Boosting MCSat Modulo Nonlinear Integer
Arithmetic via Local Search

Enrico Lipparini’2®9@, Thomas Hader?, Ahmed Irfan’®, and
Stéphane Graham-Lengrand*

L University of Cagliari, Cagliari, Italy
enrico.lipparini@unica.it
2 University of Genoa, Genoa, Italy
3 TU Wien, Vienna, Austria
thomas.hader@tuwien.ac.at
4 SRI International, Menlo Park, CA, USA
{ahmed.irfan,stephane.graham-lengrand}@sri.com

Abstract. The Model Constructing Satisfiability (MCSat) approach to
the SMT problem extends the ideas of CDCL from the SAT level to the
theory level. Like SAT, its search is driven by incrementally constructing
a model by assigning concrete values to theory variables and performing
theory-level reasoning to learn lemmas when conflicts arise. Therefore,
the selection of values can significantly impact the search process and the
solver’s performance. In this work, we propose guiding the MCSat search
by utilizing assignment values discovered through local search. First, we
present a theory-agnostic framework to seamlessly integrate local search
techniques within the MCSat framework. Then, we highlight how to use
the framework to design a search procedure for (quantifier-free) Nonlin-
ear Integer Arithmetic (NZ.A), utilizing accelerated hill-climbing and a
new operation called feasible-sets jumping. We implement the proposed
approach in the MCSat engine of the YICES2 solver, and empirically
evaluate its performance over the NZ.A benchmarks of SMT-LIB.

1 Introduction

Satisfiability Modulo Theory (SMT) is the problem of deciding the satisfiabil-
ity of a first-order formula with respect to defined background theories. SMT
solvers are the core backbone of a vast range of verification and synthesis tools
that require reasoning about expressive logical theories such as real /integer arith-
metic [3[40]. One of the major state-of-the-art approaches to SMT is the Model
Constructing Satisfiability calculus (MCSat) [27I39], which generalizes the ideas
of Conflict-Driven Clause Learning (CDCL) to the theory level, and which has
been shown to perform particularly well on complex theories such as nonlinear
arithmetic. In the MCSat approach, the solver progressively constructs a theory
model, similarly to how SAT solvers construct Boolean models. Theory reason-
ing is used to assess the consistency of partial models, provide explanations of
infeasibility, decide theory variables, and propagate theory constraints.

mailto:enrico.lipparini@unica.it
https://orcid.org/0009-0009-0428-4403
https://orcid.org/0000-0001-7791-9021
https://orcid.org/0000-0002-2112-7284

2 Lipparini et al.

When extending the partial model with a new assignment to a theory vari-
able, picking a good value is critical for the overall performance of the solver.
Heuristics used by state-of-the-art solvers pick values on the basis of compati-
bility with the current search state and of computational cheapness. This has a
major drawback: these heuristics only consider knowledge of the current search
state, neglecting information on how likely a particular assignment is to lead to
a satisfying model eventually.

In this work, we address the problem of choosing good values for variable de-
cisions by augmenting the current search state knowledge with insights provided
by local search techniques. Following the logic-to-optimization approach [T7I35],
we associate to the logical formula a cost function that represents the distance
from a model, and use local search to find assignments that have a small cost.
These assignments are then used to guide future MCSat decisions.

Although local search has already been used in the context of SMT, either as
a standalone solver [46)336] or as a CDCL(T) theory solver [48], our work is the
first to propose a tight integration of local search within the MCSat framework,
creating a powerful synergy between the reasoning capabilities of MCSat and
the intuition provided by local search which boosts performance for both satisfi-
able and unsatisfiable instances. Our novel approach is flexible enough to allow
calls to local search at any point during the MCSat search, seamlessly fitting
with the current state. As MCSat progresses through decisions, propagations,
and conflicts, the local search problem is instantiated accordingly: (i) the cost
function is built upon the simplification of the original formula under current
state assumptions, (ii) initial local search assignments are based on the current
search state as well as cached values, and (iii) local search moves are enhanced
by information on intervals of feasible assignments to theory variables as tracked
by the MCSat engine.

While our approach can be applied to any theory supported by MCSat, in this
work we showcase its application to the theory of nonlinear integer arithmetic
(NZA). In particular, we design a procedure based on a new operation called
feasible-sets jumping, which allows to move between feasible intervals, and on
accelerated hill-climbing [24], to move inside feasible intervals.

Contributions. In this work we: (i) design a theory-agnostic framework to tightly
integrate local search techniques within the MCSat approach in order to guide
variable decisions, (ii) use the framework to define a local search procedure for the
theory of nonlinear integer arithmetic, that makes use of feasible-sets jumping
and accelerated hill-climbing, and (iii) show the practical applicability of our
method using our implementation in the MCSat engine of YICES2 [15] on the
quantifier-free NZA benchmark set of SMT-LIB [2].

Structure. In Section[2] we provide the necessary background. Section[3]describes
a deep integration of local search techniques within the MCSat framework from
a general point of view, which is applied in Section [to define a local search
approach for non-linear integer arithmetic. In Section [5] we show and discuss
the results of our experiments before presenting related work in Section [6] and
concluding in Section [7}

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 3
2 Preliminaries

We assume basic knowledge on the standard first-order quantifier-free logical
setting and standard notions of theory, satisfiability, and logical consequence.
We write logical variables with x,y, ..., and concrete values with «, 3,... (the
domain of concrete values is theory specific, e.g. Z for integer arithmetic, R for
real arithmetic). An assignment p is a map from variables to values of matching
type. If ¢ is a formula, we denote with Vars(¢) the set of its (free) variables. We
use C' to denote clauses, and L to denote literals. Nonlinear Integer Arithmetic
(NZA) is the theory consisting of arbitrary Boolean combinations of Boolean
variables and arithmetic atoms of the form of polynomial equalities and poly-
nomial inequalities over integer variables. It is undecidable by Matiyasevich’s
theorem [3§].

2.1 SMT & MCSat

SMT [3] is the problem of deciding the satisfiability of a first-order formula with
respect to some theory or combination of theories. Two of the major approaches
for SMT solving are the Conflict-Driven Clause Learning with theory support
(CDCL(T)) [4213] and the MCSat approach. In the former, theory solvers aug-
ment a propositional SAT engine with theory reasoning procedures which are
capable of deciding a conjunction of literals (i.e. atomic formulas and their nega-
tions) in a particular theory. A propositional model (of the Boolean abstraction
of the formula) found by the SAT solver is then checked by all theory engines
for theory consistency.

The latter, MCSat, applies CDCL-like mechanisms to perform theory rea-
soning directly. It can be used either as a theory solver for a specific theory
(e.g. in Z3 [14] for non-linear arithmetic over the reals and the integers [4]), or
as a fully-fledged stand-alone engine able to handle multiple theories (e.g. in
Yices2 for non-linear arithmetic over the reals [28] and over the integers [26],
bit-vectors [19], arrays [25], and finite fields [23/22]; as well as in SMT-RAT [13]
for non-linear real arithmetic [3I]). The MCSat architecture consists of a core
solver, an assignment trail, and plugins for theory reasoning. Figure [I] illustrates
the high level flow of the MCSat framework.

The core solver incrementally constructs a partial model consisting of Boolean
and theory assignments (stored in a trail), maintaining the invariant that none
of the constraints evaluate to false under the partial model. The trail contains
three kinds of elements: propagated literals (literals implied to be true by the
current state), decided literals (literals that we assume to be true), and model
assignments (assignments of first-order variables to concrete values). Propaga-
tions, conflict analysis, lemmas generation, and variable decisions are all handled
by theory plugins (including a Boolean plugin that is responsible for proposi-
tional reasoning). In general, plugins also keep a feasibility set for each variable
of their competence, containing the values that are consistent with the current
trail and are, thus, candidates to be picked for deciding the variable.

4 Lipparini et al.

| Explain& | UNSAT
Backtrack

Conflict/”
/ Lemma
" . .
— Propagate
T "\ Theory Variable
Assignment
No
Conflict |

' | sar
'{ Decide % - >

Fig.1: The MCSat framework consists of the following steps: 1) Propagate the trail.
2) If a conflict is found during propagation, check if there is any decision to backtrack
over. If not, return UNSAT. Otherwise, explain the conflict using a lemma, backtrack
the trail, and repeat step 1. 3) If no conflict is found during propagation, decide on a
variable that is not on the trail. If there is nothing left to decide, return SAT. Otherwise,
add the decided variable to the trail and repeat step 1.

When the core solver selects a variable for decision, the choice of the value
to assign to the variable is handled by the theory plugin responsible for its type.
Some solvers (e.g. Yices2) implement a heuristic called value cache (a general-
ization of SAT phase saving [43]), that keeps track of the last value assigned to a
variable when the assignment is undone. Then, when a decision has to be made
for the variable, the cached value will be used, provided that it is still in the
feasibility set; otherwise, it will simply be ignored, and other heuristics will be
used (e.g. picking a default value such as 0).

In the following, we will denote with M the trail, with v[M](z) the value of the
variable z in the trail (which may be equal to undef if the variable is not assigned
in the trail), and with v[M](L) the value of the literal L under the assignment
in M which may be true (T) or false (L) if L can be fully evaluated under such
assignment, or undef otherwise. We denote with feasible,;(x) the feasibility set
of x in M, i.e. all values that can be chosen for x in the current search state
given by M. For arithmetical theories, we have that feasible,;(x) C R, and, in
particular, that feasible,,(x) is the union of a finite set of feasible intervals, i.e.
feasibley (x) = UiG[O:m] I;. We assume that theory plugins provide a function
pick _wvalue(S) that returns a value from a set S.

Example 1. Assume a search problem in Z with variables z, y, and z given by
the input formula ¢.

¢ = (x> Vy=1) A (m(zy=1)V (z+2yz > 0)) A (22 >1)
A possible trail at some point during the search is

M=[>)~Tae—=1(x>1) T, (cy=1)—T]

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 5

On M elements are either decided or propagated. The feasibility sets are given
by feasible,;(z) = (—o00, —1) U (1,00) and feasible,;(y) = {1} = feasible;(z).
Since feasible,;(y) is a singleton, we can propagate the assignment y — 1 on M.
We further have that v[M]((x + 2yz > 0)) = undef and v[M](z) = 1.

2.2 Local Search
We define a local search problem as a triple (ug, f., moves), where:

— o is an initial assignment for a set of variables Vars,
— fc is a cost function from the set of assignments to R>q,
— moves is a neighbor relation between assignments.

A local search algorithm starts from the initial assignment po and iteratively
explores neighboring assignments according to the moves relation. We say that
w' is a move from p if (pu, p') € moves. A move ' is accepted if fo(u') < fe(p).
When a move is accepted, the new assignment becomes the current assignment
and the search continues until either: a zero-cost assignment is found, there are
no more possible moves (meaning that the current assignment represents a local
minimum), or a given stopping criterion is reached (e.g. number of moves).

The problem of finding a solution for an SMT formula ¢ can be en-
coded as a local search problem, e.g., by following the logic-to-optimization
approach [I7J3536], in which a formula ¢ is mapped to a term L£20(¢) that
represents the distance from a solution.

In principle, the £20 operator can be defined for any theory for which the
concept of distance between terms makes sense. Here, we limit ourselves to arith-
metic theories. We introduce an arithmetic function symbol d of arity 2 and we
assume a fixed interpretation d that satisfies the properties of metric distance,
i.e. symmetry, positivity, reflexivity, and triangle inequality. We also assume the
existence of a fixed constant term ¢, such that ¢ > 0. The specific choice of d
and € is theory-dependent.

We recursively define £20 as follows:

L£20(b) < ITE(b,0,1)

L£20(-b) < ITE(b,1,0)

L20(t; = t5) = d(ty,ty)

L20(t; < t5) EITE(t, < ts, 0, d(t1,12))
L20(t; < to) ZITE(t, < ta, 0, d(t1,t2) +¢)
L20(t; # t5) EITE(t; # ts, 0, 1)

L20(¢1 A ¢2) = L£20(41) + L20(¢2)

L20(41V ¢2) = £20(41) - £20()
L20(ITE(¢e, p1,¢2) = ITE(¢e, L20(1), L20(3))
L20(=ITE($e, 61, ¢2)) = ITE(¢e, L20(=¢1), L20(~¢2))

It is easy to check that a complete assignment p satisfies ¢ if and only if
L20(¢) evaluates to 0 under p.

6 Lipparini et al.

In the following, with a slight abuse of notation, we denote with £20(¢) also
the corresponding arithmetic function determined by the interpretation d and
the constant ¢, and we define the cost function associated to ¢ as f, = L20(9).

def

Ezxample 2. Let ¢ =
associated to ¢ is

def

b Ax=uy? and d(t;,t2) = |t; —t2|. Then, the cost function

fe & £20(¢) = ITE(b,0,1) + |z — 4|

Now, let po = {b — L ; = + 4 ; y — 1} be a starting assignment. We
have that f.(uo) = ITE(L,0,1) +]4 — 12| = 1 + 3 = 4. If we consider the
move j; = {b T ; x4 ; y— 1} that flips b, then f.(u1) = ITE(T,0,1) +
|4 — 12| = 0 + 3 = 3, hence the move is improving and is accepted. Then, if we
consider the move pig = {b+ T ; = +— 4 ; y — 2} that increases the value of
y by 1, we have f.(u1) = ITE(T,0,1) + |4 — 2% = 0+ 0 = 0. Hence we have
found a zero for f., i.e. a satisfying assignment for ¢.

In general, local search is not guaranteed to find a solution of ¢, if there is any.
Nevertheless, it returns a local minimum /best-effort value of the cost function
in the neighborhood of the initial assignment.

3 Deep combination of Local Search and MCSat

We propose a deep combination of MCSat and local search where: (i) the current
state of MCSat is used to instantiate a local search problem and (ii) the results
of the local search help guiding future MCSat decisions. Assuming we have a
local search procedure LS, we discuss how to instantiate LS (Section , as
well as how to use the result of LS within MCSat (Section [3.2).

3.1 Instantiating the Local Search problem

For the instantiation of LS, we determine the initial assignment and the formula
upon which the cost function is constructed. Both choices are of fundamental
importance. A good initial assignment is essential to find a good local minimum
of the cost function. A good local minimum is a local minimum that meets two
conditions: (i) it has a smaller cost compared to the cost of the initial assignment
and (i) its assignment values are likely to be accepted by MCSat, i.e., they are
consistent with the current trail. Passing a simplified formula that takes the truth
value of propagated and decided literals into account is also essential to tailor
the search to the current MCSat state and to avoid unnecessary computations.

Initial assignment. For every model assignment x — « in M, the assigned
variable is treated as a constant that takes its respective assigned value (i.e., is
treated as the constant «) and is not allowed to be changed in LS. This reduces
the dimension of the LS search space, and avoids moves inconsistent with the

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 7

Algorithm 1 Initial assignment for LS

Input: aset Vars(¢), a trail M, a value cache cache, a feasibility map feasible,,
Output: an initial assignment po. a set of fixed variables VarsFized C Vars(¢)
1: VarsFized < ()

2: for x € Vars(¢) do

3: if v[M](x) # undef then > check if z has a value in the trail
4: wo(z) + v[M](x) > assign trail value
5: VarsFized.add(z)

6: else if cache(z) # undef and cache(z) € feasible,,(x) then

T to(z) « cache(x) > assign feasible cached value
8: else

9: wo(x) < pick _value(feasible,, (x)) > assign any feasible value

current trail. For initial assignment of variables that are unassigned in M, a
reasonable choice is to use cached values of previous search states, if present
in the value cache. However, cached values are not guaranteed to be in the
feasibility set, as they might be the result of a previous decision that eventually
led to a conflict. Hence, we first check if the cached value is feasible. If it is not, or
there is no cached value, we pick any value from the feasibility set by asking the
appropriate theory plugin. The procedure for choosing the initial assignment is
shown in Algorithm[I] Note that, for all the variables, the feasibility set cannot be
empty. An empty feasibility set indicates an inconsistent trail which is resolved
using conflict resolution before starting LS. MCSat maintains the invariant that,
for a consistent trail, the feasibility set of all variables is non-empty.

Formula for LS. Every Boolean assignment L — {T, L} in M represents the
truth value of the literal L that is assumed to hold at the current search state

Algorithm 2 Formula for LS

Input: a formula ¢, a trail M

Output: a subformula ¢rs of ¢

1: ¢rs T > formula to be passed to LS
2: for C' € ¢ do

3: Crs + L

4: for L € C do

5: if v[M](L) =T then > if literal is assigned to true in trail
6: Crs T > substitute the clause with true
7: ¢rs < ¢rs N L > store literal
8: break

9: else if v[M](L) = L then > if literal is assigned to false in trail
10: ¢rLs < ¢rs N L > store literal (with correct polarity)
11: continue > ignore literal in the clause
12: else
13: Crs < CrsV L > keep literal in the clause

14: ¢rs < ¢rs AN CLrs

> store simplified clause

8 Lipparini et al.

(either because of a propagation or a decision). We can use this information to
simplify the original formula before passing it to LS. For a given clause C' &
LVvILyv...,if u[M](L) =T, then, for LS, it suffices to find an assignment that
satisfies L, since such an assignment would satisfy C' as well. Hence, in this case,
we shall pass to LS just L instead of C. On the other hand, if v[M](L) = L, then
there is no incentive for LS to try to find an assignment that makes L true, as
any such assignment would be inconsistent with the trail and will be discarded
by MCSat immediately. Thus, L is removed from the clause that is passed to
LS. Note that, by just removing L from the clause, we still may end up with
an assignment that evaluates L to T. Therefore, for literals that are assigned to
L in the trail, we add, just once, =L to the formula that we pass to LS. This
procedure is shown in Algorithm [2]

3.2 Guiding MCSat decisions

During the search, we periodically call LS to suggest values for MCSat to choose
in subsequent decisions. As a heuristic to decide when to call LS, we are utilizing
a polynomially increasing conflict threshold. Initially, this limit is set to 50, and
then it is increased according to the polynomial 50-1s_calls-log;,(Is_calls+9)3,
where ls_calls represents the number of times LS has been called. A similar
heuristic is used by SAT solvers to decide when to perform certain cache clearing
operations [§]. Once the threshold is reached, we wait until the last conflict has
been resolved and all consequences of that conflict are propagated. Then we start
LS to guide any further decisions.

The return of LS consists of a complete assignment that contains suggested
values for future variable decisions. These suggested values are put in the MCSat
value cache — recall that the values in the cache are picked first during variable
decisions, provided that they are feasible. Note that, during the choice of the
initial assignment to pass to LS, we had relied on (feasible) cached values as
well. If a cached value was feasible and LS changed its value, it means that
such change led to a smaller cost, hence got us closer to a solution. Therefore,
replacing the old cached value with the newly found suggestion improves the
cache quality. On the other hand, if the cached value was not feasible, then any
change to a feasible value improves the cache quality.

Furthermore, LS keeps track of the activity of each variable during its execu-
tion. The most active variables have contributed most to the decrease of the cost
during LS. We suggest those variables to MCSat as good choices for subsequent
decisions. This way, variables that were more active during the local search phase
will have a higher impact on the MCSat search.

4 Local Search for Nonlinear Integer Arithmetic

As explained in Section LS receives an initial assignment po and a formula

¢ from MCSat. The formula ¢ is used to construct the cost function f. using the
def

logic-to-optimization approach (Section , ie. fo = L20(¢). To apply that,

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 9

we must first define the distance function d and the strict inequality constant e
for integers. For d, we choose a consistent and computationally cheap definition
d(ty,t2) = |t —ta|. For €, our choice is € = 1, since t < 0 is interchangeable with
t+ 1 < 0 for integers.

The building blocks of local search are moves. We contemplate three types
of moves (or modes): one for Boolean variables, and two for integer variables.
Given an assignment g, we have the following types of moves:

— Boolean flips: For a Boolean variable b, the assignment p—y = pu[b — —u(b)]
obtained by changing the value of b to the negation of its value assigned by
u is a flip move from p.

— Hill-climbing moves: In the basic version of hill-climbing, for an
integer variable x, the assignments jiz41 = plz— p(z) +1] and
Maz—1 = plz — p(x) — 1] obtained by mapping x to the successor and
predecessor of its value assigned by g are moves from pu.

— Feasible-set-jumps: For an integer variable z, with feasibility set
feasible(x) = U;¢(g.pn) i and € I; (for a given j € [0 : m]), the assignments
et S plz — pick_value(I;—1)], and firight S plr — pick _value(I;41)]
obtained by picking a value from the left and right feasible intervals of I;
(provided they exist, i.e., respectively, that j—1 € [0 : m], and j+1 € [0 : m])
are moves from pu.

Our specific strategy of the local search algorithm is outlined in Algorithm
The algorithm starts with a list of variables vars (and an associated feasible

Algorithm 3 LS main algorithm

Input: a list vars, a feasibility map feasible, an initial assign. uo, a cost function f.
Output: a final assignment p* with fe(u*) < fe(uo)

10 p* + po > best assignment
2: cost” «+ fe(uo) > best cost
3: for mode € {bool-flips, fs-jumps, hill-climb} do

4: n_vars <0 > no. of vars visited since last improvement
5 while n_vars < len(vars) and cost™ # 0 do

6: z < vars[n_ vars] > pick next variable
7 a < p*(z) > value assigned to z
8 while apew < MOVE.choose(z, a, feasible, mode) do

9: Hnew — @[T = anew] > create new assignment
10: coStnew < fe(tnew)
11: success <— CoStpew < cost™ > check if the move has improved
12: if success then
13: W Lnew > update best assignment
14: cost™ <+ costpew > update best cost
15: n_vars < 0 > reset no. of vars visited
16: vars.to_front(z) > move z to the front of the list
17: MOoVE.notify(z, &, Gnew, feasible, mode, success)

18: n_vars <—n_vars + 1 > increas no. of vars visited

10 Lipparini et al.

map), an initial assignment pg, and a cost function f.. The goal of the procedure
is to return an assignment p* that improves over the initial assignment pg w.r.t.
the cost function, i.e. fo(u*) < fe(po)-

At the beginning, the best assignment coincides with the initial assignment
(Line . First, we cycle over modes (Line [3]). Then, we enter in a loop over the
variables (Line . The loop breaks only in two cases: if all the variables have
already been visited since the last improvement (in which case, it means we have
reached a local minimum w.r.t. the current mode moves), or if the current cost
is equal to 0 (in which case it means we have found a solution). At each loop
iteration, we pick the next variable (Line @ Here, for simplicity, we assume
that there are no fixed variables (in practice, these variables are just ignored
and treated as constants). Then, for the current variable x, we enter in a second
loop (Line , in which we select new values for x. These values are determined
by a move selection module, which we discuss below. The loop breaks only when
there are no more moves available. For each value, a new assignment is built by
re-assigning z to the new value (Line E[), and the cost of the new assignment
is computed (Line . We then check whether the current cost is lower than
the previous cost (Line . If so, then the new assignment becomes the best
assignment (Line [13), and z is moved to the front of the list (Line [L6). If not,
then we try other moves for z, if there are any. In both cases, we notify the
move selection module whether the suggested move has led to a success or not
(Line [17). The move selection module works as following.

Boolean flips mode. Here, the logic is rather straightforward, as there is only
one move possible per variable. Regardless of whether the move has success or
not, the cycle over moves terminates, and the algorithm proceeds with the cycles
over variables or over modes.

Accelerated hill-climbing mode. The simple hill-climbing moves presented ear-
lier, in which we add or subtract 1 to the current value, can be quite slow in
converging toward a local minimum when the search space is huge. For this
reason, we accelerate hill-climbing by keeping, for each variable, an adaptive
step _size, which is incremented or decremented according to a fixed accelera-
tion parameter acc (in our setting acc = 1.2) and on the base of the success
of previous moves. At the beginning, step size is set to 1 (i.e., we start with
simple hill-climbing moves). At each iteration, we try four moves, correspond-
ing to adding to the current value the product between step size and one of
the following: acc, ﬁ, a_Tlc’ —acc. Since we are working with integers, every step
value is rounded to the nearest integer. If one of the moves has success, then
we set step size to be equal to the best successful step (thus keeping the best
velocity). If none of the moves has success, then we stop the moves cycle, and we
set step size to W (thus decelerating over this variable for future moves).
Feasible-set-jumping mode. There are two possible versions of fs-jumping: global
and local. In global fs-jumping, given a fixed variable, we try all possible jumps
over the feasibility set, i.e. we try one jump per feasible interval. While this

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 11

may give a wide-ranging view over the feasibility set, it can also be very costly,
hence we limit global fs-jumping to one time per variable (per LS call). Local
fs-jumping, on the contrary, only explores the left and the right feasible intervals
w.r.t. to the interval that contains the current value. If one fs-jump is successful,
e.g. the one to the left interval, then we continue on that direction and explore
the interval further left. As soon as we find that both left and right fs-jumps do
not improve, then we stop, hence avoiding to span over all feasible intervals like
in the global fs-jumping.

5 Experiments

Implementation. We have implemented our method in the MCSat engine of the
Y1cEs2 SMT solver, adding a module for the interaction with LS. We will denote
the version of YICES2 that makes use of LS as YICES2, s and the baseline version
(without any local search) as YICES2pgse-

Setup. We have run our experiments on a cluster equipped with AMD EPYC
7502 CPUs running at 2.5GHz, using a timeout of 300 seconds, and a memory
limit of 8GB. We have compared the base version of YICES2 with the LS-boosted
version YICES2yg as well as with the state-of-the-art SMT solvers cvch [I]
(version 1.2.0), MATHSATS5 [11] (version 5.6.11), and Z3 [I4] (version 4.13.3). We
have also included in the comparison HYBRIDSMT [48], which runs a portfolio
composed by the LS solver LocalSMT [6] (used as a standalone tool) and a
LocalSMT-boosted version of Z3’s CDCL(T) — see also related work (Section 6.

Benchmarks. We have considered all the SMT-LIB [2] (Version 2024 [44]) bench-
marks from the QF NIA category. This is a class of 25443 benchmarks, among
which 14990 and 5183 come with a known status of “sat” and “unsat”, respec-
tively, and another 5270 have an “unknown” satisfiability status.

Results. In the presentation of the results, we consider both a short time limit
and a long time limit. We set the short time limit to 24s, as in the respec-
tive SMT-COMP track [47], and the long time limit to 300s, due to resource
constraints. The results are shown in Table [1| and Table [2 respectively. In the
columns, we separate per benchmark family; on the rows, for each solver, we re-
port the amount of overall benchmarks solved, and, in parenthesis, the amount
of benchmarks solved restricted to sat and unsat instances, respectively. We also
include two portfolios between Z3 (resp., HYBRIDSMT) and YICES2.g, that
work as follows: we run Z3 (resp., HYBRIDSMT) for half of the time limit (i.e.,
12s/150s), then, if it has not terminated, we run YICES2.g for the remaining
time.

Discussion. First, we observe that, with both time limits, YICES2 g solves a
significant number of benchmarks more than YICES2p,s. In particular, on both
satisfiable and unsatisfiable instances, it improves (or matches) YICES2pqs. re-
sults over all families, except one. Improving on unsatisfiable benchmarks is

12 Lipparini et al.

noteworthy: indeed, while, in general, local search is geared toward proving sat-
isfiability, integrating it within MCSat enables to generate better lemmas. This
is witnessed not only by the higher amount of benchmarks solved overall, but
also by the lower amount of conflicts and theory variables assignments occurred.
On unsatisfiable benchmarks solved by both tools, on average (resp. median),

Table 1: Summary of results for NZ.A benchmarks with a timeout of 24s.

& o L$
@@ &l/o 0@@ % O\\ N QOZ‘T x:?
S ?Y" ° 2}\) é“s ,\)vﬁ O\e Q:w[:;/
G - I I SWE |8
s |@ s N N A A I
7799 13555 11233 13695 | 14269 | 13975 14848 15428
VeryMax | (5465) | (10427) | (7615) | (9461) | (10019) | (9599) (10271) (11105)
(2334) | (3128) | (3618) | (4234) | (4250) | (4376) (4577) (4323)
171 174 168 174 174 176 176 176
calypto (79) (78) (79) (79) (79) (80) (80) (80)
(92) (96) (89) (95) (95) (96) (96) (96)
8 8 8 8 8 8 8 8
ezsmt (8) (8) (8) (8) (8) (8) (8) (8)
(9) (0) (V) 0) (9) (0) (0) (0)
97 105 105 91 96 104 102 104
LassoRank| () (4) (4) (4) (4) (4) (4) (4)
93) | oy | 10n | 8D | (92) | (100) | (98 (100)
320 354 327 142 87 352 344 347
Dartagnan| (11) | (100 | (12 | (1) (0) (9) (9) 9)
(309) (344) (315) (141) (87) (343) (335) (338)
1 1 1 0 0 1 1 1
LCTES (0) (0) (0) (0) (0) (0) (0) (0)
1) @) @ (0) (0) €] (1) 1)
107 93 141 122 303 118 300 305
MathProbl| (100) (86) (134) (115) (296) (111) (293) (298)
(7) (1) (1) (1) (7) (1) (7) (7)
72 151 114 102 111 120 119 148
leipgiz (70) (150) (112) (101) (110) (119) (118) (147)
2) 1) 2))) (1) (1) 1)
16 10 17 7 7 21 20 9
UltAut23 | (8) (7) (1) (7) (7) 8 (8) (7)
(8) (3) (10) (0) (0) (13) (12) (2)
9 56 3 6 6 5 5 46
mem (9) (56) (3) (6) (6) (5) (5) (46)
9) (0) 0) 0) 9) (0) (0) (0)
2 7 0 0 0 17 17 6
sqrtmodiny (0) (0) (0) (0) (0)) (0) (0)
) (7) (0) (0) © | a | a9 (6)
7 4 T T 7 4 7 7
UltAut | (0) ©) 0 (0) (0) 0) (0) (0)
) (1))) @) (1) (7) (1)
1816 2212 2085 2328 2356 2289 2380 2371
AProVE | (1251) | (1572) | (1556) | (1615) | (1642) | (1612) | (1657 (1649)
(565) (640) (529) (713) (714) (677) (723) (722)
32 31 32 32 32 32 32 32
UltLasso | (6) (6) (6) (6) (6) (6) (6) (6)
@6 | 25 | 26 | (26 | (26 | (26) (26) (26)
10457 16764 14241 16714 17456 17225 18359 18988
Total (7011) | (12404) | (9536) | (11403) | (12177) | (11561) | (12459) (13359)
(3446) | (4360) | (4705) | (5311) | (5279) | (5664) (5900) (5629)

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 13

YICES21s encountered 225 (resp. 4) fewer conflicts and 27826 (resp. 36) fewer
theory variables assignments than YICES2p,s.. Note that, on average (resp. me-
dian), YICES2p,s. encountered 1669 (resp. 458) conflicts and 79842 (resp. 10537)
theory variable assignments. These numbers show that there is a considerable
amount of benchmarks for which the number of conflicts and theory variable

Table 2: Summary of results for NZA benchmarks with a timeout of 300s.

& o S&
$ ‘éo f % o\\ D ,402‘7 x>
9 ?Y" o° Q’V é %, ,\)vﬁ’ O\e Q:w[:;/
& | & & & & SR RS
S g S S o N A e
10489 17060 13651 14549 15160 16304 16698 17303
VeryMax | (7122) | (12093) | (9509) | (10164) | (10719) | (11044) | (11366) | (12156)
(3367) (4967) (4142) (4385) (4441) (5260) (5332) (5147)
173 175 169 174 175 177 177 177
calypto (79) (78) (79) (79) (79) (80) (80) (80)
(94) (97) (90) (95) (96) (97) (97) (97)
8 8 8 8 8 8 8 8
ezsmt (8) (8) (8) (8) (8) (8) (8) (8)
© | © | ©® | © | © | © (0))
98 106 105 93 97 106 104 105
LassoRank| (4) | @) | @) | @ | @ | @ (4) (@)
o) | o2 | oy | (9 | ©3) | @op | (oo | (o))
350 369 347 311 288 368 363 367
Dartagnan| (17) (14) (18) (7) (3) (14) (13) (13)
(333) | (355) | (329) | (304) | (285) | (354) (350) (354)
T 2 1 0 0 2 1 1
LCTES (0) (9) (0) (9) (0) (9 (0) (0)
1) (2) 1) (0) (0) (2) €] Q)
177 107 183 124 311 118 314 327
MathProbl| (170) (100) (176) (117) (304) (111) (307) (320)
(1) (7) (1) (1) (7) (7) (7) (7)
89 156 126 104 111 135 134 154
leipgiz | (87) | (155) | (124) | (103) | (110) | (134) (133) (153)
@ | ol @ ol ol o (1) (1)
16 10 17 7 7 21 21 10
ukaw2s| ® |) | o | @ | @™ | ® (8) (1)
(0) (3) (10) () (0) (13) (13) (3)
17 69 10 9 9 10 11 64
mcm (17) (69) (10) 9) 9) (10) (11) (64)
© | o | o | © | © | o (0) 0)
2 10 0 0 0 17 17 8
satmodin (@ | © | © | © | © | © 0) 0)
@ | a | © | © | © | an | an (8)
7 7 T T 7 4 7 7
kA | @ | @ | © | @ | @ | @ (0) (0)
i I I T O 2 T A I I I I (1) (1)
1939 2352 2180 2337 2367 2339 2394 2387
AProVE | (1330) | (1640) | (1622) | (1621) | (1647) | (1640) | (1661) (1656)
(609) | (685) | (558) | (716) | (720) | (699) (733) (731)
32 31 32 32 32 32 32 32
UltLasso | (6) (6) (6) (6) (6) (6) (6) (6)
(26) (25) (26) (26) (26) (26) (26) (26)
13398 20435 16836 17755 18572 19644 20281 20950
Total | (8848) | (14174) | (11563) | (12125) | (12896) | (13059) | (13597) | (14467)
(4550) | (6261) | (5273) | (5630) | (5676) | (6585) | (6684) | (6483)

14 Lipparini et al.

assignments is significantly lower (note that such a lower median w.r.t. average
implies a pronounced right-skewness).

Overall, we see that, in the 24s track, YICES2[g solves more benchmarks than
any other solver, while, in the 300s track, it comes third, after HYBRIDSMT and
Z3. The complementarity of YICES2 g w.r.t. both tools can be witnessed by the
scatter plots in Figure [3] and by the results of the portfolios in Tables [I] and 2]
Note that Z3 internally utilizes portfolio tactics that combine multiple solving
techniques sequentially (clearly observable in Figures [2[and . HYBRIDSMT
runs a higher-level portfolio that combines the LS-based LocalSMT and Z3. The
results of the portfolios that include YICES2;g show that our approach brings
significant diversity to the strategies already used in state-of-the-art portfolio
approaches.

Since HYBRIDSMT is the only other solver that — to the best of our knowledge
— leverages local search techniques for NZA, it is interesting to compare the
improvements it brings to Z3 with the improvements that YICES2;g brings
over YICES2p,se. We can see that, with a 300s time limit, the improvements
are comparable, as both tools solve around 800 benchmarks more than their
base solvers. With a 24s time limit, however, we see that YICES2 g is able to
solve around 700 benchmarks more than YICES2p.s., while, on the contrary,
HYBRIDSMT loses around 450 benchmarks compared to Z3. Figure [2] shows
that the point at which using local search pays off is much earlier for YICES2 g
(< 10s) than for HYBRIDSMT (just below 100s).

—--=- oveS s
HybridSMT '

—-- MathSAT i
10 1 Yices_base g
—=—- Yices_LS i / P
..... 73 -_f‘ /- },l
- virtual best .-"‘ 7/ =

CPU time (s)
=
<,
1
.
N

00y S

T T T T T T T T
2500 5000 7500 10000 12500 15000 17500 20000 22500

Fig. 2: Plots showing the number of instances solved (x axis) within given time
in seconds (y axis) in log scale.

15

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search

HybridSMT

Yices_base

MathSAT

T

Fete T

10?

10!

Fig. 3: Scatter plots comparing YICES2 s to ¢vch, HYBRIDSMT, MATHSATS,
YICES2p4se, and Z3, respectively; on sat. (orange) and unsat. (blue) instances.

16 Lipparini et al.

6 Related work

In propositional SAT solving, local search techniques have been successfully used
to solve difficult satisfiable problems [29] as well as unsatisfiable instances [45].
Recently, their tight integration in the propositional CDCL framework has been
shown to improve performance [7J8] and are now considered a key component
of state-of-the-art SAT solvers. In the context of SMT, on the other hand, the
adoption of LS is a lot less widespread.

In [20], the LS-based SAT solver WalkSAT has been used in combination with
a theory solver as an alternative to the classic CDCL(T) approach; however, the
use of local search remained limited to the Boolean level. For the theory of bit-
vectors, the idea of Boolean flips in SAT solving has been transposed to the bit
level by introducing bit-flips [16], possibly augmented with propagations [41].

The adoption of LS for arithmetic theories is more recent. For the theories
of Linear Integer Arithmetic (£LZ.A) [5] and Multi-linear Real Arithmetic [32] a
critical move operation is used to change the value of a variable that appears in
a literal violated by the current assignment in order to make the literal satisfied.
To deal with the nonlinear arithmetic constraints, the cell-jumping technique is
used, which first isolates the roots of a falsified polynomial w.r.t. to a variable
(by fixing the value of the other variables), thus decomposing the real space into
finitely many intervals (cells, in the CAD [12] terminology), and then tries to
satisfy the polynomial by changing the value of the variable by jumping around
these cells. This technique has been implemented in LocalSMT for NZ A [6], and
as a tool in Maple [33] and on top of Z3 [46] for NRA.

Local search has also been used as a sub-routine for global search techniques,
as in the case of floating points [17], and of N'RA possibly augmented with
transcendental functions (N'TA) [35I37134]. In these works, numerical optimiza-
tion algorithms, e.g. the gradient-descent, are used to find local minima, while
stochastic jumping is used to move away from a local minimum in order to
explore other regions in search for a global minimum.

All the methods discussed so far for arithmetic theories are only able to prove
satisfiability; if they fail, then all the knowledge that has been acquired by the
search is lost. HybridSMT [48] addresses this issue, for the case of NZA, by
integrating LocalSMT within Z3’s CDCL(T). In particular, LocalSMT takes as
input a subformula corresponding to a Boolean skeleton solution, and, if it does
not find an integer solution for the subformula, it returns the best assignment
found and the conflict frequency for atoms. This information is used to improve
phase selection (i.e. Boolean assignments) and variable ordering. Although both
HybridSMT and our method share the idea of integrating LS within a reason-
ing calculus (CDCL(T) and MCSat, respectively), there are some substantial
difference. First, in HybridSMT, LS takes into account complete Boolean vari-
able assignments. In our framework, LS can take as input both Boolean and
theory variable assignments, either partial or complete. Additionally, while in
HybridSMT LS can only suggest assignments for (and ordering of) Boolean
literals, we extend that to theory variables as well. Moreover, there is a theory-
specific difference in our approach. LocalSMT relies on cell-jumps, which require

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 17

to perform potentially very expensive root isolation sub-routines at every step.
In contrast, our method uses fs-jumps that rely on feasibility intervals already
maintained by the theory plugin in the MCSat framework. This eliminates the
need for additional computation and can be viewed as a lazy version of cells, pro-
gressively refined on-demand. Furthermore, we pair fs-jumps with hill-climbing
to move inside feasible intervals.

Most state-of-the-art solvers do not use local search for N Z.A problems. Bit-
blasting [18] aims at proving satisfiability by iteratively imposing bounds on the
variables and then encoding the obtained sub-formula into an equi-satisfiable
Boolean formula, which is then handled by a SAT solver. In the branch-and-
bound approach [30J26] the integer domain is relaxed by allowing variables to
range over real numbers. Incremental Linearization [9/I0] leverages decision pro-
cedures for LZA by abstracting non-linear multiplications with uninterpreted
functions and then incrementally axiomatize them.

7 Conclusion

In this work, we have introduced a theory-independent framework for integrat-
ing local search into the MCSat calculus. By combining local search intuition
with MCSat reasoning capabilities, our approach leverages logic-to-optimization
formalization to provide guidance to the core MCSat solver. Specifically, we ad-
dressed the theory of nonlinear integer arithmetic by proposing a local search
procedure based on feasibility-set jumping and hill-climbing.

We implemented our approach in the YICES2 SMT solver, and empirically
demonstrated its improvements for both satisfiable and unsatisfiable instances.
Our results show that the new YICES2 solver with local search compares favor-
ably and often outperforms other SMT solvers; in particular, it manages to solve
a significant amount of benchmarks not solved by other state-of-the-art tools.
Moreover, our results show that the new YICES2 is able to reach solutions or
proofs more efficiently, compared to the baseline YICES2, in terms of the number
of decisions and conflicts. Our findings indicate that this new approach comple-
ments existing techniques used by other solvers, as evident in the experimental
results (see virtual best and portfolio solvers in the plots and tables).

In the future, we aim to extend our approach to other theories such as finite
fields and bit-vectors, and conduct more comprehensive experimental evalua-
tions. Additionally, we plan to integrate this approach with different caching
schemes, including value and target caches, along with periodic recaching in
MCSat [21].

Acknowledgments. This material is based upon work supported in part by NSF
grant 2016597. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the US Government or NSF.

The work of Enrico Lipparini was partially supported by project PRIN 2022 DeLiCE
(F53D23009130001) under the MUR National Recovery and Resilience Plan funded by
the European Union — NextGenerationEU.

18

Lipparini et al.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

10.

. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-

hamed, A., Mohamed, M., Niemetz, A., Notzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 13243, pp. 415-442. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_24, https://doi.org/10.1007/
978-3-030-99524-9_24

. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB). www.SMT-LIB.org (2016)

Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo The-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Applica-
tions, vol. 336, pp. 1267-1329. IOS Press (2021). https://doi.org/10.3233/
FATIA201017, https://doi.org/10.3233/FATA201017

Bjorner, N., Nachmanson, L.: Arithmetic solving in z3. In: Gurfinkel, A., Ganesh,
V. (eds.) Computer Aided Verification. pp. 26-41. Springer Nature Switzerland,
Cham (2024). https://doi.org/10.1007/978-3-031-65627-9_2

Cai, S., Li, B., Zhang, X.: Local Search for SMT on Linear Integer Arith-
metic. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification. pp. 227—
248. Springer International Publishing, Cham (2022). https://doi.org/10.1007/
978-3-031-13188-2_12

Cai, S., Li, B., Zhang, X.: Local search for satisfiability modulo integer arith-
metic theories. ACM Trans. Comput. Logic 24(4) (Jul 2023). https://doi.org/
10.1145/3597495| https://doi.org/10.1145/3597495

Cai, S., Zhang, X.: Deep cooperation of CDCL and local search for SAT. In: Li,
C.M., Manya, F. (eds.) Theory and Applications of Satisfiability Testing — SAT
2021. pp. 64-81. Springer International Publishing, Cham (2021). https://doi.
org/10.1007/978-3-030-80223-3_6

Cai, S., Zhang, X., Fleury, M., Biere, A.: Better decision heuristics in CDCL
through local search and target phases. J. Artif. Int. Res. 74 (Sep 2022). https:
//doi.org/10.1613/jair.1.13666| https://doi.org/10.1613/jair.1.13666
Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on
solving nonlinear integer arithmetic with incremental linearization. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) Theory and Applications of Satisfiability Testing —
SAT 2018. pp. 383-398. Springer International Publishing, Cham (2018). https:
//doi.org/10.1007/978-3-319-94144-8_23

Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Logic 19(3) (aug 2018). https://doi.
org/10.1145/3230639, https://doi.org/10.1145/3230639

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1145/3597495
https://doi.org/10.1145/3597495
https://doi.org/10.1145/3597495
https://doi.org/10.1145/3597495
https://doi.org/10.1145/3597495
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.1007/978-3-030-80223-3_6
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1007/978-3-319-94144-8_23
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 19

Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) Proceedings of TACAS. LNCS, vol. 7795.
Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_7

Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) Automata Theory and Formal Languages.
pp. 134-183. Springer Berlin Heidelberg, Berlin, Heidelberg (1975)

Corzilius, F., Kremer, G., Junges, S., Schupp, S., Abraham, E.: SMT-RAT: An
open source C++ toolbox for strategic and parallel SMT solving. In: SAT (09
2015). https://doi.org/10.1007/978-3-319-24318-4_26

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. p. 337-340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008). https://doi.
org/10.5555/1792734.1792766

Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer-Aided Verification
(CAV’2014). Lecture Notes in Computer Science, vol. 8559, pp. 737-744. Springer
(July 2014)

Frohlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for
Satisfiability Modulo Theories. Proceedings of the AAAI Conference on Artifi-
cial Intelligence 29(1) (Feb 2015). https://doi.org/10.1609/aaai.v29i1.9372,
https://ojs.aaai.org/index.php/AAAI/article/view/9372

Fu, Z., Su, Z.: XSat: A fast floating-point satisfiability solver. In: CAV. Lecture
Notes in Computer Science, vol. 9780, pp. 187-209. Springer (2016). https://doi.
org/10.1007/978-3-319-41540-6_11

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) Theory and Applications of Satisfiability Testing
— SAT 2007. pp. 340-354. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72788-0_33

Graham-Lengrand, S., Jovanovic, D., Dutertre, B.: Solving bitvectors with MC-
SAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) Intl. Joint Conf. on Automated Reasoning (IJCAR), Part L
LNCS, vol. 12166, pp. 103-121. Springer (2020). https://doi.org/10.1007/
978-3-030-51074-9_7, https://doi.org/10.1007/978-3-030-51074-9_7
Griggio, A., Phan, Q.S., Sebastiani, R., Tomasi, S.: Stochastic local search for SMT:
Combining theory solvers with WalkSAT. In: Tinelli, C., Sofronie-Stokkermans, V.
(eds.) Frontiers of Combining Systems. pp. 163-178. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24364-6_12
Hader, T., Irfan, A., Graham-Lengrand, S.: Decision heuristics in MCSat (to ap-
pear). In: Computer Aided Verification (2025)

Hader, T., Kaufmann, D., Irfan, A., Graham-Lengrand, S., Kovéacs, L.: MCSat-
based finite field reasoning in the Yices2 SMT solver (short paper). In: IJCAR (1).
Lecture Notes in Computer Science, vol. 14739, pp. 386-395. Springer (2024)
Hader, T., Kaufmann, D., Kovacs, L.: SMT solving over finite field arithmetic. In:
LPAR. EPiC Series in Computing, vol. 94, pp. 238-256. EasyChair (2023)
Hernando, L., Mendiburu, A., Lozano, J.: Hill-climbing algorithm: Let’s go for a
walk before finding the optimum. pp. 1-7 (07 2018). https://doi.org/10.1109/
CEC.2018.8477836

Irfan, A., Graham-Lengrand, S.: Arrays reasoning in MCSat. In: SMTQCAV.
CEUR Workshop Proceedings, vol. 3725, pp. 24-35. CEUR-WS.org (2024)

https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.1609/aaai.v29i1.9372
https://doi.org/10.1609/aaai.v29i1.9372
https://ojs.aaai.org/index.php/AAAI/article/view/9372
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-540-72788-0_33
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-642-24364-6_12
https://doi.org/10.1007/978-3-642-24364-6_12
https://doi.org/10.1109/CEC.2018.8477836
https://doi.org/10.1109/CEC.2018.8477836
https://doi.org/10.1109/CEC.2018.8477836
https://doi.org/10.1109/CEC.2018.8477836

20

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Lipparini et al.

Jovanovi¢, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) Verification, Model Checking, and Abstract Interpretation.
pp. 330-346. Springer International Publishing, Cham (2017). https://doi.org/
10.1007/978-3-319-52234-0_18

Jovanovic, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: Intl. Conf on Formal Methods in
Computer-Aided Design (FMCAD). pp. 173-180. IEEE (2013). https://doi.org/
10.1109/FMCAD.2013.7027033

Jovanovié, D., de Moura, L.: Solving non-linear arithmetic. ACM Commun. Com-
put. Algebra 46(3/4), 104-105 (jan 2013). https://doi.org/10.1145/2429135.
2429155 https://doi.org/10.1145/2429135.2429155

Kautz, H.A., Sabharwal, A., Selman, B.: Incomplete algorithms. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 213-232.
10S Press (2021). https://doi.org/10.3233/FATIA200989, https://doi.org/10.
3233/FAIA200989

Kremer, G., Corzilius, F., Abraham, E.: A generalised branch-and-bound approach
and its application in SAT modulo nonlinear integer arithmetic. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scien-
tific Computing - 18th International Workshop, CASC 2016, Bucharest, Romania,
September 19-23, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9890,
pp. 315-335. Springer (2016). https://doi.org/10.1007/978-3-319-45641-6_
21, https://doi.org/10.1007/978-3-319-45641-6_21

Kremer, G., Abraham, E.: Modular strategic SMT solving with SMT-RAT. Acta
Universitatis Sapientiae, Informatica 10(1), 5-25 (2018)

Li, B., Cai, S.: Local search for SMT on linear and multi-linear real arithmetic.
In: 2023 Formal Methods in Computer-Aided Design (FMCAD). pp. 1-10 (2023).
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_25

Li, H., Xia, B., Zhao, T.: Local search for solving satisfiability of polyno-
mial formulas. In: Enea, C., Lal, A. (eds.) Computer Aided Verification. pp.
87-109. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/
978-3-031-37703-7_5

Lipparini, E.: Satisfiability modulo Nonlinear Arithmetic and Transcendental
Functions via Numerical and Topological methods. Ph.D. thesis (2024). https:
//doi.org/10.15167/lipparini-enrico_phd2024-12-10

Lipparini, E., Cimatti, A., Griggio, A., Sebastiani, R.: Handling polynomial
and transcendental functions in SMT via unconstrained optimisation and topo-
logical degree test. In: Bouajjani, A., Holik, L., Wu, Z. (eds.) Automated Technol-
ogy for Verification and Analysis. pp. 137-153. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-19992-9_9

Lipparini, E., Ratschan, S.: Satisfiability of non-linear transcendental arithmetic
as a certificate search problem. In: Rozier, K.Y., Chaudhuri, S. (eds.) NASA Formal
Methods. pp. 472-488. Springer Nature Switzerland, Cham (2023). https://doi.
org/10.1007/978-3-031-33170-1_29

Lipparini, E., Ratschan, S.: Satisfiability of non-linear transcendental arith-
metic as a certificate search problem. J. Autom. Reason. 69(1) (Jan
2025). https://doi.org/10.1007/s10817-024-09716-3, https://doi.org/10.
1007/s10817-024-09716-3

Matiyasevich, Y.V.: Hilbert’s tenth problem. MIT Press, Cambridge, MA, USA
(1993). https://doi.org/10.5555/164759

https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.1145/2429135.2429155
https://doi.org/10.3233/FAIA200989
https://doi.org/10.3233/FAIA200989
https://doi.org/10.3233/FAIA200989
https://doi.org/10.3233/FAIA200989
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.1007/978-3-319-45641-6_21
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_25
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_25
https://doi.org/10.1007/978-3-031-37703-7_5
https://doi.org/10.1007/978-3-031-37703-7_5
https://doi.org/10.1007/978-3-031-37703-7_5
https://doi.org/10.1007/978-3-031-37703-7_5
https://doi.org/10.15167/lipparini-enrico_phd2024-12-10
https://doi.org/10.15167/lipparini-enrico_phd2024-12-10
https://doi.org/10.15167/lipparini-enrico_phd2024-12-10
https://doi.org/10.15167/lipparini-enrico_phd2024-12-10
https://doi.org/10.1007/978-3-031-19992-9_9
https://doi.org/10.1007/978-3-031-19992-9_9
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/978-3-031-33170-1_29
https://doi.org/10.1007/s10817-024-09716-3
https://doi.org/10.1007/s10817-024-09716-3
https://doi.org/10.1007/s10817-024-09716-3
https://doi.org/10.1007/s10817-024-09716-3
https://doi.org/10.5555/164759
https://doi.org/10.5555/164759

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search 21

de Moura, L., Jovanovic, D.: A model-constructing satisfiability calculus. In: Gi-
acobazzi, R., Berdine, J., Mastroeni, I. (eds.) Intl. Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI). LNCS, vol. 7737, pp.
1-12. Springer (2013). https://doi.org/10.1007/978-3-642-35873-9_1, https:
//doi.org/10.1007/978-3-642-35873-9_1

de Moura, L.M., Bjgrner, N.S.: Satisfiability modulo theories: introduction and
applications. Commun. ACM 54(9), 69-77 (2011)

Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for
bit-precise reasoning. Formal Methods in System Design 51(3), 608-636
(Dec 2017). https://doi.org/10.1007/s10703-017-0295-6, https://doi.org/
10.1007/s10703-017-0295-6

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937-977 (Nov 2006). https://doi.org/10.1145/1217856.1217859,
https://doi.org/10.1145/1217856.1217859

Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Theory and Applications of Satisfiability Testing—SAT 2007:
10th International Conference, Lisbon, Portugal, May 28-31, 2007. Proceedings 10.
pp- 294-299. Springer (2007)

Preiner, M., Schurr, H.J., Barrett, C., Fontaine, P., Niemetz, A., Tinelli, C.: SMT-
LIB release 2024 (non-incremental benchmarks) (Apr 2024). https://doi.org/
10.5281/zenodo. 11061097, https://doi.org/10.5281/zenodo.11061097
Prestwich, S., Lynce, I.: Local search for unsatisfiability. In: Biere, A., Gomes, C.P.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2006. pp. 283-296.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/
11814948_28

Wang, Z., Zhan, B., Li, B., Cai, S.: Efficient local search for nonlinear real arith-
metic. In: Dimitrova, R., Lahav, O., Wolff, S. (eds.) Verification, Model Check-
ing, and Abstract Interpretation. pp. 326-349. Springer Nature Switzerland, Cham
(2024). https://doi.org/10.1007/978-3-031-50524-9_15

Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015-2018. J. Satisf. Boolean Model. Comput. 11(1), 221-259
(2019), https://doi.org/10.3233/SAT190123

Zhang, X., Li, B., Cai, S.: Deep combination of CDCL(T) and local search for
satisfiability modulo non-linear integer arithmetic theory. In: Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. ICSE 24,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3597503.3639105, https://doi.org/10.1145/35697503.3639105

https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.5281/zenodo.11061097
https://doi.org/10.1007/11814948_28
https://doi.org/10.1007/11814948_28
https://doi.org/10.1007/11814948_28
https://doi.org/10.1007/11814948_28
https://doi.org/10.1007/978-3-031-50524-9_15
https://doi.org/10.1007/978-3-031-50524-9_15
https://doi.org/10.3233/SAT190123
https://doi.org/10.1145/3597503.3639105
https://doi.org/10.1145/3597503.3639105
https://doi.org/10.1145/3597503.3639105
https://doi.org/10.1145/3597503.3639105
https://doi.org/10.1145/3597503.3639105

	Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search

