Available online at www.sciencedirect.com

. . ANNALS OF
ScienceDirect PURE AND

APPLIED LOGIC

® :
ELSEVIER Annals of Pure and Applied Logic I (11EK) RRl—ERR

www.elsevier.com/locate/apal

Classical F,, orthogonality and symmetric candidates

Stéphane Lengrand®*, Alexandre Miquel?

A PPS & Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France
b School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 95X, Scotland, United Kingdom

Abstract

We present a version of system Fy,, called FS, in which the layer of type constructors is essentially the traditional one of F,,,
whereas provability of types is classical. The proof-term calculus accounting for the classical reasoning is a variant of Barbanera
and Berardi’s symmetric A-calculus.

We prove that the whole calculus is strongly normalising. For the layer of type constructors, we use Tait and Girard’s reducibility
method combined with orthogonality techniques. For the (classical) layer of terms, we use Barbanera and Berardi’s method based
on a symmetric notion of reducibility candidate. We prove that orthogonality does not capture the fixpoint construction of symmetric
candidates.

We establish the consistency of FS, and relate the calculus to the traditional system F,,, also when the latter is extended with
axioms for classical logic.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Classical logic; Classical version of system F,

1. Introduction

Approaches to a Curry—Howard correspondence for classical logic seem to converge towards the idea of programs
equipped with some notion of control [18,4,22,20,8]. The general notion of reduction/computation is non-confluent
but there are possible ways to restrict reductions and thus recover confluence.'

It is then tempting to try and build, on such a correspondence for classical logic, powerful type theories, such as
those developed in intuitionistic logic (Pure Type Systems [2,3], Martin-Lof type theories [16]). Approaches to this
task (in natural deduction) can be found in [21], in a framework a la Martin-L6f, and in [6] (but with a confluent
restriction of the reductions of classical logic).

Intuitionistic type theories, however, exploit the fact that predicates are pure functions, which, when fully applied,
give rise to formulae with logical meanings. The Curry—Howard correspondence in intuitionistic logic can then

* Corresponding author at: PPS & Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France.
E-mail address: Lengrand @ LIX.Polytechnique.fr (S. Lengrand).

1 Two such canonical ways are related to CBV and CBN, with associated semantics given by CPS-translations, which correspond to the usual
encodings of classical logic into intuitionistic logic known as “not—not”-translations.

0168-0072/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2008.01.005

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

http://www.elsevier.com/locate/apal
mailto:Lengrand@LIX.Polytechnique.fr
http://dx.doi.org/10.1016/j.apal.2008.01.005

2 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) 1I1—11N

describe these pure functions as the inhabitants of implicative types in a higher type layer (often called the layer
of kinds).

On the other hand, inhabitants of implicative types in classical logic can be much wilder than pure functions (owing
to the aforementioned notion of control), so it is not clear what meaning could be given to those simili-predicates,
built from classical inhabitants of implicative types, and whose reductions may not even be confluent. However, such
an issue is problematic only in the layer of types, a.k.a the upper layer, which various type theories “cleanly” separate
from the layer of terms, a.k.a the lower layer.

This paper, which extends [15], shows that it is perfectly safe to have cohabiting layers with different logics,
provided that the layer of types is free from any dependency on terms, i.e. that the system has no dependent types.
For that we chose to tackle System F,, [13]. We present here a version of it called F that is classical in the following
sense:

The upper layer is purely functional, i.e. intuitionistic: it is in fact the lambda-calculus extended with constants for
logical connectives. Then, for those objects of the layer that are types (a.k.a. formulae), we have a notion of provability
with proof derivations and proof-terms in the lower layer, which is here classical instead of intuitionistic.

The motivation for the choice of tackling F,, is threefold:

e System Fy, is indeed the most powerful corner of Barendregt’s Cube without dependent types [2,3].

e System F and the simply typed A-calculus also cleanly separate the lower layer from the upper layer, but the latter
is trivial as no computation happens there, in contrast to System F,, which features computation in both layers,
both strongly normalising.

e The version FS with a classical lower layer, in contrast to the intuitionistic one, features two different notions
of computation (one intuitionistic and confluent, the other one classical and non-confluent), also both strongly
normalising. Hence, F represents an excellent opportunity to express and compare two techniques to prove strong
normalisation that are based on the method of reducibility of Tait and Girard [13] and that look very similar, and
solve a conjecture raised in [15] about one technique not capturing the other.

The strong normalisation of the upper layer (Section 3.1) represents an opportunity to rephrase the reducibility
method [13] with the concepts and terminology of orthogonality, which provides a high level of abstraction and
potential for modularity, but has a sparse literature (which includes [17]).

The technique for the strong normalisation of the lower layer (Section 3.2) adapts Barbanera and Berardi’s method
based on a symmetric notion of reducibility candidate [4] and a fixpoint construction. Previous works (e.g. [19,9])
adapt it to prove the strong normalisation of various sequent calculi, but (to our knowledge) not pushing it to such
a typing system as that of FJ (with a notion of computation on types). Note that we also introduce the notion of
orthogonality in the proof technique (to elegantly express it and compare it to the proof for the upper layer).

The method works in fact without any surprise. Difficulties would come with dependent types (the only feature of
Barendregt’s Cube missing here), precisely because they would pollute the layer of types with non-confluence and
unclear semantics.

The main purpose of presenting together the two proof techniques described above is in fact to express them whilst
pointing out similarities, and to examine whether or not the concepts of the symmetric candidates method can be
captured by the concept of orthogonality. In this paper we solve the conjecture of [15] by proving that it cannot.

Finally we prove the consistency of F, and establish a formal connection with the traditional system F,,, also
when the latter uses extra axioms to allow classical reasoning.

Section 2 introduces FJ. Section 3 establishes the strong normalisation of the layer of types, and that of the layer
of terms. Section 4 compares the two proofs and solves the conjecture of [15]. Section 5 establishes some logical
properties of F, such as consistency.

2. Syntax, reduction and typing of FS

2.1. Syntax

F¢ distinguishes four syntactic categories: kinds, type constructors (or constructors for short), terms and
programs:

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1iil) IIR-1IR 3
Kinds K,K' = x| K—K'

o | at | xa:K.B| BA
AAB | AVB
Vae:K.B | 3a¢:K.B

Constructors A,B,C,...

Terms tu,v,... = x| ,uxA.p
| (tou) | (x?tyBc
| Aa:K .t | (A1)
Programs p == {t]|u}

Kinds, that are exactly the same as in system F, [13,5], are a system of simple types for type constructors. (We use
the word ‘kind’ to distinguish kinds from the types which appear at the level of type constructors.) The basic kind
is the kind of types, that is, the kind of all type constructors that represent types of terms—or propositions/formulae
through the Curry—Howard correspondence.

Type constructors, often shortened as constructors, are basically simply-typed A-terms with two binary operators
A A B (conjunction), A V B (disjunction) and two extra binders Vo : K . A and 3o : K . A to represent universal and
existential quantification. (There is no primitive implication in the system.)

Following a presentation which is standard in linear logic [14], negation is a primitive construction only on
variables, introducing a construction at for each variable «. The constructions Vo : K . B, 3a: K . B and Aa: K . B
then bind all free occurrences of the variable « in B, including those in subterms of the form al. (In other words, the
syntactic construction e is not a variable.) For instance, the type constructor

—=Aaik.at
is closed; this is the type constructor which represents negation as a function (of kind x — %). Bound variables and
a-conversion are treated as usual, and we sometimes omit the side-conditions avoiding variable capture when they
can be easily recovered.

Negation is then extended as an involutive operation A — AL over the set of all constructors via de Morgan laws:

@t =a* @) =a
(AA B =A+v Bt (Av Bt =4+t ABt
(Vo:K.B)* =3a:K.Bt (Ja:K.B)Yr =Va:K.Bt
(A:K.B)r =rx:K.Bt (B At =Bt A.

Notice how negation propagates through A-abstraction and application. In our calculus, the notation A~ is not only
meaningful for types (that is, constructors of kind «), but it is defined for all type constructors. With negation extended
to all type constructors we can define implication A = B as (A1) Vv B.

The computation rules of negation are incorporated into the calculus by extending the definition of the (external)
operation of substitution, written B{a\ A}, to the case where B is a negated variable, as shown in Fig. 1. (Notice that
in the last three cases, the bound variable « can be appropriately renamed so that the side-condition 8 # « holds and
variable capture is avoided.)

This (extended) notion of substitution satisfies the following properties:

Remark 1.

1. (A{fe\B})* = A-{x\B)}.
2. A{le\B}{B\C} = A{B\CHa\B{B\C}}.

The (proof-)terms of our calculus are basically the terms of Barbanera and Berardi’s symmetric A-calculus, with
the difference that connectives are treated multiplicatively. In particular, disjunction is treated as a negative connective
whose proofs are built using a double binder written x4 y2. p. On the other hand, proofs of conjunction are introduced
as usual, using the pairing construct written (f, u).

Finally, programs are built by making two terms ¢ and u interact using a construction written {¢ | u}, where each
term can be understood as the evaluation context of the other term. We assume that this construction is symmetric,

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

4 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) 1I1—11N

a{B\C} = « (B #)
B{B\C} = C

at{B\C} = ot (B #a)
BH{B\C} = c*t

(AAB)B\C) = A{B\C}AB(B\C)

(A vV B){B\C} = A{B\C}V B{B\C}

(B A){B\C} = B{B\C} A{B\C}
Oa:K.AB\C) = ra:K.A{B\C) (B #a)
(Ya:K.A){B\C} = VYa:K.A{B\C) (B # o)
@e:K.A{B\C} = Ja:K.A{B\C) (B #)

Fig. 1. Substitution in the upper layer.

that is, that {¢r | u} and {u | ¢} denote the same program. Henceforth, terms and programs are considered up to this
equality together with a-conversion.

2.2. Reduction and typing for types

The reduction relation on the layer of type constructors is S-reduction, which is defined as usual as the contextual
closure of the relation

(Aa:K.B)A —p5 Bl{a\A}.

However, the extension of the definition of substitution to negated variables mechanically enhances g-reduction in
such a way that we get de Morgan equalities for free:

—(AANB) =g AV —B —(AV B) =g —AAN—B
—(Va:K.B) =g Ja:K.—B —(Ja:K.B) =g Va:K .—B.

(Here, — denotes the type constructor Ac : % .o, and = g denotes the congruence generated by — 5 .)
Lemma2. —IfA —>4 Bthen At —4 B..

Proof. This is a corollary of Remark 1.1. O

Proposition 3. — The (enhanced) B-reduction on type constructors is confluent.

Proof. This is proved by introducing the corresponding notion of parallel reduction, following Tait and Martin-Lof [1],
and using Lemma 2. O

Typing contexts for variables of type constructors, that we call signatures, are consistent” finite sets of declarations
of the form (« : K):

Signatures Y o= a1:Ky,...,0,: K.

The inference rules of the typing judgement X' - A : K (‘In the signature X', A is a constructor of kind K’) are given
in Fig. 2.
The typing system satisfies the following properties:

Proposition 4. 1. (Weakening) If ¥+ A : K then X, a : K' - A : K.
2. (Negation preserves typing) If ¥ + A : K then ¥ + AL : K.
3. (Substitution is well-typed) If ¥ = A : K and X, a : K+ B : K' then ¥ + B{a\A} : K'.

It also satisfies Subject reduction:

Proposition 5 (Subject Reduction). —If ¥ = A : K and if A —g A, then ¥ = A" : K.

2 By consistent is meant that if @ : K1 and « : K5 are in X, then K = K3.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1iil) IIR-1IR 5

@K€y — (@:K)eXx

Yra:K Yrat:K

Y a:K+B:K’ Y+B:K— K’ YHA:K
Y+r:K.B:K —> K’ Y+BA:K

JEA:* YEB:x YEA:x JFEB:x
JEAAB:x YHFAVB

Y,a:K+FB:x Y,a:K+FB:x
YFVYa:K.B:x YhF3x:K.B:x

Fig. 2. Typing rules for type constructors.

2.3. Reduction and typing for terms and programs

The reduction system of the lower layer of FJ, presented in Fig. 3, applies on programs, but the contextual closure
equip both programs and terms with a reduction relation. Note that the contextual closure also incorporates reduction
of type constructors: for instance, Yx“yZ.r (8-)reduces to YxA/yB.t if A—pg A’. Finally, recall that the programs
{t | u} and {u | t} are identified, so we consider the reduction relation modulo the congruence defined by this identity
and we denote it —> Fe -

{ux*.p | 1) — . plx\t}

(o) | YxfxB.pt — v | pxde | px2.ph)
or —av, (| px {0 | px.pl)

{do: K .1 (A, u)} —va {t{a\A} | u}

Fig. 3. Reduction rules on terms and programs.

As in Barbanera and Berardi’s symmetric A-calculus [4] or in Curien and Herbelin’s Apfi-calculus [8], the critical
pair
{ux.p | uy* .q)
N
pix\uy*.q} q{y\ux.p}
cannot be joined, and in fact reduction is not confluent in general in this layer (see Example 2 below).

Typing contexts for variables of terms, that we simply call contexts, are consistent? finite sets of declarations of the
form (x : A):

Contexts I' == x1:A1,...,x5: Ay

Since types A that appear in a context may depend on constructor variables, each context I only makes sense in a
given signature 3. In what follows, we say that a context I" is well-formed in a signature X' and write wfy; (1) if for
all declarations (x : A) € I', the judgement X' = A : x is derivable.

From this, we define two judgements, namely:

I'kxt:A ‘Inthe signature ' and context I, the term ¢ has type A’
I'ty po ‘Inthe signature X' and context I", the program p is well-formed’.

3 By consistent is meant that if x : Aj and x : A are in I', then A| = Aj.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

6 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (11i1) INE—1IR

Both judgements are defined by mutual induction from the rules given in Fig. 4.

wfy (1) I''x:AkFxpo
m(x:A)eF Fl—g,u,xA.p:Al
I'Ext: A I'sxu:B I''x:A,y:Bkypo
'ty (t,u): AAB I'txyx4yB.p:.atv Bt
'ty axt:B YEHAK 'ty u: B{a\A}
'ty Aa:K .t :Va:K.B 'ty (A,u):3a:K.B
I'bxi:A Zl—A’:*A_ v I'txt:A Tryu:At
Thyt:A — Thsltulo

Fig. 4. Typing rules for terms and programs.

This typing system satisfies the following properties:

Proposition 6. 1. (Weakening of signature) If I' =5, t : B (resp. I' Fx, p ¢) then I' Fx 4.k t : B
(resp. I'tx.4:k P <)

2. (Weakening of context) If I' =x; t : B (resp. I' -5 p ¢) and ¥ + A : K then I''x: A +Fx t: B
(resp. I',x: Abx po.)

3. (Substitution of constructors is well-typed) If) = A : K and I' =5 4.k t : B (resp. I' =5 .x p ©) then
I' o\ A} x5 t{a\A} : B{a\A} (resp. I'{a\A} Fx pla\A} ©).

4. (Substitution of terms is well-typed) If ' bx; u : A and I'y)x: Abx t: B (resp. I',)x: A by p o) then
I' by t{x\u}: B (resp. I' =5 p{x\u} o).

And again it also satisfies Subject reduction, despite the non-deterministic nature of reduction:

Proposition 7 (Subject-Reduction).

LIfl'Fxt:Aandt —>ps t', then I' =5 t' 1 A.

2. IfT'+x poandp —>fs p',then ' -5 p'o.

Proof. By simultaneous induction on the judgements 'y t: Aand 'y po. O

Example 1. Here is a proof of the Law of excluded middle:

L

x:al,y:al—a;*x:a x:oﬂ‘,y:al—a:*y:oz

x:aL,y:al—a;*{x|y}<>

o e XX Y2 {x |y} eV (@)

= Aa:*."(x"‘Ly“.{x | y}:Va:ix.a VvV (ab)

Example 2. Here is Lafont’s example of non-confluence. Suppose I' 4.« p1 ¢ and I' . , p2 . With x & FV(py)
and y & FV(p2), by weakening we get

I''x:abg .« p1 o I’,y:aLl—a;*pzo

1
Ibg. o pux®.prat g e y® ppia.

1
I'bo o {nx®.pr | my® .pa} o

But {ux%.p; | /Ly"‘L.pz} —>Z p1or {ux®*.py | ,uy"‘L.pg} —>; p>. And unless the system is proof-irrelevant, pi

and p; can be completely different.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1iil) IIR-1IR 7

Definition 1 (Incestuous Pairs). We call incestuous pair a program of one of the following forms:

PAIR-PAIR {{t1, ur) | (t2, u2)}
LAMBDA-LAMBDA {YxlA‘le‘.pl | "(x;‘zysz.pz}
VLAMBDA-VLAMBDA {Aay K .11 | Aanr : K .1}
IWITNESS—IWITNESS {{A1,11) | (A2, 2)}
LAMBDA-YLAMBDA {Yxf‘lyfl.pl | Aa: K . 1)
PAIR-VLAMBDA {1, u) | Ao K . 1)
LAMBDA-IWITNESS {Yxf1y131~p1 | (Az, 1))
PAIR-IWITNESS {(t1,u1) | (A2, 22)}.

Proposition 8. — Incestuous pairs can never be typed.

Proof. The upper layer is confluent, so A A B #g CV D,Va:K.A #g Jo':K'.B, ANB #g 3o’ :K'.B,
Va:K. A#3 CV D, AANB#gVa:K . Aand3o':K'.B #g3a’:K'.B. O

Finally, note that, in contrast to Barbanera and Berardi’s symmetric A-calculus, our design choices for the typing
rules are such that, by constraining terms and programs to be linear, we get exactly the multiplicative fragment of
linear logic [14].

3. Strong normalisation

In this section we prove the strong normalisation of the two layers of F. In both cases the method is based on the
reducibility technique of Tait and Girard [13].

This consists in building a strongly normalising model of the calculus, interpreting kinds (resp. types) as sets of
strongly normalising type constructors (resp. pairs of strongly normalising terms). By definition, these sets (resp. pairs
of sets) contain the basic constructs that introduce a connective (resp. that introduce dual connectives).

This is sufficient to treat most cases of the induction to prove the soundness theorem (which roughly states that
being typed implies being in the model, hence being strongly normalising), but for the other cases we need the property
that the interpretation of kinds (resp. types) is saturated, so we extend these interpretations by a completion process.

Now the completion process is precisely where the proofs of strong normalisation of the two layers differ: For
the upper layer we simply use a completion by bi-orthogonality and this gives us the desired saturation property. For
the lower layer, the completion process is obtained by Barbanera and Berardi’s fixpoint construction. We discuss this
difference in Section 4.

3.1. Strong normalisation of type constructors

In this section we prove that all well-typed constructors are strongly normalisable. For that, let us write SN¢ the set
of all strongly normalisable type constructors.

We call a stack (of type constructors) any finite sequence S = (Ay, ..., A,) of type constructors. Given a type
constructor B and a stack S = (A1, ..., A,), we define the application BS by setting BS = BA;--- A,.
We say that a stack § = (Aq, ..., A,) is strongly normalisable when all its elements Aq, ..., A, are strongly

normalisable. The set of all strongly normalisable stacks is written SNE. In general, applying a strongly normalisable
constructor B € SN to a strongly normalisable stack S € SN{ does not yield a strongly normalisable constructor BS.
In the case where BS € SN¢, we thus say that B and S are orthogonal, and write B L S.

Given a subset X C SN¢, we write X the subset of SN§ called the orthogonal of X and defined by

Xt ={SeSN;|B L Sforall B e X}.
Similarly, the orthogonal Y1 C SN¢ of a subset ¥ C SN{ is defined as
Yt ={BeSNg|BLSforall S €Y}
The operation X — X fulfils the usual properties of orthogonality on SN¢ (as well as on SNE):

1. X C X’ entails X’ L C X1 (contravariance)

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

8 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) 1I1—11N

2. X € Xt (closure)
3. Xt = x 1 (tri-orthogonal).

Definition 2 (Reducibility Candidate). — We call a reducibility candidate any subset X C SN such that X = X+

Notice that reducibility candidates are precisely the subsets X C SNg of the form X = Y= for some subset
Y C SN{. In particular, SN¢ is a reducibility candidate, since SN¢ = {0}* (writing () for the empty stack).
Reducibility candidates enjoy the following properties:

Proposition 9. — For all reducibility candidates X :

1. X C SNg;
2. X contains all variables o and negated variables o™ ;
3. X is closed under B-reduction, that is:
ifB€ Xand B—>g B',then B’ € X;
4. X is saturated, i.e. closed under head B-expansion:
if Bla\A} € X and A € SNg, then (Aa: K . B)A € X.

Proof. Item 1 holds by definition. Item 2 holds since aS (resp. aS) is strongly normalisable as soon as the stack
S is strongly normalisable. Item 3 holds since strongly normalisable type constructors are closed under 8-reduction.
Finally, item 4 is a consequence of the following property: If the type constructors A and B{w\A}A;--- A, are
strongly normalisable, then sois (A« : K . B)AAy---A,. O

Definition 3 (Set Constructions). We define the following abbreviations:

X - X' ={B € SN¢c | VAeX, (BA)eX'}
AX.X' ={a:K.BeSNc|VAeX, Bla\A} e X'}.

Lemma 10. — For all subsets X C SNcand Y C SN,
X > vt=0x.vHt

Proof. Since Y1 is a reducibility candidate (Y = Y1+1), it is saturated, that is, if B{a\A} € Y= then
(Aa:K.B) A€ YJ-.Hence,wegetAX.Yl cCX—>vYt
Now notice that X — Y- ={A:: S| A€ X, S € Y} (where A :: S denotes the consing operation on stacks), so

it is a reducibility candidate as well, and thus (A X . Yl)LL CX—>vrt
This direction is enough for the proof of strong normalisation, but the reverse direction can also be proved:

AssumingC € X — Y1+ and S € (A X . YL)™, we want to show C L S. Since C € SNg and S € SNX, any infinite
reduction sequence would start with:

CS—)E (Ax:K.B) S

with § —% §' € 0.X.YH and € —% *a:K.Be(X > Y1), forwhichia: K .BeAX.YL. O
From this, we interpret each kind K as a reducibility candidate:

Definition 4 (Interpretation of Kinds). The interpretation [K] of a kind K is a reducibility candidate defined by
induction on K as follows:

[*] = SN¢

[K > Kl =[K]— [K']=K].[K'D".
Lemma 11. — If the typing judgment a1 : Ki,...,a, : K, & B : K is derivable, then for all A1 € [K1], ...,
A, € [K,] one has

Biay,...,a,\Ay, ..., Ay} € [K]

(where Bfay, ...,ay\Al, ..., Ay} denotes the parallel substitution of the type constructors Ay, ..., A, to the
variables a1, . .., o, in the type constructor B).

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1iil) IIR-1IR 9

Proof. By induction on the derivation of & : Ky, ...,a, : K, F B: K. O
From this we get:
Theorem 12. — It) - B : K, then B is strongly normalisable.

Proof. Apply Lemma 11 with A| = «y, ..., A, = «, (identity substitution), using item 2 of Proposition 9. [
3.2. Strong normalisation of terms

This proof is adapted from those of [4,19,9] for the symmetric A-calculus [4], the Aufi-calculus [8], and the dual
calculus [23] (which are based on a bi-sided sequent calculi), respectively. They all use Barbanera and Berardi’s
symmetric candidates, with a fixpoint construct to capture the non-confluence of classical logic.

As usual with the reducibility method we construct a model of the calculus by interpreting types (here, type
constructors and type lists) as sets of terms. However, the second-order quantification that appears in System F or F,
is conveniently interpreted as a set intersection only if terms do not display type annotations. We therefore start by
defining such term and programs, i.e. Curry-style terms and programs:

Curry-style terms ¢, u,v,... == x|ux.p|{t,u)|Yxy.p|A_t|{, 1)
Curry-style programs p {t | u}.

The corresponding reduction rules that are shown in Fig. 5 define the Curry-style reduction —> pc as well as

the set SN of strongly normalising Curry-style terms and Curry-style programs. On the other hand, we write SN’ o to
denote the set of all strongly normalising Church-style terms and programs.

{ux.p |t} — pix\t}

{({t1, ©2) | Yx1x2~17} — {n| Mxy{tZ | sz-P}}
or {p | puxy.{r1 | pxy.pl}

(At | (L u)} — {t|u}

Fig. 5. Reductions without types.

Definition 5. — The type-erasure operation from terms (resp. programs) to Curry-style terms (resp. Curry-style
programs) is recursively defined by:

llx]] =x

Iz, u)l = (|ltl, lluell)
IvxAyB.pll = Yxy.lpl
luxA.pll = px.pll
|Ac: K .t|]| = A_|¢|
(A,)]l = (. [I7ll)

Iz | u}l = {lItll | lleell}.

Note that by erasing the types we still keep, in Curry-style programs, a trace of the constructs introducing the V and
3 quantifiers. Thus, it is slightly different from the traditional Curry-style polymorphism of system F or F,, but this
trace turns out to be important in classical logic: if we removed it, we could make some p—u critical pair appear that
was not present in the original program with type annotations, and one of the two reductions might not satisfy subject
reduction.*

4 This is a general problem of polymorphism and classical logic with non-confluent reduction: for instance the spirit of intersection types [7],
which represent finite polymorphism, is to give several types to the same program, free from any trace of where the typing rules for intersection
types have been used in its typing derivation. In that case again, non-confluent reductions of classical logic often fail to satisfy subject reduction.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

10 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic i (111R) II1-1N1

Lemma 13. — [fall type constructors in a Church-style proof-term t are strongly normalising (for B) and if ||t|| € SN,
thent € SNFa.

Proof. Let M (¢) be the multiset of all the type constructors appearing in ¢ (easily defined by induction on t —e.g.
M(xAyB.1) = {A, B} U M(1)). By assumption, all such type constructors are strongly normalising, so we can
consider the standard multiset order based on the terminating S-reduction (on type constructors).

Every reduction from ¢ decrease the pair (J|7]|, M (#)) in lexicographic order. O

Definition 6 (Orthogonality). e We say that a Curry-style term ¢ is orthogonal to a Curry-style term u, written ¢ L u,
if {t | u} € SN.

e We say that a set U of Curry-style terms is orthogonal to a set V of Curry-style terms, written & L V, if
VtelU,YueV,t Lu.

Remark 14. — If #{x\v} L u{x\v}, thent L u and ux.{t | u} € SN.

Definition 7. A set I/ of Curry-style terms is simple if it is non-empty and it contains no Curry-style term of the form
UX.p.

Definition 8. A pair (U, V) of sets of Curry-style terms is saturated if:

e Var C Uf and Var C V
o {px.{t | u) | Yo eV, t{x\v} L ufx\v}} C U and
{px {t | u} | Yv € U, t{x\v} L u{x\v}} C V.

Definition 9. e Whenever / is simple, we define the following function
Py (V) =UUVarU {ux.{t | u} | Yv e V, t{x\v} L u{x\v}}.

e Note that for all simple U, &, is anti-monotone. Hence, for any simple ¢/ and V, &4 o $y, is monotone, so it admits
a least fixpoint &" and we define FixExt(U, V) = U’, dpU")).

Note that the fixpoint construction is asymmetric: if FixExtl/, V) = U’, V'), there is a priori no reason for
FixExt(V, U) to be (V', U') (the first and second arguments have different roles).

Proposition 15. — Assume that U and V are simple withid 1.V, and let U', V') = FixExt(U, V).
We haved CU, YV CV, U LV and U', V') is saturated.

Proof. By definition, we have

U = Sy (V)=UUVarU {ux.{t | u} | Vv € V', t{x\v} L u{x\v}}
V = dpU) =V UVarU {ux.{t |u} | Yv €U, t{x\v} L u{x\v}}.

It is clearly saturated. We now prove that 24’ L V.

Since Y/ L V and U and V are non-empty, we have / € SN and V € SN. We also have Var C SN. Finally, by
Remark 14, we conclude /" € SN and V' € SN.

Nowassumeu e /' CSNandv e V' CSN.Ifu e f andv € V then u L v because I/ L V. If not, then at least
one of them is a variable or a term of the form z.x . p. In that case we show that for any u” and v" such that u — 7%, u’
and v — 7%, v’, we have u’ L v'. Note that u’ € SN and v € SN, and at least one of ’ and v’ is a variable or a (tuerm
of the form a;)uc p.

It then suffices to prove that if {u’ | v’} —> e p” then p” € SN, which we do by lexicographical induction on the
length of the longest derivation starting from u’ € SN and that of the longest derivation starting from v’ € SN.

o If (u' [v} —>ps {u” |v'}or {u | v'} —>Fc {u'| v}, the induction hypothesis applies.
e Since at least one of u’ and v’ is a variable or a term of the form ux.p’, the only other possible reduction is when
w' = px.p’ (resp. v’ = px.p’)and {u’ | v'} —>pe p'{x\v'} (resp. {u' | v} —>Fe p'{x\u'}).
Since u —>j;{5 u' and v —>*F£ v/, we have u = pux.p (resp. v = ux.p) with p _’T@ﬁ p’, so
pix\v} —>’;ﬂc) p{x\v'} (resp. p{x\u} —>’;ﬂc) p'{x\u'}). Since u € U’ and v € V', we know that p{x\v} € SN
(resp. p{x\u} € SN), so p’{x\v'} € SN (resp. p’{x\u'} € SN). O

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) III-EN1 11

Definition 10. — Now we interpret kinds:
e The interpretation [K]| of a kind K is defined by induction on K as follows:
[*1 = {U,V)|U LVand UU,YV) is saturated}
K — k1 = [k

where [K/JET is simply the set of (total) functions from [K] to [K'].
o Given a pair p € [x], we write p™ (resp. p™) its first (resp. second) component.
e We also define the (involutive) function swapg : [K] — [K] by induction on K:

swap,(U,V) =V, U)
swapg , gx/(f) = swapgro f.

e Letswap : (g IKT) — (Ug K1) be the disjoint union of all the swapg .
Remark 16. — Given p € [*], (swap,(p))™ = p~ and (swap,(p))~ = p™*.

Definition 11. — Let I/ and V be sets of Curry-style terms. We set the following definitions:

U, vy = {u,v)|luecld,veV}

YUYV.e = {Yxy.p|YueldVveV p{x, y\u, v} € SN}
AU = {A_u|uel}

)y = {(Lu)luell.

Remark 17. 1. The sets (U, V), YUV .o, A_U and (_, U) are always simple.
2. If U/ CSNand ¥V C SN then (U, V) L YUV .e.
3.IfUd L Vthen AU L (V).

Definition 12. — We say that a mapping p : varl — UK[[K]] is compatible with X if V(x : K) € X, p(a) € [K].

Definition 13. — For each A such that X’ - A : K for some K, and for each p compatible with Y, we define
[All, € [K] as follows:

el = p(@)

Tt T, = swap(p(@))

[A A Bl = FixExt(([AT}, [BI), YIAL} (B -e)

[A v Bl, = swap(Fixxt({[Al, . [BI,). YIAL, [BI, .e))
[Va:K'.Al, = FiXExt(A— e IALS as e (o UneegIAL aisn)
[Bo:K'.Al, = swap(FixExt(A_NpepeylAT ane (— Unepreg AT gan))
[ha:K'.Al, = helK'Tr [Alp.qmh

[A Bl = (Al BI,)-

The soundness of the definition inductively relies on the facts that p keeps being compatible with X' and [[A], € [K]]
(using Remark 17 and Proposition 15). In particular if 2’ = A : x, then [[A]], is orthogonal and saturated (with
[AD} € SN and [A], < SN).

Remark 18. 1. [A1], = swap([A]l,).
2. [[A{O‘\B}]]p = [[A]]p,m—>|[B]]p
3. If A —>p B then [All, = [B],.

Note that the swapping operation, in the interpretation of disjunction and existential quantification, ensures that
the same fixpoint extensions are used in the interpretation of A and in that of A, This is necessary for establishing
the above remark, given that, a priori, the fixpoint extension is asymmetric (i.e. swap, oFixExt # FixExt o swap,). The
choice of using swapping for disjunction (rather than conjunction) and existential (rather than universal) quantification
is arbitrary, and, correspondingly, we could have defined FixExt({/, 1) with the fixpoint of @y 0 @, rather than &40 y.
Alternatively we could also have used greatest fixpoints.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

12 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic i (111R) II1-1N1

Proposition 19. — If x| : Ay, ..., x, : A, Fx t : A then for all p compatible with X, and for all t; € [A(17F, ...,
I, € [[An]]; we have:
”t”{xl? L ,xn\th ceey tn} € H:A]];O‘r

Proof. By induction on the typing tree. O
Theorem 20. — If x1 : Ay, ..., Xp : Ay b5t : Athent € SNFo.

Proof. We first prove that we can find a p compatible with X' (for « : %, take p(«) = FixExt(Var, Var)). Then we can
apply Proposition 19 and conclude by Lemma 13. O

4. Orthogonality and saturation

As mentioned in the introduction of Section 3, the similarity between the proof of strong normalisation of the upper
layer and that of the lower layer is striking.

However, while in the upper layer the saturation of the interpretation of kinds is obtained by a bi-orthogonal
completion, it is important to understand why, for the lower layer, we used another notion of completion using fixpoints
instead.

The reason is that in general, if the pair (i, V) is simple and orthogonal, the extension (Z/**, V1) might not
be saturated in the sense of Definition 8 (while in the upper layer such a completion by bi-orthogonality ensures the
corresponding notion of saturation). This was a conjecture set in [15], which we prove in this section by providing
counter-examples.

Technically, the presence of the u—p critical pair makes the proof of Theorem 9.3 impossible to adapt to the
non-confluent case of the lower layer. This lack of saturation is the motivation for the fixpoint construction in the
interpretation of types, instead of the bi-orthogonal construction.

Note that [11] already notices that ‘the technique using the usual candidates of reducibility does not work’ for
the non-confluent reductions of classical logic (that they express in the Au-calculus [18]). However, their counter-
examples translate in our setting to the fact that even if ¢ and p{x\t} are in SN, {ux.p | ¢t} need not be in SN. This
is quite direct, but the method of completion by bi-orthogonality is more subtle: Indeed, we claim here that a bi-
orthogonal extension (U, V1) (with Y+ = ¢/ and Y+ = V1) need not be saturated. In other words, there
exist 1 € V1 and p{x\t} € SN, such that ux.p & U+ (or the symmetric situation, swapping ¢/ and V). Indeed,
we do obtain this from {ux.p | t} & SN, but the counter-examples of [11] only provide this with # € SN instead of
t e V1t CsN.

4.1. A counter-example

Remark 21. — We have the following equivalences for all programs p, g and for all terms ¢:

1. {ux.p | ny.q} € SNiff p{x\uy.q} € SN and g{y\pnx.p} € SN.
2. If the term ¢ is not a p-abstraction, then
{ux.p |t} € SNifft € SN and p{x\t} € SN.

We write p + ¢ for the non-deterministic composition of programs {¢_.p | @-.q}. (where _ denotes any fresh
variable), which reduces to both p and g. We have the equivalence:

(p+4q) €SN iff p € SN and q € SN.
Let § = ux.{x | x}. The counter-example is the following:

Proposition 22 (Counter-Example to Saturation).
— The pair ({8}, {8}*7) is not saturated.

To prove this proposition, let us consider the program

p={xla}+{x|b},

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) III-EN1 13
where a and b are two normal terms such that
{a,b} L § and a lb.

Obvious choices for a and b are (8, §) and Yx,x,.{x1 | x2}, respectively.

S}LL

Lemma 23. — Forallt € { , we have p{x\t} € SN.

Proof. Let € {8} Sincea, b € {8}, wehave {t | a} € SN and {r | b} € SN, hence p{x\t} = {t | a}+{t | b} € SN
from Proposition 21. O

Lemma 24. — pux.p ¢ {§}+.
Proof. Reduction of {ux.p | 8} yields the following sequence:

{ux.p 18} —>pe {nx.p|ux.p}
—> e {ux.pla}+{px.p|b}
—re {ux.p|a}
— e {ala}+{a|b}
—re {al|b} ¢ SN,

hence pux.p ¢ {§}*+. O

Lemmas 23 and 24 complete the proof of Proposition 22.
4.2. Perfect normalisation and a refined counter-example

The counter-example presented in Section 4.1 relies on two terms a and b that are orthogonal to §, that is, such that
{a|dé} €SN and {b| 8} € SN.

It is interesting to notice that for the choice of a and b we gave above, the strong normalisation of both programs
{a | 8} and {b | 8} relies on the fact that all reduction sequences eventually block on an incestuous program:

{ald} = {(8,8) 18} —>rg {(5,8)1(5,8)} and
b8} = (Nxypxp{x1 [x2} |8} —>rg {Xorpxp.{x1 [X2} | Yoryxp.{x1 [x2}}.

Of course, the computations above should be considered as ill-typed in any reasonable typing system, and thus should
be rejected.

On the other hand, the orthogonality relation + L u is intended to express some kind of correctness about the
execution of the program {f | u}. Thus if we consider that the strong normalisation of {a | §} and {b | &} is purely
artificial, one should restrict the definition of orthogonality in such a way that the pairs (a, §) and (b, §) are rejected.
This naturally leads to the following definition:

Definition 14 (Perfectly Normalising Program). — A program p (resp. a term ¢) is said to be perfectly normalising
if it is strongly normalising, and if for all p" such that p —%.. p’ (resp. all #’ such that r —7.. '), the program p’

(the term ¢’) contains no incestuous program as a subterm.

The set of all perfectly normalising programs and terms — which is a subset of the set SN of all strongly normalising
programs and terms — is written PN. Perfect normalisation enjoys similar properties as strong normalisation:

Remark 25. — We have the following equivalences for all programs p, g and for all terms ¢:

1. {ux.p | ny.q} € PNiff p{x\uy.q} € PN and g{y\ux.p} € PN.
2. If the term ¢ is not a p-abstraction, then
{ux.p |t} € PNiff r € PN and p{x\t} € PN.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

14 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic i (111R) II1-1N1

The notion of perfect normalisation induces a new orthogonality relation —still written t 1 u— on the set PN of
perfectly normalising terms, setting:

t Lu=1{t|u}ePN.

In this setting, the counter-example of Section 4.1 does not work anymore, since a, b ¢ {8}* (using the new definition
of the operator U > U™L).

Thus, we can still wonder whether pairs of sets of terms of the form (&4 LLoptdy (according to the new definition
of orthogonality) are always saturated or not.

Again, the answer is negative, but the counter-example is more subtle. We replace the symmetric self-application
8 = px.{x | x} by a notion of self-application coming from the A-calculus

§=px.{x | (x,2)}
where z denotes a fixed free variable.
Proposition 26. — The pair ({8}*, {8}1) is not saturated. (Where L refers to perfectly normalising orthogonality.)

Again, the idea is to consider two terms a and b such that {a | §} € PN, {b | §} € PN (intuitively: the A-terms aa
and bb strongly normalise), but such that {b | {(a, z)} ¢ PN (intuitively: the A-term ba diverges). For that, consider the
following terms

A="Yxy.{x|{x,y)} (A Ax.xXx)
a=Y-y{A |y} (~KA4)
b=Yxy.{x|({(z,(4,)} (=Aix.xz4)

(where K = Axy. x) and set again
p=Afalx}+{b]x}
Lemma 27. — Forall t € {8}, we have p{x\t} € PN.

Proof. In order to check that {a | §} € PN and {b | §} € PN, we now have to check that these programs do not reduce
to programs containing incestuous pairs. Indeed, the only reductions of these programs are:

{a|8} —rg {al(a,2)} —rg (A2}
{b18} —rg (b1 (b.2)} —rg b1z (A, 2} —Fg {21z, (A, (A, 2N}

Hence a,b € {8}*. Assume that t € {8}+. We thus have {¢ | ¢t} € PN and {b | ¢t} € PN, hence
{a |t} +{b]|t} = p{x\t} € PN from Proposition 25. O

Lemma 28. — pux.p ¢ {8}
Proof. Reduction of {ux.p | §} yields the following sequence:

{ux.p |38} —pe {ux.p|{ux.p,z)}
— e {a | (ux.p,2)} +{b| (ux.p, z)}
— e {b | {ux.p,2)}
—)F(g {/“pr | (Zs (As Z))}
— e {a |z, (A,)} +{b] (2, (4, 2)}
— s fal(z, (4, 2)}
— e {A1(4,2)}
— e {Al(4,2)} ¢ PN

hence ux.p ¢ {§}*+. O

Lemmas 27 and 28 complete the proof of Proposition 26.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) III-EN1 15

5. Logical properties

5.1. Consistency

The consistency of FS follows from Theorem 20 using a simple combinatorial argument. Let us first notice that all
(untyped) programs that are in normal form are either incestuous pairs or programs of the following forms:

VARIABLE—VARIABLE {x]y}
VARIABLE-LAMBDA {x | Yx4y8.p}
VARIABLE-PAIR {x | {(t,u)}
VARIABLE-VYLAMBDA {x| Ao :K .t}
VARIABLE—IWITNESS {x | (A, 1)}

Lemma 29. There is no closed typed program in normal form.

Proof. As mentioned in Proposition 8, incestuous pairs cannot be typed, and all programs of one of the above four
forms have a free variable, namely x. O

Hence we get the logical consistency of system FJ.
Theorem 30 (Consistency). There is no closed typed program in F_.

Proof. It suffices to combine Lemma 29 with Theorem 20 and Proposition 7. O
5.2. Translating F,, + DNE into F}

The definition of implication A = B as (A+) v B naturally suggests a translation from system F,, to system F °.
We annotate sequents in F,, using o

The translation proceeds as follows: each kind of F,, is translated as itself, and each type constructor A of F,, is
translated as a type constructor A* of FS by the equations

af =«
Va:K.A)*=Vua:K.A*
(A:>B)*:A*J'VB*
(A :K.B)*=Aa:K.B*
(B A)* = B* A*.

We then easily check that
Proposition 31. — If ¥ e A : K, then ¥ - A* : K.
Proposition 32. —If A — g B, then A* — g B*.

We now translate proof-terms, adapting Prawitz’s translation of natural deduction into sequent calculus, this time
using Curry-style terms and programs, because without a typing derivation for the terms of F,, we lack some type
annotations to place in the encoding.

Definition 15 (Encoding of Terms). The encoding u* of a term u of F,, is defined by induction on u as described in
Fig. 6. It relies on an auxiliary encoding that maps u to a program u; and that is parameterised by a term ¢ of FS.

Remark 33. — Let ¢, ¢’ be two terms of FS, and u, u’ two terms of F,.

L. Ift —>pe t' thenuf —>fpe uj,.
2. {u* |t} —>*F:) uf
3. uf{x\u'" } —>}{g u{x\u’}:‘{x\u,* , and

w*{x\u'*} _)}k’zﬁ u{x\u'}*.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

16 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic i (111R) II1-1N1

*

X = X
axAu® = ny.u;‘,
Aa: K .u* = A_u*
u* = wy.uy otherwise
kK _ *
(I/t u)t - M(M/*,T>
* _ *
(u A); = Uy .
vf = {v* |t} otherwise

Fig. 6. Encoding of terms.
The encoding of terms allows the simulation of reductions:

Proposition 34 (Simulation of B for Terms).

Ifu —p, v, thenuf — 7t u'y andu* — . u'™.
w

3

Proof. By simultaneous induction on the derivation of the reduction step, using Remark 33. O

The translation preserves typing:

Proposition 35 (Preservation of Typing for Terms). 1. If I’ I—g” u : A, then there exists a term t of system F, (with
type annotations) such that ||t|| = u* and I'* x5t : A.

2. If I’ I—g” u:Aand I'*, Ay t: A*L, then there exists a program p of system F? (with type annotations) such
that || p|| = WITtH and I'*, Aty po.

Proof. By induction on derivations, using Theorem 32 for the conversion rule. [

Since FJ is classical, we have a proof of the axiom of double negation elimination:
Let L = Va:x.a (in F, and FS) and T = 3Fa:x.a (in FS), and let DNE be the proposition
Va:x.((@ = 1) = 1) = «a expressed in system F,,. We have DNE* = Vo : . (@t v 1L)AT)Va.Let

C=Aa: *.YxBy“l.{x | (Yx"®y'T4x" | y}, (@, y))}, where B = (@ A T) v L.
We have

I C: DNE*.
Hence, provable propositions of system F,, + DNE become provable propositions of system F:
Theorem 36 (F. Captures F,, + DNE). For all derivable judgements of the form
Z:DNE, I' F5¢ u @ A
there exists a term t of system FJ (with type annotations) such that ||t|| = u*™ and we have
I' by t{z\C}: A*.

Through the translation A +— A*, system FS appears as an extension of system F, + DNE, and hence the
consistency of Fj, proved in Section 5.1, implies that of F,, + DNE.
We then set the following conjecture:

Conjecture 37 (F; is a Conservative Extension of F,, + DNE).
There exists a mapping B of the upper layer of F{ into that of F,, such that:

1. If ¥ -Fo A : %, then there exist two terms u and u' such that I—g“’ u:A— B(AY) and I—g‘” u' : B(A*) - A.
2. If I' bx; t : A then there exists a term u of Fy, such that B(I'), z : DNE by u : B(A).

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) III-EN1 17

6. Conclusion

In this paper we have introduced a classical version of system Fy,, called FJ. Its upper layer is intuitionistic, its
lower layer is classical, and both are strongly normalising.

We have adapted Tait and Girard’s reducibility methods for the two strong normalisation results, using
orthogonality and, for the lower layer, Barbanera and Berardi’s symmetric candidates.

F? thus provides an opportunity to compare the two variants of the reducibility method, which we do in
Section 4, proving the conjecture set in [15] that orthogonality does not capture the fixpoint completion of the
symmetric candidates. It is worth noting that the counter-examples are not specific to F; at all. First, they hold in
propositional logic (they do not involve polymorphism or type constructors), and second they could easily be given
for other symmetric calculi for classical logic such as the symmetric A-calculus [4], the X/Lﬁ-calculus [8] or the dual
calculus [23], as long as their untyped versions feature some infinite computations related to the A-term AA.

This point being made, it is clear that alternative proofs could have been given instead. For the upper layer we
could simply have simulated the reduction in the simply typed A-calculus, forgetting all the information about duality
(A and A+ would be mapped to the same term) which plays no computational role in this layer.’

However, such an encoding, while preserving the notion of computation, loses all information about duality. This
has two consequences:

o It cannot be used to establish a reflection between the upper layer of F¢ and the simply typed A-calculus (or the
upper layer of F).

e Since it loses all the logical meaning of type constructors, it cannot be used for a type-preserving encoding of F_
into e.g. F,+DNE, which we need to prove the conservativity conjecture (Conjecture 37 of Section 5.2).

Ongoing work is about refining this forgetful mapping by encoding in A-terms the information about duality, i.e. some
notion of “polarity”, in a way that is useful for the above two points.

For the lower layer we could try to adapt to F,, simpler proofs of strong normalisation of symmetric and non-
confluent calculi for classical logic, such as those of [10] or [12] which do not involve the fixpoint construction. We
do not know whether these proofs break, for a typing system as strong as that of F5. While we have seen that the
fixpoint completion is not captured by orthogonality, it would be interesting to see whether these simpler proofs are
captured by it (although they are not expressed in the framework of reducibility to which orthogonality pertains).

References

[1] H.P. Barendregt, The Lambda-calculus, its syntax and semantics, in: Studies in Logic and the Foundation of Mathematics, second ed., Elsevier,
1984.

[2] H.P. Barendregt, Introduction to generalized type systems, J. Funct. Programming 1 (2) (1991) 125-154.

[3] H.P. Barendregt, Lambda calculi with types, in: S. Abramsky, D.M. Gabby, T.S.E. Maibaum (Eds.), Hand. Log. Comput. Sci., vol. 2, Oxford
University Press, 1992, pp. 117-309 (Chapter 2).

[4] E. Barbanera, S. Berardi, A symmetric lambda-calculus for classical program extraction, Inform. Comput. 125 (2) (1996) 103-117.

[5] H. Barendregt, H. Geuvers, Proof-assistants using dependent type systems, in: J.A. Robinson, A. Voronkov (Eds.), Handbook of Automated
Reasoning, Elsevier and MIT Press, 2001, pp. 1149-1238.

[6] G. Barthe, J. Hatcliff, M.H. Sgrensen, A notion of classical pure type system, in: S. Brookes, M. Main, A. Melton, M. Mislove (Eds.), Proc.
of the 13th Annual Conf. on Math. Foundations of Programming Semantics, MFPS’97, in: ENTCS, vol. 6, Elsevier, 1997, pp. 4-59.

[7] M. Coppo, M. Dezani-Ciancaglini, A new type assignment for lambda-terms, Arch. f. Math. Logic u. Grundlagenforschung 19 (1978)
139-156.

[8] P.-L. Curien, H. Herbelin, The duality of computation, in: Proc. of the 5th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP’00,
ACM Press, 2000, pp. 233-243.

[9] D.J. Dougherty, S. Ghilezan, P. Lescanne, S. Likavec, Strong normalization of the dual classical sequent calculus, in: G. Sutcliffe, A. Voronkov
(Eds.), Proc. of the 12th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’05, in: LNCS, vol. 3835, Springer-
Verlag, December 2005, pp. 169-183.

[10] R. David, K. Nour, Arithmetical proofs of strong normalization results for the symmetric A, in: P. Urzyczyn (Ed.), Proc. of the 9th Int. Conf.
on Typed Lambda Calculus and Applications, TLCA’05, in: LNCS, vol. 3461, Springer-Verlag, April 2005, pp. 162-178.

5 For instance, @ and o~ would be mapped to the same term, A A B and A Vv B would both be mappedto xov A BandVo: K .Band3Jw: K . A
would both be mapped to xy3 Aa.A for two particular variables x v and xy3 that are never bound because they represent the logical connectives.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical F,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

18 S. Lengrand, A. Miquel / Annals of Pure and Applied Logic 1 (1111) IIE-11R

[11] R. David, K. Nour, Why the usual candidates of reducibility do not work for the symmetric Ap-calculus, in: P. Lescanne, R. David, M. Zaionc
(Eds.), Post-proc. of the 2nd Work. on Computational Logic and Applications, CLA’04, in: ENTCS, vol. 140, Elsevier, 2005, pp. 101-111.

[12] D. Dougherty, Personal communication, August 2006.

[13] J.-Y. Girard, Interprétation fonctionelle et élimination des coupures de I’arithmétique d’ordre supérieur, These d’état, Université Paris 7, 1972.

[14] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1) (1987) 1-101.

[15] S. Lengrand, A. Miquel, A classical version of Fy,, in: S. van Bakel, S. Berardi (Eds.), 1st Work. on Classical logic and Computation, July
2006.

[16] P. Martin-Lof, Intuitionistic type theory, in: Number 1 in Studies in Proof Theory, Lecture Notes, Bibliopolis, 1984.

[17] P.-A. Mellies, J. Vouillon, Recursive polymorphic types and parametricity in an operational framework, in: P. Panangaden (Ed.), 20th Annual
IEEE Symp. on Logic in Computer Science, IEEE Computer Society Press, June 2005, pp. 82-91.

[18] M. Parigot, Apu-calculus: An algorithmic interpretation of classical natural deduction, in: A. Voronkov (Ed.), Proc. of the Int. Conf. on Logic
Programming and Automated Reasoning, LPAR’92, in: LNCS, vol. 624, Springer-Verlag, July 1992, pp. 190-201.

[19] E. Polonovski, Strong normalization of Apfi-calculus with explicit substitutions, in: I. Walukiewicz (Ed.), Proc. of the 7th Int. Conf.
on Foundations of Software Science and Computation Structures, FOSSACS’04, in: LNCS, vol. 2987, Springer-Verlag, March 2004,
pp. 423-437.

[20] P. Selinger, Control categories and duality: on the categorical semantics of the Ap-calculus, Math. Struct. Comput. Sci. 11 (2001) 207-260.

[21] C.A. Stewart, On the formulae-as-types correspondence for classical logic, Ph.D. Thesis, University of Oxford, 2000.

[22] C. Urban, Classical Logic and Computation, Ph.D. Thesis, University of Cambridge, 2000.

[23] P. Wadler, Call-by-value is dual to call-by-name, in: Proc. of the 8th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP’03, vol.
38, ACM Press, September 2003, pp. 189-201.

Please cite this article in press as: S. Lengrand, A. Miquel, Classical Fy,, orthogonality and symmetric candidates, Annals of Pure and Applied
Logic (2008), doi:10.1016/j.apal.2008.01.005

	Classical Fomega , orthogonality and symmetric candidates
	Introduction
	Syntax, reduction and typing of Fomegac
	Syntax
	Reduction and typing for types
	Reduction and typing for terms and programs

	Strong normalisation
	Strong normalisation of type constructors
	Strong normalisation of terms

	Orthogonality and saturation
	A counter-example
	Perfect normalisation and a refined counter-example

	Logical properties
	Consistency
	Translating Fomega +DNE into Fomegac

	Conclusion
	References

