choose them to
not be α-convertible in v and k (see below why). A naive way of modifying (Fun2) is:

Γ, x : U `n M : [v] inputy(U)

Γ `n λx.M : [λy.v]
where inputx(U) means that U is an intersection of [x]. Now in order to give an optimal
typing tree to (λx.λy.xy)(λz.z), indicating its normal form with the type [λz.z], we
would like this instance of (Fun2):

x : [z]→ [z], y : [z] ` xy : [z]

x : [z]→ [z] ` λy.xy : [λz.z]
which shows the need to not consider λz.z to be α-convertible (to λy.y, for instance).
Yet, avoiding name clashes and degeneration of types prompts for a side-condition for
(Fun2) of the form y /∈ fv(Γ) (freshness of y), which unfortunately forbids the above
example (so we would not have Completeness, for lack of Subject Expansion).

To solve this problem we need a subtler way of defining the freshness of y in (Fun2).
We add a condition in the definition of an optimal typing tree: In the typing tree, a
label y must be used at most once in an occurrence of (Fun2). This is a notion of global
freshness, that is somewhat similar to Barendregt’s convention for labels, and related
to the idea that principal types can specify normal forms [13]. This condition can blend
in the lemmas and theorems of the paper:

Completeness: We have enough fresh labels to type a normal term when needed.
Soundness: Subject Reduction does not do any duplications (because of non-idempotency),
and therefore, global freshness is preserved by (refined or not) Subject Reduction.

More formally we need to collect the labels y used in (Fun2). Therefore, we have typing
judgements of the form Γ `nA MU with A a finite multi-set of labels. This makes the
lemmas and proofs harder to read and this is the reason we have chosen to keep the
version with structures as the main theory.

Alternatively, we could work in a calculus that does not have λ-abstractions. For
example, the calculus with only combinators (S, K, etc . . . ) and applications would be
a good candidate.

6 Conclusion

We have presented a typing system of non-idempotent intersection types that charac-
terises strongly normalising λ-terms and in which an (optimal) typing derivation pro-
vides
1. the exact length of the longest β-reduction sequence
2. the structure of the normal form
The typing system is an enhanced version of that introduced in [3] and [4], which im-
proves and simplifies the result similar to 1. that was proved in [3]. Indeed, we used
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fewer definitions and lemmas, and the measure of an optimal typing tree is exactly the
length of the longest β-reduction sequence from the typed term.

Perhaps more importantly, introducing information about normal forms, within
types, has turned the typing system into a system deriving a big-step semantics for
strongly normalising terms (provided we accept the structure of normal forms as an
acceptable semantics). This style of derivations (based on typing) is unusual in that it
never computes a substitution, and it relates to worst-case reduction strategies (gener-
ating longest β-reduction sequences).

We could adapt this improvement to a calculus with constructors and a fixpoint
operator in order to obtain these results in a more concrete and usable calculus.
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A Full proofs

I Lemma 5 (Shape of a normal form). If M cannot be reduced by −→β , then
either we have acc(M),
or M is of the form λx.M1.

Proof. By induction on M .
If M is of the form λx.M1, then we can conclude.
If M is a variable x, then we have acc(M).
If M is of the form M1M2: Then, M1 cannot be reduced by −→β . By induction
hypothesis on M1, either we have acc(M1) or M1 is of the form λx.M3.

If acc(M1), then acc(M1M2).
If M1 is of the form λx.M3, then M −→β M3{x := M2}. Contradiction.

J

I Lemma 6 (Applicability of  ). If M can be reduced by −→β , then M can be reduced
by  .

Proof. We prove by induction on M that if M can be reduced by −→β then:
If M is of the form λx.M1, then there exists M ′ such that M  M ′.
If not, then there exists M ′ such M ⇒M ′.

Therefore, in both cases there exists M ′ such that M  M ′.

If M is a variable, then M cannot be reduced by −→β . Contradiction.
If M is of the form λx.M1: Then, M1 can be reduced by −→β . By induction
hypothesis, there exists M ′1 such that M1  M ′1. Therefore, M  λx.M ′1.
If M is of the form M1M2: Therefore, we are in one of the following cases:
M1 is of the form λx.M3 and x ∈ fv(M3): Therefore, M ⇒M3{x := M2}.
M1 is of the form λx.M3, x /∈ fv(M3) and M2 can be reduced by −→β : By
induction hypothesis, there exist M ′2 such that M2  M ′2. Therefore M ⇒
(λx.M3)M ′2.
M1 is of the form λx.M3, x /∈ fv(M3) and M2 cannot be reduced by −→β : Then,
M ⇒M3.
M1 is not of the form λx.M3 and M1 can be reduced by −→β : By induction
hypothesis, there exist M ′1 such that M1 ⇒M ′1. Therefore, M ⇒M ′1M2.
M1 is not of the form λx.M3 and M1 cannot be reduced by −→β : By the fact
that M1 is not of the form λx.M3, M2 can be reduced by −→β . By induction
hypothesis, there exist M ′2 such that M2  M ′2. By Lemma 5, we have acc(M1).
Therefore, M ⇒M1M

′
2.

J

I Lemma 8 (Structure of a normal term). M cannot be reduced by −→β if and only if
struct(M) is well-defined. Moreover, if we have acc(M), then struct(M) is of the form
k.

Proof. By induction on M .
If M is of the form x: x cannot be reduced by −→β , struct(x) is well-defined and
struct(x) = O which is of the form k.
If M is of the form λx.M1:

If λx.M1 cannot be reduced by −→β : Then, M1 cannot be reduced by −→β .
By induction hypothesis, struct(M1) is well-defined. Therefore, struct(λx.M1) is
well-defined and we do not have acc(λx.M1).
If struct(λx.M1) is well-defined: Then, struct(M1) is well-defined. By induction
hypothesis,M1 cannot be reduced by −→β . Therefore, λx.M1 cannot be reduced
by −→β .
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If M is of the form M1M2:
If M1M2 cannot be reduced by −→β : Then, M1 and M2 cannot be reduced
by −→β . By induction hypothesis, struct(M1) and struct(M2) are well-defined.
By Lemma 5, we have acc(M1) or M1 is of the form λx.M3. If M1 is of the
form λx.M3, then M1M2 −→β M3{x := M2}. Contradiction. Hence, we
have acc(M1). By induction hypothesis, struct(M1) is of the form k. Therefore,
struct(M1M2) is well-defined and struct(M1M2) = struct(M1)struct(M2) which
is of the form k′.
If struct(M1M2) is well-defined: Then, struct(M1) and struct(M2) are well-defined,
and struct(M1) is of the form k. By induction hypothesis, M1 and M2 cannot be
reduced by −→β . If M1 is of the form λx.M3, then struct(M1) = λstruct(M3)
which is not of the form k. Contradiction. Hence, M1 is not of the form λx.M3.
Therefore, M1M2 cannot be reduced by −→β .

J

I Lemma 12 (Properties of ≈).
1. Neutrality of ω: U ∩ ω = ω ∩ U = U .
2. Strictness of F -types: If U ≈ F , then U = F .
3. Strictness of ω: If U ≈ ω, then U = ω.
4. ≈ is an equivalence relation.
5. Commutativity of ∩: U ∩ V ≈ V ∩ U
6. Associativity of ∩: U1 ∩ (U2 ∩ U3) ≈ (U1 ∩ U2) ∩ U3
7. Stability of ∩: If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
8. If U ∩ V = ω, then U = V = ω.
9. If U ∩ V ≈ U , then V = ω.

10. If U ≈ V and input(U), then input(V ).
11. input(U ∩ V ) if and only if input(U) and input(V ).

Proof. 1. Straightforward.
2. By induction on U ≈ F .
3. Straightforward.
4.

Reflexivity: We prove that U ≈ U by induction on U .
Symmetry: We prove by induction on U ≈ V that if U ≈ V , then V ≈ U .
Transitivity: Straightforward.

5. Straightforward.
6. Straightforward.
7. Straightforward.
8. Straightforward.
9. For all U , we construct ϕ(U) defined by induction on U as follows:

ϕ(F ) := 1
ϕ(A ∩B) := ϕ(A) + ϕ(B)
ϕ(ω) := 0

By induction on U , if ϕ(U) = 0, then U = ω

We also have ϕ(U ∩ V ) = ϕ(U) + ϕ(V ).
By induction on U ≈ V , if U ≈ V , then ϕ(U) = ϕ(V ).
If U ∩ V ≈ U : Then, ϕ(U ∩ V ) = ϕ(U). Therefore, ϕ(U) + ϕ(V ) = ϕ(U). Hence,
ϕ(V ) = 0. Therefore, V = ω.

10. By induction on U ≈ V .
11. Straightforward.

J
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I Lemma 22 (Substitution lemma).
If Γ, x : U `n M : A and ∆ `m N : U , then there exists Γ′ such that Γ′ ≈ Γ∩∆ and

Γ′ `n+m M{x := N} : A.

Proof. By induction on Γ, x : U `n M : A.
For

x : F `0 x : F with Γ = (), n = 0, M = x, U = F and A = F : We have
x{x := N} = N . By hypothesis, ∆ `m N : U . Therefore, ∆ `m M{x := N} : F
with n+m = m and Γ ∩∆ = () ∩∆ = ∆.
For

y : F `0 y : F with y 6= x, Γ = (y : F ), n = 0, M = y, U = ω, and A = F :
By hypothesis, ∆ `m N : ω. Hence, ∆ = () and m = 0. We have y{x := N} = y.
Therefore, y : F `0 M{x := N} : F with n+m = 0 and Γ∩∆ = (y : F )∩() = (y : F ).

For
Γ1, x : U1 `n1 M : A1 Γ2, x : U2 `n2 M : A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2 M : A1 ∩A2
with Γ = Γ1 ∩ Γ2, n = n1 + n2,

U = U1 ∩ U2 and A = A1 ∩A2: By hypothesis, ∆ `m N : U1 ∩ U2. By Lemma 20.1,
there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2, m = m1 + m2, ∆1 `m1

N : U1 and ∆2 `m2 N : U2. By induction hypothesis, there exist Γ′1 and Γ′2 such
that Γ′1 ≈ Γ1 ∩ ∆1, Γ′2 ≈ Γ2 ∩ ∆2, Γ′1 `n1+m1 M{x := N} : A1 and Γ′2 `n2+m2

M{x := N} : A2. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2 M{x := N} : A1 ∩A2 with
Γ′1∩Γ′2 ≈ (Γ1∩∆1)∩(Γ2∩∆2) ≈ (Γ1∩Γ2)∩(∆1∩∆2) = Γ∩∆ and n1+m1+n2+m2 =
n+m.

For
Γ, x : U, y : V `n M1 : F B ⊆ V

Γ, x : U `n λy.M1 : B → F
with M = λy.M1, x 6= y, y /∈ fv(N) and A =

B → F . We have (λy.M1){x := N} = λy.M1{x := N}. By induction hypothesis,
there exists Γ′ such that Γ′ ≈ (Γ, y : V ) ∩ ∆ and Γ′ `n+m M1{y := N} : F . By
Lemma 20.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y : V ) ∩ ∆ =
(Γ ∩ ∆, y : V ). There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) =
Γ′. Therefore, Γ′′ ≈ Γ ∩ ∆ and V ≈ V ′. Hence, B ⊆ V ′. Therefore, Γ′′ `n+m

λy.M1{x := N} : B → F .

For
Γ, x : U, y : V `n M1 : [v] input(V )

Γ, x : U `n λy.M1 : [λv]
withM = λy.M1, y /∈ fv(N), A = [λv] and

y 6= x: We have (λy.M1){x := N} = λy.M1{x := N}. By induction hypothesis,
there exists Γ′ such that Γ′ ≈ (Γ, y : V ) ∩ ∆ and Γ′ `n+m M1{x := N} : [v]. By
Lemma 20.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y : V ) ∩ ∆ =
(Γ ∩∆, y : V ). There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) = Γ′.
Therefore, Γ′′ ≈ Γ∩∆ and V ≈ V ′. By Lemma 12.10, we have input(V ′). Therefore,
Γ′′ `n+m λy.M1{x := N} : [λv].

For
Γ1, x : U1 `n1 M1 : B → F Γ2, x : U2 `n2 M2 : B

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1 M1M2 : F
with Γ = Γ1 ∩ Γ2, n = n1 +

n2 + 1, U = U1 ∩ U2, M = M1M2 and A = F : We have (M1M2){x := N} =
M1{x := N}M2{x := N}. By hypothesis, ∆ `m N : U1 ∩ U2. By Lemma 20.1,
there exist ∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2, m = m1 + m2, ∆1 `m1

N : U1 and ∆2 `m2 N : U2. By induction hypothesis, there exist Γ′1 and Γ′2
such that Γ′1 ≈ Γ1 ∩ ∆1, Γ′2 ≈ Γ2 ∩ ∆2, Γ′1 `n1+m1 M1{x := N} : B → F and
Γ′2 `n2+m2 M2{x := N} : B. Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2+1 M1M2 : F
with Γ′1 ∩ Γ′2 ≈ (Γ1 ∩ ∆1) ∩ (Γ2 ∩ ∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩ ∆2) = Γ ∩ ∆ and
n1 +m1 + n2 +m2 + 1 = n+m.

For
Γ1, x : U1 `n1 M1 : [k] Γ2, x : U2 `n2 M2 : [v]

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2 M1M2 : [kv]
with Γ = Γ1 ∩ Γ2, n = n1 + n2,

U = U1 ∩ U2, M = M1M2 and A = [kv]: We have (M1M2){x := N} = M1{x :=
N}M2{x := N}. By hypothesis, ∆ `m N : U1 ∩ U2. By Lemma 20.1, there exist ∆1,
∆2, m1 and m2 such that ∆ = ∆1 ∩∆2, m = m1 +m2, ∆1 `m1 N : U1 and ∆2 `m2

N : U2. By induction hypothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1,
Γ′2 ≈ Γ2 ∩ ∆2, Γ′1 `n1+m1 M1{x := N} : [k] and Γ′2 `n2+m2 M2{x := N} : [v].
Therefore, Γ′1 ∩ Γ′2 `n1+m1+n2+m2 M1M2 : [kv] with Γ′1∩Γ′2 ≈ (Γ1∩∆1)∩(Γ2∩∆2) ≈
(Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆ and n1 +m1 + n2 +m2 = n+m.
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I Theorem 23 (Subject Reduction).
If Γ `n M : A and M −→β M ′, then there exist Γ′ and n′ such that Γ ⊆ Γ′, n > n′

and Γ′ `n′
M ′ : A.

Proof. First by induction on M −→β M ′, then by induction on A.
If A is of the form A1∩A2: Then, there exist Γ1, Γ2, n1 and n2 such that Γ = Γ1∩Γ2,
n = n1 + n2, Γ1 `n1 M : A1 and Γ2 `n2 M : A2. By induction hypothesis on
(M −→β M ′, A1) and (M −→β M ′, A2), there exist Γ′1, Γ′2, n′1 and n′2 such that
Γ1 ⊆ Γ′1, Γ2 ⊆ Γ′2, n1 > n′1, n2 > n′2, Γ′1 `n

′
1 M ′ : A1 and Γ′2 `n

′
2 M ′ : A2. Therefore,

Γ′1 ∩ Γ′2 `n
′
1+n′

2 M ′ : A1 ∩A2 with Γ = Γ1∩Γ2 ⊆ Γ′1∩Γ′2 and n = n1 +n2 > n′1 +n′2.

For (λx.M1)M2 −→β M1{x := M2} with M = (λx.M1)M2 and A is of the form
F :
Then, we are in one of the following cases:

There exist Γ1, Γ2, v and k such that Γ = Γ1∩Γ2, Γ1 ` λx.M1 : [k], Γ2 ` M2 : [v]
and F = [kv]. An abstraction λx.M1 cannot have [k] as a type (it is either an
arrow B → G or of the form [λv1]). Contradiction.
There exist Γ1, Γ2, n1, n2, B such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `n1

λx.M1 : B → F and Γ2 `n2 M2 : B: Then, there exists U such that B ⊆ U

and Γ1, x : U `n1 M1 : F . By Lemma 20.3, there exist Γ′2 and n′2 such that
Γ2 ⊆ Γ′2, n2 ≥ n′2 and Γ′2 `n

′
2 M2 : U . By Lemma 22, there exists Γ′ such that

Γ′ ≈ Γ1 ∩ Γ′2 and Γ′ `n1+n′
2 M1{x := M2} : F with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 ≈ Γ′

and n = n1 + n2 + 1 > n1 + n2 ≥ n1 + n′2.

For
M1 −→β M ′1

λx.M1 −→β λx.M ′1
with M = λx.M1 and A is of the form F , we are in one of

the following cases:
There exist B, G and U such that F = B → G, B ⊆ U and Γ, x : U `n M1 : G. By
induction hypothesis, there exists Γ′1 and n′ such that (Γ, x : U) ⊆ Γ′1, n > n′ and
Γ′1 `n

′
M ′1 : G. There exist a unique Γ′ and a unique U ′ such that Γ′1 = (Γ′, x : U ′).

Therefore, Γ ⊆ Γ′ and U ⊆ U ′. Hence, B ⊆ U ′. Therefore Γ′ `n′
λx.M ′1 : B → G.

There exist U and v such that input(U), F = [λv] and Γ, x : U `n M1 : [v]. By
induction hypothesis, there exist Γ′1 and n′ such that (Γ, x : U) ⊆ Γ′1, n > n′ and
Γ′1 `n

′
M ′1 : [v]. There exist a unique Γ′ and a unique U ′ such that Γ′1 = (Γ′, x :

U ′). Therefore, Γ ⊆ Γ′ and U ⊆ U ′. Hence, by Lemma 14.5, we have input(U ′).
Therefore, Γ′ `n′

λx.M ′1 : [λv].

For
M1 −→β M ′1

M1M2 −→β M ′1M2
with M = M1M2 and A is of the form F , we are in one of

the following cases:
There exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1,
Γ1 `n1 M1 : B → F and Γ2 `n2 M2 : B. By induction hypothesis, there exist
Γ′1 and n′1 such that Γ1 ⊆ Γ′1, n1 > n′1 and Γ′1 `n

′
1 M ′1 : B → F . Therefore,

Γ′1 ∩ Γ2 `n
′
1+n2+1 M ′1M2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 and n = n1 + n2 + 1 >

n′1 + n2 + 1.
There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩Γ2, n = n1 +n2, F = [kv],
Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By induction hypothesis, there exist Γ′1 and
n′1 such that Γ1 ⊆ Γ′1, n1 > n′1 and Γ′1 `n

′
1 M ′1 : [k]. Therefore Γ′1 ∩ Γ2 `n

′
1+n2

M ′1M2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 and n = n1 + n2 > n′1 + n2.

For
M2 −→β M ′2

M1M2 −→β M1M
′
2

with M = M1M2 and A is of the form F , we are in one of

the following cases:
There exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `n1

M1 : B → F and Γ2 `n2 M2 : B. By induction hypothesis, there exist Γ′2 and
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n′2 such that Γ2 ⊆ Γ′2, n2 > n′2 and Γ′2 `n
′
2 M ′2 : B. Therefore, Γ1 ∩ Γ′2 `n1+n′

2+1

M1M
′
2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 and n = n1 + n2 + 1 > n1 + n′2 + 1.

There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩Γ2, n = n1 +n2, F = [kv],
Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By induction hypothesis, there exist Γ′2 and
n′2 such that Γ2 ⊆ Γ′2, n2 > n′2 and Γ′2 `n

′
2 M ′2 : [v]. Therefore, Γ1 ∩ Γ′2 `n1+n′

2

M1M
′
2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 and n = n1 + n2 > n1 + n′2.

J

I Lemma 25 (Anti-substitution lemma).
If Γ `ns M{x := N} : A, then there exist Γ′, ∆ and U such that:
Γ ≈ Γ′ ∩∆.
Γ′, x : U `ns M : A and ∆ `ns N : U .
For all y /∈ Dom(∆), Γ(y) = Γ′(y).

Proof. First by induction on M , then by induction on A.
If A is of the form A1 ∩ A2: Then, there exist Γ1 and Γ2 such that Γ = Γ1 ∩ Γ2,
Γ1 `ns M{x := N} : A1 and Γ2 `ns M{x := N} : A2. By induction hypothesis on
(M,A1) and (M,A2), there exist Γ′1, Γ′2, ∆1, ∆2, U1 and U2 such that:

Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.
Γ′1, x : U1 `ns M : A1, Γ′2, x : U2 `ns M : A2, ∆1 `ns N : U1 and ∆2 `ns N : U2.
For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:
Γ = Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).
We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M : A1 ∩A2 and, by Lemma 20.1, ∆1 ∩∆2 `ns
N : U1 ∩ U2.
Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2). Therefore,
Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

If M = x and A is of the form F : Then, M{x := N} = N . Therefore, with Γ′ = (),
∆ = Γ and U = F :

Γ = () ∩ Γ.
We have x : F `ns x : F and Γ `ns N : F .
Assume y /∈ Dom(Γ). Therefore, Γ(y) = ω = ()(y).

If M is of the form y with y 6= x and A if of the form F : We have M{x := N} =
y = M . Hence, Γ = (y : F ). Therefore, with Γ′ = (y : F ), ∆ = () and U = ω:

(y : F ) = (y : F ) ∩ ().
We have y : F, x : ω `ns M : F and, by the rule (ω), `ns N : ω.
Assume z /∈ Dom(()). Therefore, Γ(z) = (y : F )(z).

If M is of the form λy.M1 with y 6= x and y /∈ fv(N), and A is of the form B → F .
We have (λy.M1){x := N} = λy.M1{x := N}. Therefore, there exists V such that
Γ, y : V `ns M1{x := N} : F and V = B or V = ω and output(B). By induction
hypothesis, there exist Γ′, ∆ and U such that:

(Γ, y : V ) ≈ Γ′ ∩∆.
We have Γ′, x : U `ns M1 : F and ∆ `ns N : U .
For all z /∈ Dom(∆), (Γ, y : V )(z) = Γ′(z).

There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) = Γ′. By Lemma 20.5,
Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆). Hence, (Γ′′, y : V ′)∩∆ = (Γ′′∩∆, y : V ′).
Therefore, (Γ, y : V ) ≈ Γ′∩∆ = (Γ′′∩∆, y : V ′). Hence, Γ ≈ Γ′′∩∆ and V ≈ V ′. By
the fact that y /∈ Dom(∆), we have V = (Γ, y : V )(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′.
Therefore:

We have Γ ≈ Γ′′ ∩∆.
We have Γ′′, y : V, x : U `ns M1 : F and ∆ `ns N : U . Therefore, Γ′′, x : U `ns
λy.M1 : B → F .
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Assume z /∈ Dom(∆). Then, Γ(z) ≈ Γ′′(z) ∩∆(z) = Γ′′(z) ∩ ω = Γ′′(z).
If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(z) = (Γ, y : V )(z) = Γ′(z) = (Γ′′, y :
V )(z) = Γ′′(z).
If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

If M is of the form λy.M1 with y 6= x and y /∈ fv(N), and A is of the form [λv]. We
have (λy.M1){x := N} = λy.M1{x := N}. Therefore, there exist V and F such
that Γ, y : V `ns M1{x := N} : [v] and input(V ). By induction hypothesis, there
exist Γ′, ∆ and U such that:

(Γ, y : V ) ≈ Γ′ ∩∆.
We have Γ′, x : U `ns M1 : [v] and ∆ `ns N : U .
For all z /∈ Dom(∆), (Γ, y : V )(z) = Γ′(z).

There exist a unique Γ′′ and a unique V ′ such that (Γ′′, y : V ′) = Γ′. By Lemma 20.5,
Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆). Hence, (Γ′′, y : V ′)∩∆ = (Γ′′∩∆, y : V ′).
Therefore, (Γ, y : V ) ≈ Γ′∩∆ = (Γ′′∩∆, y : V ′). Hence, Γ ≈ Γ′′∩∆ and V ≈ V ′. By
the fact that y /∈ Dom(∆), we have V = (Γ, y : V )(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′.
Therefore:

We have Γ ≈ Γ′′ ∩∆.
We have Γ′′, y : V, x : U `ns M1 : [v] and ∆ `ns N : U . Therefore, Γ′′, x : U `ns
λy.M1 : [λv].
Assume z /∈ Dom(∆). Then, Γ(z) ≈ Γ′′(z) ∩∆(z) = Γ′′(z) ∩ ω = Γ′′(z).
If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(z) = (Γ, y : V )(z) = Γ′(z) = (Γ′′, y :
V )(z) = Γ′′(z).
If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

If M is of the form M1M2 and A is of the form F : We have (M1M2){x := N} =
M1{x := N}M2{x := N}. We are in one of the following cases:

There exist Γ1, Γ2 and B such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1{x := N} : B → F

and Γ2 `ns M2{x := N} : B. By induction hypothesis, there exist Γ′1, Γ′2, ∆1,
∆2, U1 and U2 such that:
∗ Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.
∗ We have Γ′1, x : U1 `ns M1 : B → F , Γ′2, x : U2 `ns M2 : B, ∆1 `ns N : U1 and

∆2 `ns N : U2.
∗ For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
∗ For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).
Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:
∗ Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).
∗ We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M1M2 : F and, by Lemma 20.1, ∆1 ∩∆2 `ns
N : U1 ∩ U2.

∗ Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2). There-
fore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

There exist Γ1, Γ2, k and v such that Γ = Γ1∩Γ2, F = [kv], Γ1 `ns M1{x := N} :
[k] and Γ2 `ns M2{x := N} : [v]. By induction hypothesis, there exist Γ′1, Γ′2,
∆1, ∆2, U1 and U2 such that:
∗ Γ1 ≈ Γ′1 ∩∆1 and Γ2 ≈ Γ′2 ∩∆2.
∗ We have Γ′1, x : U1 `ns M1 : [k], Γ′2, x : U2 `ns M2 : [v], ∆1 `ns N : U1 and

∆2 `ns N : U2.
∗ For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
∗ For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).
Therefore, with Γ′ = Γ′1 ∩ Γ′2, ∆ = ∆1 ∩∆2 and U = U1 ∩ U2:
∗ Γ1 ∩ Γ2 ≈ (Γ′1 ∩∆1) ∩ (Γ′2 ∩∆2) ≈ (Γ′1 ∩ Γ′2) ∩ (∆1 ∩∆2).
∗ We have Γ′1 ∩ Γ′2, x : U1 ∩ U2 `ns M1M2 : [kv] and, by Lemma 20.1, ∆1 ∩∆2 `ns
N : U1 ∩ U2.

∗ Assume y /∈ Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2). There-
fore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

J
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I Lemma 26 (Typing accumulators).
If Γ ` M : F , input(Γ) and acc(M), then F is of the form [k].

Proof. By induction on acc(M).
For acc(x) with M = x: Then, Γ = (x : F ). Hence, input(F ). Therefore, F = [O]
which is of the form [k].

For
acc(M1)

acc(M1M2)
with M = M1M2: Then, we are in one of the following cases:

There exist Γ1, Γ2 and A such that Γ = Γ1 ∩Γ2, Γ1 ` M1 : A→ F and Γ2 ` M2 :
A. By Lemma 17.10, we have input(Γ1). By induction hypothesis, A → F is of
the form [k]. Contradiction.
There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 ` M1 : [k] and
Γ2 ` M2 : [v]. Then, we can conclude.

J

I Lemma 27 (Typing normal forms).
If M cannot be reduced by −→β , then there exist Γ and v such that Γ `opt M : [v].

Proof. By induction on M .
By Lemma 5, either M is of the form λx.M1 or we have acc(M). Hence, we are in

one of the following cases:
M is of the form λx.M1: By induction hypothesis, there exist Γ and v such that
Γ `opt M1 : [v]. Therefore, Γ `ns M1 : [v] and input(Γ). There exist a unique Γ1
and a unique U such that Γ = (Γ1, x : U). Hence, input(Γ1) and input(U). Then,
Γ1 `ns λx.M1 : [λv] with input(Γ1). Therefore, Γ1 `opt M : [λv].
M is a variable x: Then, x : [O] `opt M : [O].
M is of the formM1M2 with acc(M1): Then,M1 andM2 cannot be reduced by−→β .
By induction hypothesis, there exist Γ1, Γ2, v1 and v2 such that Γ1 `opt M1 : [v1]
and Γ2 `opt M2 : [v2]. Therefore, Γ1 `ns M1 : [v1], Γ2 `ns M2 : [v2], input(Γ1)
and input(Γ2). By Lemma 26, v1 if of the form k1. By Lemma 17.11, we have
input(Γ1 ∩ Γ2). Hence, Γ1 ∩ Γ2 `ns M1M2 : [k1v2] with input(Γ1 ∩ Γ2). Therefore,
Γ1 ∩ Γ2 `opt M : [k1v2].

J

I Theorem 28 (Subject Expansion).
If Γ′ `opt M

′ : F and M  M ′, then there exists Γ such that Γ ⊆ Γ′ and Γ `opt M :
F .

Proof. We prove by induction on M  M ′ and M ⇒ M ′ that if Γ′ `ns M : F and
input(Γ′), and if we are in one of the following cases:

We have M ⇒M ′

We have M  M ′ and output(F ).
Then, there exists Γ such that Γ ⊆ Γ′, input(Γ), and Γ `ns M : F .

For
x ∈ fv(M1)

(λx.M1)M2 ⇒M1{x := M2}
with M ′ = M1{x := M2}: By Lemma 25, there

exist Γ1, Γ2 and U such that Γ′ ≈ Γ1 ∩ Γ2, Γ1, x : U `ns M1 : F and Γ2 `ns M2 : U .
By Lemma 20.4, U is of the form A. Therefore, Γ1 `ns λx.M1 : A→ F . Hence,
Γ1 ∩ Γ2 `ns (λx.M1)M2 : F with Γ1 ∩Γ2 ⊆ Γ′ and, by Lemma 17.10, input(Γ1 ∩ Γ2)
(because Γ′ ⊆ Γ1 ∩ Γ2).

For
x /∈ fv(M1) M2  M ′2

(λx.M1)M2 ⇒ (λx.M1)M ′2
with M ′ = (λx.M1)M ′2: Then, we are in one of the

following cases:



A. Bernadet and S. Graham-Lengrand 23

There exist Γ1, Γ′2 andA such that Γ′ = Γ1∩Γ′2, Γ1 `ns λx.M1 : A→ F and Γ′2 `ns
M ′2 : A. Therefore, by the fact that there are no subsumptions, there exists U
such that Γ1, x : U `ns M1 : F and we have either U = A or U = ω and output(A).
If U = A then, by Lemma 20.4, x ∈ fv(M1): contradiction. Hence, U = ω and
output(A). Therefore, A is of the form G. By Lemma 17.10, we have input(Γ1)
and input(Γ′2). By induction hypothesis, there exists Γ2 such that input(Γ2),
Γ2 ⊆ Γ′2 and Γ2 `ns M2 : G. By Lemma 17.11, input(Γ1 ∩ Γ2). Therefore,
Γ1 ∩ Γ2 `ns (λx.M1)M2 : F with Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 = Γ′ and input(Γ1 ∩ Γ2).
There exist Γ1, Γ2, k and v such that Γ′ = Γ1 ∩ Γ2, Γ1 `ns λx.M1 : [k] and
Γ2 `ns M ′2 : [v]. An abstraction λx.M1 cannot have [k] as a type (it is either an
arrow A→ G or of the form [λv1]). Contradiction.

For
x /∈ fv(M1) M2 cannot be reduced by −→β

(λx.M1)M2 ⇒M1
with M ′ = M1: By Lemma 20.4,

x /∈ Dom(Γ′). Hence, Γ′ = (Γ′, x : ω). By Lemma 27, there exist Γ2 and G such
that Γ2 `opt M2 : G. Hence, input(Γ2), output(G) and Γ2 `ns M2 : G. Therefore,
Γ′ `ns λx.M1 : G→ F . By Lemma 17.11, we have input(Γ′ ∩ Γ2). Therefore,
Γ′ ∩ Γ2 `ns (λx.M1)M2 : F with Γ′ ∩ Γ2 ⊆ Γ′ and input(Γ′ ∩ Γ2).

For
M1 ⇒M ′1

M1M2 ⇒M ′1M2
with M ′ = M ′1M2, we are in one of the following cases:

There exist Γ′1, Γ2 and A such that Γ′ = Γ′1 ∩ Γ2, Γ′1 `ns M ′1 : A→ F and
Γ2 `ns M2 : A: Then, by Lemma 17.10, input(Γ′1) and input(Γ2). By induction
hypothesis, there exists Γ1 such that Γ1 ⊆ Γ′1, input(Γ1) and Γ1 `ns M1 : A→ F .
By Lemma 17.11, input(Γ1 ∩ Γ2). Therefore, Γ1 ∩ Γ2 `ns M1M2 : F with Γ1 ∩
Γ2 ⊆ Γ′1 ∩ Γ2 = Γ′ and input(Γ1 ∩ Γ2).
There exist Γ′1, Γ2, k and v such that Γ′ = Γ′1 ∩Γ2, F = [kv], Γ′1 `ns M ′1 : [k] and
Γ2 `ns M2 : [v]: Then, by Lemma 17.10, input(Γ′1) and input(Γ2). By induction
hypothesis, there exists Γ1 such that Γ1 ⊆ Γ′1, input(Γ1) and Γ1 `ns M1 : [k].
By Lemma 17.11, input(Γ1 ∩ Γ2). Therefore, Γ1 ∩ Γ2 `ns M1M2 : [kv] with
Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2 = Γ′ and input(Γ1 ∩ Γ2).

For
acc(M1) M2  M ′2

M1M2 ⇒M1M
′
2

withM ′ = M1M
′
2, we are in one of the two following cases:

There exist Γ1, Γ2 and A such that Γ′ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ F and
Γ2 `ns M ′2 : A. By Lemma 17.10, input(Γ1). By Lemma 26, A → F is of the
form [k]. Contradiction.
There exist Γ1, Γ′2, k and v such that Γ′ = Γ1 ∩ Γ′2, F = [kv], Γ1 `ns M1 : [k]
and Γ′2 `ns M ′2 : [v]. By Lemma 17.10, input(Γ1) and input(Γ′2). By induction
hypothesis, there exists Γ2 such that Γ2 ⊆ Γ′2, input(Γ2) and Γ2 `ns M2 : [v].
By Lemma 17.11, input(Γ1 ∩ Γ2). Therefore, Γ1 ∩ Γ2 `ns M1M2 : [kv] with
Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 = Γ′ and input(Γ1 ∩ Γ′2).

For
M ⇒M ′

M  M ′
: Trivial.

For
M1  M ′1

λx.M1  λx.M ′1
withM ′ = λx.M ′1 and output(F ): We have output(F ), so F is

not an arrow A→ G. Therefore, there exist U ′ and v such that F = [λv], input(U ′)
and Γ′, x : U ′ `ns M ′1 : [v]. Hence, input(Γ′, x : U ′). By induction hypothesis, there
exists Γ1 such that Γ1 ⊆ (Γ′, x : U ′), input(Γ1) and Γ1 `ns M1 : [v]. There exist an
unique Γ and a unique U such that Γ1 = (Γ, x : U). Therefore, Γ ⊆ Γ′, U ⊆ U ′,
input(Γ) and input(U). Hence, Γ `ns λx.M1 : [λv] with input(Γ).

J

I Lemma 30 (Refined Substitution Lemma).
If Γ, x : U `nns M : A and ∆ `mns N : U , then there exists Γ′ such that:
Γ′ ≈ Γ ∩∆.
Γ′ `n+m

ns M{x := N} : A.
For all y /∈ Dom(∆), Γ(y) = Γ′(y).
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Proof. By induction on Γ, x : U `ns M : A.
For

x : F `0
ns x : F with Γ = (), n = 0, U = F , M = x and A = F : We have

M{x := N} = N . Therefore, with Γ′ = ∆:
∆ = () ∩∆.
∆ `mns M{x := N} : F and n+m = m.
Assume y /∈ Dom(∆). Then, ∆(y) = ω = ()(y).

For
y : F `0

ns y : F with x 6= y, Γ = (y : F ), n = 0, U = ω, M = y and A = F : We
have M{x := N} = y = M . By hypothesis, ∆ `mns N : ω. Hence, m = 0 and ∆ = ().
Therefore, with Γ′ = Γ = (y : F ):

(y : F ) = Γ = Γ ∩ ().
y : F `0

ns M{x := N} : F and n+m = 0.
Assume z /∈ Dom(()). Then, (y : F )(z) = Γ(z).

For
Γ1, x : U1 `n1

ns M : A1 Γ2, x : U2 `n2
ns M : A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2
ns M : A1 ∩A2

with Γ = Γ1 ∩ Γ2, n = n1 + n2,

U = U1 ∩U2 and A = A1 ∩A2. By hypothesis, ∆ `mns N : U1 ∩ U2. By Lemma 20.1,
there exist ∆1, ∆2, m1 andm2 such that ∆ = ∆1∩∆2, m = m1+m2, ∆1 `m1

ns N : U1
and ∆2 `m2

ns N : U2. By induction hypothesis, there exist Γ′1 and Γ′2 such that:
Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.
Γ′1 `n1+m1

ns M{x := N} : A1 and Γ′2 `n2+m2
ns M{x := N} : A2.

For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:
Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.
We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2

ns M{x := N} : A1 ∩A2 and n + m = n1 + m1 +
n2 +m2.
Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).
Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

For
Γ, x : U, y : V `nns M1 : F

Γ, x : U `nns λy.M1 : B → F
with M = λy.M1, y /∈ fv(N), y 6= x, A = B → F

and V = B or V = ω and output(B). We have (λy.M1){x := N} = λy.M1{x := N}.
By induction hypothesis, there exist Γ′ such that:

Γ′ ≈ (Γ, y : V ) ∩∆.
Γ′ `n+m

ns M1{x := N} : F .
For all z /∈ Dom(∆), (Γ, y : V )(z) = Γ′(z).

By Lemma 20.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y : V ) ∩ ∆ =
(Γ ∩∆, y : V ). There exist a unique Γ′′ and a unique V ′ such that Γ′ = (Γ′′, y : V ′).
Hence, (Γ′′, y : V ′) ≈ (Γ, y : V ) ∩ ∆ = (Γ ∩ ∆, y : V ). Therefore, Γ′′ ≈ Γ ∩ ∆ and
V ′ ≈ V . We have y /∈ Dom(∆), so V = (Γ, y : V )(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′.
Therefore:

Γ′′ ≈ Γ ∩∆.
We have Γ′′, y : V `n+m

ns M1{x := N} : F . Therefore, Γ′′ `n+m
ns λy.M1{x := N} :

B → F .
Assume z /∈ Dom(∆). Then, Γ′′(z) ≈ (Γ∩∆)(z) = Γ(z)∩∆(z) = Γ(z)∩ω = Γ(z).
If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(y) = (Γ, y : V )(z) = Γ′(z) = (Γ′′, y :
V )(z) = Γ′′(z).
If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

For
Γ, x : U, y : V `nns M1 : [v] input(V )

Γ, x : U `nns λy.M1 : [λv]
with M = λy.M1, y /∈ fv(N), y 6= x and

A = [λv]. We have (λy.M1){x := N} = λy.M1{x := N}. By induction hypothesis,
there exist Γ′ such that:

Γ′ ≈ (Γ, y : V ) ∩∆.
Γ′ `n+m

ns M1{x := N} : [v].
For all z /∈ Dom(∆), (Γ, y : V )(z) = Γ′(z).
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By Lemma 20.5, Dom(∆) ⊆ fv(N). Therefore, y /∈ Dom(∆) and (Γ, y : V ) ∩ ∆ =
(Γ ∩∆, y : V ). There exist a unique Γ′′ and a unique V ′ such that Γ′ = (Γ′′, y : V ′).
Hence, (Γ′′, y : V ′) ≈ (Γ, y : V ) ∩ ∆ = (Γ ∩ ∆, y : V ). Therefore, Γ′′ ≈ Γ ∩ ∆ and
V ′ ≈ V . We have y /∈ Dom(∆), so V = (Γ, y : V )(y) = Γ′(y) = (Γ′′, y : V ′)(y) = V ′.
Therefore:

Γ′′ ≈ Γ ∩∆.
We have Γ′′, y : V `n+m

ns M1{x := N} : [v]. Therefore, Γ′′ `n+m
ns λy.M1{x := N} :

[λv].
Assume z /∈ Dom(∆). Then, Γ′′(z) ≈ (Γ∩∆)(z) = Γ(z)∩∆(z) = Γ(z)∩ω = Γ(z).
If z ∈ Dom(Γ): Then, z ∈ Dom(Γ′′) and Γ(y) = (Γ, y : V )(z) = Γ′(z) = (Γ′′, y :
V )(z) = Γ′′(z).
If z /∈ Dom(Γ): Then, z /∈ Dom(Γ′′) and Γ(z) = Γ′′(z) = ω.

For
Γ1, x : U1 `n1

ns M1 : B → F Γ2, x : U2 `n2
ns M2 : B

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2+1
ns M1M2 : F

with Γ = Γ1 ∩ Γ2, n = n1 +

n2 + 1, U = U1 ∩ U2, M = M1M2 and A = F . We have (M1M2){x := N} =
M1{x := N}M2{x := N}. By hypothesis, ∆ `mns N : U1 ∩ U2. By Lemma 20.1,
there exist ∆1, ∆2, m1 andm2 such that ∆ = ∆1∩∆2, m = m1+m2, ∆1 `m1

ns N : U1
and ∆2 `m2

ns N : U2. By induction hypothesis, there exist Γ′1 and Γ′2 such that:
Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.
Γ′1 `n1+m1

ns M1 : B → F and Γ′2 `n2+m2
ns M2 : B.

For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:
Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.
We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2+1

ns M1{x := N}M2{x := N} : F and n + m =
n1 +m1 + n2 +m2 + 1.
Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).
Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

For
Γ1, x : U1 `n1

ns M1 : [k] Γ2, x : U2 `n2
ns M2 : [v]

Γ1 ∩ Γ2, x : U1 ∩ U2 `n1+n2
ns M1M2 : [kv]

with Γ = Γ1 ∩ Γ2, n = n1 + n2,

U = U1 ∩ U2, M = M1M2 and A = [kv]. We have (M1M2){x := N} = M1{x :=
N}M2{x := N}. By hypothesis, ∆ `mns N : U1 ∩ U2. By Lemma 20.1, there exist
∆1, ∆2, m1 and m2 such that ∆ = ∆1 ∩ ∆2, m = m1 + m2, ∆1 `m1

ns N : U1 and
∆2 `m2

ns N : U2. By induction hypothesis, there exist Γ′1 and Γ′2 such that:
Γ′1 ≈ Γ1 ∩∆1 and Γ′2 ≈ Γ2 ∩∆2.
Γ′1 `n1+m1

ns M1 : [k] and Γ′2 `n2+m2
ns M2 : [v].

For all y /∈ Dom(∆1), Γ1(y) = Γ′1(y).
For all y /∈ Dom(∆2), Γ2(y) = Γ′2(y).

Therefore, with Γ′ = Γ′1 ∩ Γ′2:
Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) = Γ ∩∆.
We have Γ′1 ∩ Γ′2 `n1+m1+n2+m2

ns M1{x := N}M2{x := N} : [kv] and n + m =
n1 +m1 + n2 +m2.
Assume y /∈ Dom(∆) = Dom(∆1 ∩∆2). Then, y /∈ Dom(∆1) and y /∈ Dom(∆2).
Therefore, Γ(y) = (Γ1 ∩ Γ2)(y) = Γ1(y) ∩ Γ2(y) = Γ′1(y) ∩ Γ′2(y) = (Γ′1 ∩ Γ′2)(y).

J

I Lemma 31 (Measure of normal forms).
If Γ `n M : F , M cannot be reduced by −→β , input(Γ) and output(F ), then n = 0.

Proof. By induction onM : By Lemma 5,M is of the form λx.M1 or acc(M). Therefore,
we are in one of the following cases:

M is of the form λx.M1: We have output(F ), so F is not an arrow A→ G. Therefore,
there exist U and G such that input(U), output(G) and Γ, x : U `n M1 : G. Hence,
input(Γ, x : U). By induction hypothesis, n = 0.
M is a variable x: Then, n = 0.
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M is of the form M1M2 with acc(M1): Then, we are in one of the following cases:
There exist Γ1, Γ2 and A such that Γ = Γ1 ∩Γ2, Γ1 ` M1 : A→ F and Γ2 ` M2 :
A. By Lemma 17.10, we have input(Γ1). By Lemma 26, A → F is of the form
[k]. Contradiction.
There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩Γ2, n = n1 +n2, F = [kv],
Γ1 `n1 M1 : [k] and Γ2 `n2 M2 : [v]. By Lemma 17.10, input(Γ1) and input(Γ2).
By induction hypothesis, n1 = 0 and n2 = 0. Therefore n = 0.

J

I Theorem 32 (Refined Subject Reduction).
If Γ `nopt M : F and M  M ′, then there exists Γ′ such that Γ ⊆ Γ′ and Γ′ `n−1

opt
M ′ : F .

Proof. We prove by induction on M  M ′ and M ⇒M ′ that if Γ `nns M : F , input(Γ),
and if we are in one the following cases:

We have M  M ′ and output(F ).
We have M ⇒M ′.

Then, there exists Γ′ such that Γ ⊆ Γ′, Γ′ `n−1
ns M ′ : F and then, by Lemma 17.10, we

have input(Γ′).

For
x ∈ fv(M1)

(λx.M1)M2 ⇒M1{x := M2}
with M = (λx.M1)M2, we are in one of the

following cases:
There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1
ns M1 : F and U = A or U = ω

and output(A). By Lemma 20.4, if U = ω, then x /∈ fv(M1): contradiction.
Therefore, A = U . By Lemma 30, there exist Γ′ such that Γ′ ≈ Γ1 ∩ Γ2 and
Γ′ `n1+n2

ns M1{x := M2} : F with Γ ⊆ Γ′.
There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns λx.M1 : [k]
and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as a type (it is either
an arrow A→ G or of the form [λv1]). Contradiction.

For
x /∈ fv(M1) M2  M ′2

(λx.M1)M2 ⇒ (λx.M1)M ′2
withM = (λx.M1)M2, we are in one of the following

cases:
There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1
ns M1 : F and U = A or

U = ω and output(A). By Lemma 20.4, if U = A, then x ∈ fv(M1): contradiction.
Therefore, U = ω and output(A). Hence, A is of the form G. By Lemma 17.10,
input(Γ1) and input(Γ2). By induction hypothesis, there exists Γ′2 such that
Γ2 ⊆ Γ′2 and Γ′2 `n2−1

ns M ′2 : G. Therefore, Γ1 ∩ Γ′2 `n1+n2
ns (λx.M1)M ′2 : F with

Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2.
There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns λx.M1 : [k]
and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as a type (it is either
an arrow A→ G or of the form [λv1]). Contradiction.

For
x /∈ fv(M1) M2 cannot be reduced by −→β

(λx.M1)M2 ⇒M1
with M = (λx.M1)M2, we are in

one of the following cases:
There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1,
Γ1 `n1

ns λx.M1 : A→ F and Γ2 `n2
ns M2 : A: By the fact that there are no

subsumptions, there exists U such that Γ1, x : U `n1 M1 : F and U = A or
U = ω and output(A). By Lemma 20.4, if U = A, then x ∈ fv(M1): contradiction.
Therefore, U = ω and output(A). Hence, A is of the form G and Γ1 = (Γ1, x : U).
By Lemma 17.10, input(Γ1) and input(Γ2). By Lemma 31, n2 = 0. Therefore,
Γ1 `n1+n2

ns M1 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ1.
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There exist Γ1, Γ2, k and v such that Γ = Γ1 ∩ Γ2, F = [kv], Γ1 `ns λx.M1 : [k]
and Γ2 `ns M2 : [v]. An abstraction λx.M1 cannot have [k] as a type (it is either
an arrow A→ G or of the form [λv1]). Contradiction.

For
M1 ⇒M ′1

M1M2 ⇒M ′1M2
with M = M1M2, we are in one of the following cases:

There exist Γ1, Γ2, n1, n2 and A such that Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `n1
ns

M1 : A→ F and Γ2 `n2
ns M2 : A: By Lemma 17.10, input(Γ1) and input(Γ2). By

induction hypothesis, there exist Γ′1 such that Γ1 ⊆ Γ′1 and Γ′1 `n1−1 M ′1 : A→ F .
Therefore, Γ′1 ∩ Γ2 `n1+n2

ns M ′1M2 : F with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2.
There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩Γ2, n = n1 +n2, F = [kv],
Γ1 `n1

ns M1 : [k] and Γ2 `n2
ns M2 : [v]: By Lemma 17.10, input(Γ1) and input(Γ2).

By induction hypothesis, there exists Γ′1 such that Γ1 ⊆ Γ′1 and Γ′1 `n1−1
ns M ′1 : [k].

Therefore, Γ′1 ∩ Γ2 `n1+n2−1
ns M ′1M2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ′1 ∩ Γ2.

For
acc(M1) M2  M ′2

M1M2 ⇒M1M
′
2

, we are in one of the following cases:

There exist Γ1, Γ2 and A such that Γ = Γ1 ∩ Γ2, Γ1 `ns M1 : A→ F and
Γ2 `ns M2 : A. By Lemma 17.10, input(Γ1) and input(Γ2). By Lemma 26,
A→ F is of the form [k]. Contradiction.
There exist Γ1, Γ2, n1, n2, k and v such that Γ = Γ1 ∩Γ2, n = n1 +n2, F = [kv],
Γ1 `n1

ns M1 : [k] and Γ2 `n2
ns M2 : [v]. By Lemma 17.10, input(Γ1) and input(Γ2).

By induction hypothesis, there exists Γ′2 such that Γ2 ⊆ Γ′2 and Γ′2 `n2−1 M ′2 : [v].
Therefore, Γ1 ∩ Γ′2 `n1+n2−1 M1M

′
2 : [kv] with Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2.

For
M ⇒M ′

M  M ′
: Trivial.

For
M1  M ′1

λx.M1  λx.M ′1
with M = λx.M1 and output(F ): By the fact that we have

output(F ), F is not an arrow A → G. Therefore, there exist U and v such that
input(U), F = [λv] and Γ, x : U `nns M1 : [v]. Hence, input(Γ, x : U). By induction
hypothesis, there exists Γ1 such that (Γ, x : U) ⊆ Γ1 and Γ1 `n−1

ns M ′1 : [v]. There
exist an unique Γ′ and a unique U ′ such that Γ1 = (Γ′, x : U ′). Therefore, Γ ⊆ Γ′
and U ⊆ U ′. By Lemma 14.5, we have input(U ′). Hence, Γ′ `n−1 λx.M ′1 : [λv].

J


	Introduction
	Basic definitions and properties
	Syntax
	Intersection types and contexts
	Intersection types
	Contexts

	Typing system

	Characterisation of the typing system
	Soundness
	Completeness

	Refined soundness
	Complexity
	Viewing optimal typing as a big-step semantics

	Alternative systems
	Variant with no information about the normal form
	Obtaining the exact normal form

	Conclusion
	Full proofs

