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1. Introduction to MCSAT
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The model-constructing approach to SMT-solving 1/2
MCSAT introduced in [dMJ13, JBdM13, Jov17],
based on Conflict Resolution [KTV09] and other works on decision
procedures such as
I LPSAT [WW99]
I Separation logic [WIGG05]
I Linear Rational Arithmetic [MKS09, KTV09, Cot10]
I Linear Integer Arithmetic [Jd11]
I Non-Linear Arithmetic [JdM12] (NLSAT)

MCSAT offers:
I a template for decision procedures
I an integration of such procedures with Boolean reasoning

The template is a generalisation of how CDCL works.
It is an instance of conflict-driven reasoning.
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Conflict-driven reasoning
2-player game to determine whether a formula is satisfiable.
It involves a trail where a putative model is being specified.
It relies on a notion of conflict between the putative model and the
formula it should satisfy.

Archetype of conflict-driven reasoning: CDCL
a conflict occurs when a clause is falsified
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MCSAT vs CDSAT
MCSAT tailored to theories with a standard model used for evaluating
constraints (example: arithmetic)
Evaluation is a key aspect of MCSAT

Solving satisfiability problem
(set of constraints on variables x1, . . . , xn)

= finding values for variables x1, . . . , xn
(so that constraints evaluate to true)

CDSAT [BGLS19] (for Conflict-Driven Satisfiability) is a more abstract
framework where
I evaluation is not a mandatory ingredient of search
I theory reasoning is abstracted using inference systems
I theory reasoning can be performed in a union of theories
I Boolean theory can be given the same status as other theories.

As an abstract framework, it counts among its instances:
I Equality sharing scheme (Nelson-Oppen combinations)
I CDCL (with restarts, learning, etc)
I MCSAT (original [dMJ13] version)
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The model-constructing approach to SMT-solving 2/2
Run = alternation of search phases and conflict analysis phases
I It uses assignments to first-order variables (e.g., x ← 3/4)

like CDCL uses Boolean assignments to Boolean variables;
I It may explain conflicts by introducing atoms that are not in the

input.

I As in CDCL, it successively guesses values to assign to variables. . .
. . . while maintaining the invariant: given the assignments made so
far, none of the constraints evaluates to false

I To pick a value for variable y after x1, . . . , xn were assigned values
v1, . . . , vn, simply worry about constraints over variables
x1, . . . , xn, y (i.e. constraints that have become unit in y)

I If all variables get values while maintaining invariant ⇒ SAT
I If at any point the invariant cannot be maintained:

There is a conflict.
MCSAT performs a conflict analysis,
backtracks over some of the assignments x1←v1, . . . , xn←vn
and tries new ones
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An example in Linear Rational Arithmetic
l0︷ ︸︸ ︷

(−2·y − x < 0),
l1︷ ︸︸ ︷

(y + x < 0),
l2︷ ︸︸ ︷

(y < −1)
unsatisfiable in Linear Rational Arithmetic (LRA).

l3︷ ︸︸ ︷
(−x < −2)

l4︷ ︸︸ ︷
(x < 0)

y

x
l0

l1

l2

l3l4
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l4︷ ︸︸ ︷
(x < 0)

y

x
l0

l1

l2

l3l4

I Guess a value, e.g., x←0

Then l0 yields lower bound y > 0
Together with l2, range of possible values
for y is empty. What to do? Just undo
x←0 & remember x 6= 0?

I No! Clash of bounds suggests a better
conflict explanation, by inferring l0 + 2l2,

i.e.,
l3︷ ︸︸ ︷

(−x < −2)
It rules out x←0, but also many values
that would fail for the same reasons.

I Now undo the guess but keep l3.
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l0
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I Guess a value, e.g., x←3

Then l0 yields lower bound y > − 3
2 and l1

yields upper bound y < −3
I Clash of bounds suggests inferring l0 + 2l1,

i.e.,
l4︷ ︸︸ ︷

(x < 0).
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Search phase (satisfiable case)

Free var within Constraints (unit ones in red) Feasible set Var
{x1} C1

1 , . . . ,C1
j , . . . x1

{x1, x2} C2
1 ,C2

2 , . . . ,C2
j , . . . x2

{x1, x2, x3} C3
1 ,C3

2 , . . . ,C3
j , . . . x3

. . .
{x1, . . . , xi} C i

1,C i
2, . . . ,C i

42, . . . ,C i
j , . . . xi

SAT

What to do now?
Backtrack and try new values v ′1, . . . , v ′n for x1, . . . , xn
(i.e. try another Γ′)

How do we avoid picking the same values (i.e. the same Γ)?
How do we avoid picking a Γ′ that fails for the same reason Γ fails?
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Search phase (conflict case)
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Conflict analysis
In case of conflict we have
I assigned values x1 7→ v1, . . . , x1 7→ vn, i.e., a model M

I a collection of unit constraints in y : l1(−→x , y) ∧ · · · ∧ lm(−→x , y)
I detected that no value can be assigned to y to extend M into a

model of those unit constraints: M 6|= ∃yA

where ∃yA is ∃y(l1(−→x , y) ∧ · · · ∧ lm(−→x , y))

M

Models satisfying ∃yA

Models satisfying ¬B

y

x1

x2
M

We seek to generalise M into a class of models that do not satisfy ∃yA
“for the same reason” M does not.
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The theory lemmas
∃yA is ∃y(l1(−→x , y) ∧ · · · ∧ lm(−→x , y))

MModels satisfying ∃yA
Models satisfying ¬B

We characterise this class as those models not satisfying B, for some
quantifier-free B (with fv(B) ⊆ {−→x }) such that
I T |= (∃yA)⇒ B
I M 6|= B

B is an interpolant of ∃yA at M.
MCSAT considers the theory lemma A⇒ B
that rules out not only M but a set of similar models
(we impose that B be a clause, so A⇒ B is a clause).
If A results from Boolean reasoning,
it performs Boolean conflict analysis on A (Boolean resolutions).
It backtracks to a point where A⇒ B is no longer violated,
e.g., B no longer evaluates (to false).
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that rules out not only M but a set of similar models
(we impose that B be a clause, so A⇒ B is a clause).
If A results from Boolean reasoning,
it performs Boolean conflict analysis on A (Boolean resolutions).

It backtracks to a point where A⇒ B is no longer violated,
e.g., B no longer evaluates (to false).
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MCSAT theories

Give me a theory T with
I a nice way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism

,
producing B as a clause (or ¬B as a cube) ,
satisfying some suitable conditions for termination;

I optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

. . . and I’ll give you an MCSAT calculus for T ,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

In Yices: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)

12/49



MCSAT theories

Give me a theory T with
I a nice way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism,

producing B as a clause (or ¬B as a cube)

,
satisfying some suitable conditions for termination;

I optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

. . . and I’ll give you an MCSAT calculus for T ,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

In Yices: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)

12/49



MCSAT theories

Give me a theory T with
I a nice way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism,

producing B as a clause (or ¬B as a cube) ,
satisfying some suitable conditions for termination;

I optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

. . . and I’ll give you an MCSAT calculus for T ,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

In Yices: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)

12/49



MCSAT theories

Give me a theory T with
I a nice way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism,

producing B as a clause (or ¬B as a cube) ,
satisfying some suitable conditions for termination;

I optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

. . . and I’ll give you an MCSAT calculus for T ,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

In Yices: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)

12/49



MCSAT theories

Give me a theory T with
I a nice way of representing domains of feasible values,

and how they are affected (i.e. reduced) by unit constraints;
I such an explanation mechanism,

producing B as a clause (or ¬B as a cube) ,
satisfying some suitable conditions for termination;

I optionally, a nice way to propagate a value for a variable whose
domain has become a singleton set;

. . . and I’ll give you an MCSAT calculus for T ,
using some adaptation of the 2-watched literals technique
for tracking unit constraints

In Yices: Boolean, non-linear arithmetic, EUF, bitvectors (can be mixed)

12/49



In arithmetic

In linear arithmetic, Fourier-Motzkin resolution can be used to eliminate
a variable:

e1 − y l1 0 e2 + y l2 0

e1 + e2 l3 0
with l1,l2,l3 ∈ {≤, <} such that. . .

In non-linear arithmetic,
Yices uses Cylindrincal Algebraic Decomposition (CAD).

At the SMT-comp, Yices has won QF_NRA (single query track) up until
2021 when cvc5 used a new technique based on cylindrical algebraic
coverings (Abraham et al).
On the other hand in 2021, Yices won NRA (single query track), ahead
of z3. See Section 4 on quantifiers.
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2. CDSAT
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Context
CDCL (Conflict-Driven Clause Learning)
I procedure for deciding the satisfiability of Boolean formulae
I uses assignments of Boolean values to variables, e.g., l←true

MCSAT (Model-Constructing Satisfiability) [dMJ13, Jov17]
I generalises CDCL to theory reasoning
I uses first-order assignments, e.g., x←

√
2

CDSAT (Conflict-Driven Satisfiability) [BGLS19, BGLS20]
I generalises MCSAT: generic combinations of abstract theories
I can also use first-order assignments
I models theory reasoning with modules made of inference rules

MCSAT and CDSAT can explicitly provide, for satisfiable formulae, the
model’s assignments of values to variables
CDSAT can also provide proofs of unsat
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Traditional architecture of SMT-solving

SAT-solver
(CDCL) Comb.∗

T1 T2

T3

T4T5

* e.g. equality sharing / Nelson-Oppen [NO79]
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In CDSAT
. . . the theory combination is organised directly in the main
conflict-driven loop:

As in MCSAT, trail contains
I Boolean assignments

a← true
I First-order assignments

y ← 3/4

Features of conflict-driven
satisfiability:
I Boolean theory can have the

same status as other theories.
I Theory-specific reasoning often consists of fine-grained reasoning

inferences, e.g., Fourier-Motzkin resolution for LRA:
(t1 < x), (x < t2) `̀̀ t1 < t2

T2

T1

Bool

Bool

T1

T2

mo
del building

proof buildin
g

. . .

. . .
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What is a theory module?
A set of inferences of the form

(t1←c1), . . . , (tk←ck) `̀̀T (l←b)
where
I each ti←ci is a single T -assignment

(a term ti and a T -value ci of matching sorts)
I l←b is a single Boolean assignment

(a term l of sort Bool and a truth value b)

Abbreviations: (l←true) as l and (l←false) as l
I Soundness requirement:

Every model of the premisses is a model of the conclusion:
(t1←c1), . . . , (tk←ck) |= (l←b)

Examples:
(x←

√
2), (y←

√
2) `̀̀NRA (x · y ' 2) (evaluation inference)

(l1 ∨ · · · ∨ ln), l1 . . . , ln−1 `̀̀Bool ln (unit propagation)
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What is a theory module? (Equality inferences)

All theory modules have the equality inferences:
t1←c1, t2←c2 `̀̀T t1 ' t2 if c1 and c2 are the same value
t1←c1, t2←c2 `̀̀T t1 6' t2 if c1 and c2 are distinct values

`̀̀T t1 ' t1 reflexivity
t1 ' t2 `̀̀T t2 ' t1 symmetry

t1 ' t2, t2 ' t3 `̀̀T t1 ' t3 transitivity
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CDSAT states
Search states: simply trails.
A trail is a stack of justified assignments H `(t←c) and decisions ?(t←c)
coming from different theories
Justification H: a set of assignments that appear earlier on the trail

Each assignment on the trail has a level
(index of highest decision in transitive justification of the assignement)

Example (trail grows from left to right):

∅`(x ' z), ∅`(y ' z), ?(x←
√
2), ?(y←blue), ?(x←red), H `(x 6' y)

where H is {(y←blue), (x←red)}

Everything is on the trail, including assertions from the input problem,
with empty justifications

(e.g., ∅`(C←true) for an input clause C),

Conflict states: 〈Γ;H〉,
trail Γ + set H of trail assignments that are in conflict
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CDSAT: Search rules
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if . . .

Deduce
Γ −→ Γ, J `(t←b) if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is not in Γ,

and . . .
Conflict

Γ −→ 〈Γ; J , (t←b)〉 if J `̀̀T (t←b) and J ⊆ Γ,
and t←b is in Γ
and conflict level is > 0

Fail
Γ −→ unsat if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is in Γ
and conflict level is 0

Extra side-conditions “. . . ” to ensure termination
(no impact on soundness)

All terms that are ever mentioned in a derivation are taken from a finite
set B called global basis

21/49



CDSAT: Search rules
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c)

if . . .

Deduce
Γ −→ Γ, J `(t←b) if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is not in Γ,

and . . .

Conflict
Γ −→ 〈Γ; J , (t←b)〉 if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is in Γ
and conflict level is > 0

Fail
Γ −→ unsat if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is in Γ
and conflict level is 0

Extra side-conditions “. . . ” to ensure termination
(no impact on soundness)

All terms that are ever mentioned in a derivation are taken from a finite
set B called global basis

21/49



CDSAT: Search rules
Let T be a theory with a specific T -module.

Decide
Γ −→ Γ, ?(t←c) if . . .

Deduce
Γ −→ Γ, J `(t←b) if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is not in Γ, and . . .
Conflict

Γ −→ 〈Γ; J , (t←b)〉 if J `̀̀T (t←b) and J ⊆ Γ,
and t←b is in Γ
and conflict level is > 0

Fail
Γ −→ unsat if J `̀̀T (t←b) and J ⊆ Γ,

and t←b is in Γ
and conflict level is 0

Extra side-conditions “. . . ” to ensure termination
(no impact on soundness)

All terms that are ever mentioned in a derivation are taken from a finite
set B called global basis

21/49



CDSAT: Conflict analysis rules

Resolve
〈Γ;E ] {A}〉 −→ 〈Γ;E∪H〉 if H `A is in Γ and . . .
Learn
〈Γ;E ] H〉 −→ Γ≤m, E `L if L is a “clausal form” of H and . . .

L /∈ Γ, L /∈ Γ, and E ⊆ Γ≤m

Undo
〈Γ;E ] {A}〉 −→ Γ≤m−1 if A is a first-order decision and . . .
UndoDecide
〈Γ;E ] {L}〉 −→ Γ≤m−1, ?L if H `L is in Γ, and . . .

Γ≤m: the pruning of trail Γ, removing all assignments of level > m

Clausal forms of H reify H in Boolean logic:
((

∧
(l←true)∈H l) ∧ (

∧
(l←false)∈H ¬l))←false

((
∨

(l←true)∈H ¬l) ∨ (
∨

(l←false)∈H l))←true
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An example with arithmetic, arrays, congruence
f (a[i := v ][j]) ' w , w − 2 ' f (u) , i ' j , u ' v

id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0

4 u←c ? 1
5 v←c ? 2
6 a[i := v ][j]←c ? 3
7 w←0 ? 4
8 f (a[i := v ][j])←0 ? 5
9 f (u)←−2 ? 6

10 u ' a[i := v ][j] {4, 6} 3
11 f (u) 6' f (a[i := v ][j]) {8, 9} 6

conflict E 1: {10, 11} 6

id trail items just. lev.
0 f (a[i := v ][j]) ' w {} 0
1 w−2 ' f (u) {} 0
2 i ' j {} 0
3 u ' v {} 0
4 u←c ? 1
5 v←c ? 2
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Termination and Soundness
Termination:

Theorem: If the global basis B is finite, CDSAT terminates.

How to determine B? It should be sufficiently large to allow each theory
module to explain its conflicts via deductions.

For each theory module T involved,
and all finite sets X of terms (think of it as the terms of the input),
we must have a finite set of terms basisT (X ), called local basis

(those terms possibly introduced by T during the run)

If the local bases of T1, . . . , Tn satisfy some (collective) properties,
then it is possible to define a finite global basis B for

⋃n
k=1 Tk .

Soundness:
Theorem: Since each theory module T is made of sound inferences,
if the calculus ends with a conflict of level 0,
then the input was unsat.
(you can even get a proof)
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What happens if we never get unsat?
Do we have a model?

This relies on a completeness condition for theory modules:
A T -module is complete if for any Γ,
I Either There exists a T -model of the theory view of Γ
I Or T can make a (relevant & acceptable) decision
I Or a T -inference can deduce a new assignment (for a term in the

local basis)

In a combination though, the Tk -models have to agree on the sorts’
cardinalities and equalities between shared variables/terms.
We present a version of completeness that takes care of this:
T0-completeness, where T0 is a reference theory that can be used to
synchronise cardinalities (for a combination of stably infinite theories,
take T0 to force the interpretation of all sorts to be N).
Theorem: Assume T0 has a complete module, and all other theories have
T0-complete modules.
If CDSAT cannot make any further transitions, then the trail describes a
model for the union of the (extended) theories.
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Theory modules given as examples in our papers

I EUF

(T0-complete for all T0)

(ti ' ui)i=1...n, (f (t1, . . . , tn) 6' f (u1, . . . , un)) `̀̀EUF ⊥

I Arrays: similar, except for extensionality

(T0-complete for all T0 such that. . . )

I LRA: evaluation inference, Fourier-Motzkin resolution inference as
in MCSAT, etc

(T0-complete for all T0 imposing |Q| infinite)
I Black box procedure for equality-sharing: coarse-grain inferences

l1←b1, . . . , ln←bn `̀̀T ⊥
where l1, . . . , ln are formulæ, and the conjunction of the literals
corresponding to the Boolean assignments l1←b1, . . . , ln←bn is
T -unsatisfiable (as detected by the black box)

(T0-complete for all T0 imposing the cardinality of all known sorts
but Bool to be countably infinite)
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3. Proofs in CDSAT
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Theory proofs

To keep track of the soundness invariants,
we need to refer to theory inferences

Each theory module comes with a “proof annotation system”
(t1←c1), . . . , (tk←ck) `̀̀T (l←b)

is annotated as
a1(t1←c1), . . . , ak (tk←ck) `̀̀T jT : (l←b)

Examples:
a1(x←

√
2), a2(y←

√
2) `̀̀NRA eval({a1, a2}) : (x · y ' 2)

(evaluation inference)
a0(l1 ∨ · · · ∨ ln), a1(l1), . . . , ak−1(ln−1) `̀̀Bool UP(a0, {a1, . . . , an}) : ln

(unit propagation)
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Proof-terms and proof-carrying CDSAT

I A proof-carrying trail is a stack
I of justified assignments H `j : (t←c)
I and decisions ?(t←c)

I A proof-carrying conflict state is of the form 〈Γ; H ; c〉

. . . where j and c respectively range over
Deduction proof terms j ::= in jT lem(H.c)
Conflict proof term c ::= cfl(jT , a) res(j , aA.c)

in annotates an input assignment,
jT ranges over theory proofs for T , used for Deduce
lem(H.c) annotates justified assignments that Learn places on trail

(clausal forms of H), binding the identifiers of H in c
cfl(jT , a) annotates a conflict when it is created by Conflict
res(j , aA.c) annotates a conflict resulting from the Resolve rule,

binding a in c
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Provability invariants that proof-terms keep track of

A is an input

∅ `̀̀ in :A

J `̀̀T jT : L

J `̀̀ jT : L

E ] H `̀̀ c :⊥
L clausal form of H

E `̀̀ lem(H.c) : L

J `̀̀T jT : L

J ∪ {aL} `̀̀ cfl(jT , a) :⊥

H `̀̀ j :A E , aA `̀̀ c :⊥

E ∪ H `̀̀ res(j , aA.c) :⊥

Rules of CDSAT are adapted so as to use those proof-terms, and the
soundness invariants are materialised as:

Theorem
I For every assignment H `j : A on the trail, H `̀̀ j :A
I For every conflict state 〈Γ; E ; c〉, E `̀̀ c :⊥.

The proof system above can be seen as glueing a collection of inference
systems (`̀̀T )T
CDSAT is a search procedure for the resulting system
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Different views about proof objects

Proof-carrying CDSAT can be considered exactly as defined above, where
in, jT , lem(H.c), cfl(jT , a), res(j , aA.c) are terms.

Another proof format is desired for output?
Just interpret the terms in that format after the run

(proof reconstruction)

Alternatively,
proof-carrying CDSAT can directly manipulate proofs in the format,
if equipped with the operations corresponding to the term constructs.
The proof-terms denote the manipulated proofs,

but are never constructed.
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Example: resolution proofs

If input contains no first-order assignments,
resolution trees (or DAGs) form a proof format equipped with the right
operations

Leaves of resolution proofs are labeled by
I either literals corresponding to input assignments ∅ `̀̀ in :A
I or theory lemmas corresponding to theory proofs J `̀̀T jT : L

Internal nodes are obtained by applying resolution rule,
corresponding to H `̀̀ res(j , aA.c) :⊥ constructs.

If input does contains first-order assignments
the resolution format has to be slightly extended,
so that it manipulates guarded clauses of the form

{(t1←c1), . . . , (tn←cn)} ⇒ C
where (t1←c1), . . . , (tn←cn) are first-order assign. guarding clause C
Details in the paper.
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LCF: answers that are correct-by-construction
Other “proof format”:
I A deduction proof j with H `̀̀ j : L is the pair 〈H, L〉, and
I A conflict proof c with H `̀̀ c :⊥ is H.

No proof object to check. But the LCF architecture [Mil79, GMW79] can
be used to ensure the correctness of answers. LCF in a nutshell:
I A type theorem is defined for provable formulae

in a module of the prover called kernel
I The definition of theorem is hidden outside the kernel
I The kernel exports primitives to construct its inhabitants,

e.g. modus_ponens : theorem -> theorem -> theorem
takes as arguments F and G , checks that F is of the form G ⇒ R,
and returns R as an inhabitant of theorem.

I Search procedures can be programmed using the primitives.
I Bugs in these procedures cannot jeopardise the property that any

inhabitant of theorem is provable, if kernel is trusted
No proof object needs to be built in memory
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CDSAT is well-suited to the LCF approach 1/2
Given a type assign for multiple assignments
and single_assign for singleton assignments,
a trusted kernel defines

type deduction = assign*single_assign
type conflict = assign

and exports

type deduction
type conflict
in : single_assign -> deduction
coerc : ’k theory_handler

-> ’k theory_proof -> deduction
lem : conflict -> assign -> deduction
cfl : ’k theory_handler

-> ’k theory_proof -> conflict
res : deduction -> conflict -> conflict
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CDSAT is well-suited to the LCF approach 2/2

If the empty assignment is constructed in type conflict,
input problem is guaranteed to be unsat, provided the kernel primitives
and the implementation of theory proofs are trusted
(code for the search plan does not have to be certified)

Answer is correct-by-construction, no proof object in memory.
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4. Quantified satisfiability
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Quantifiers

Due to the connection between MCSAT and quantifier elimination, we
recently explored how MCSAT features could be used to extend Yices to
support quantifiers.
quantifier elimination: For any formula A, there exists a quantifier-free
formula B such that JAK = JBK

In practice though, if the size of B is way bigger than the size of A,
it may be unfeasible to compute B or decide whether it is satisfiable.

We have a better approach that we applied to NRA (non-linear
arithmetic) and BV (bitvectors), on top of Yices/MCSAT.
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Approximations
Idea: if the only reason to produce B from A is to decide whether A is satisfiable, it
may not be necessary to compute B exactly.
Approximations may suffice.

Def:

I An over-approximation of A is a quantifier-free formula O with JAK ⊆ JOK. If O
is unsat., then A is unsat.

I An under-approximation of A is a quantifier-free formula U with JUK ⊆ JAK. If
U is sat., then A is sat.

JUK JAK JOK
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Basic idea of lazy quantifier elimination

JUK JAK JOK

Start with U = false and O = true, and iteratively refine U and O until either U is sat
or O is unsat.
Worst case: you may end up computing a quantifier-free formula B such that
JAK = JBK.
In practice, you hope the algorithm will stop earlier than that.

Question: how do we refine the approximations iteratively?
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One quantifier at a time
Quantifier elimination:
Given ∃y F (−→x , y) with quantifier-free F (−→x , y), produce quantifier-free B(−→x ) with
(∃y F (−→x , y))⇔ B(−→x ) provable.
Model generalization:
If additionally given M satisfying ∃y F (−→x , y), produce quantifier-free U(−→x ) satisfied
by M, with U(−→x )⇒ (∃y F (−→x , y)) provable.
Model interpolation:
If additionally given M not satisfying ∃y F (−→x , y), produce quantifier-free O(−→x ) not
satisfied by M, with (∃y F (−→x , y))⇒ O(−→x ) provable.

y

x1

x2
M

y

x1

x2
M

In blue: F (x1, x2, y); its grey shadow: ∃y F (−→x , y);
in red: the under-approximation U(x1, x2) / the over-approximation O(x1, x2).
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A satisfiability algorithm for a slightly more general
question

“Given a formula A(−→z ,−→x ) and a model M−→z on −→z , produce either

I SAT(U(−→z )), with U(−→z ) under-approx. of ∃−→x A(−→z ,−→x ) satisfied by M−→z ; or

I UNSAT(O(−→z )),with O(−→z ) over-approx. of ∃−→x A(−→z ,−→x ) not satisfied by M−→z .”

(i.e. −→z ’s values are imposed, −→x are existentially quantified: values are up to us).

This generalizes the standard satisfiability question:
“Given a formula A(−→x ), produce either

I SAT, if ∃−→x A(−→x ) is satisfied by the empty model
(does not assign any value to any variable); or

I UNSAT, if not.”

If you have an algorithm to solve the more general problem,
apply it on the empty model M and A(−→x ) (−→z is empty) and inspect the result:

I UNSAT(O): return UNSAT

I SAT(U): return SAT
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The (recursive) satisfiability algorithm is a 2-player game
“Given a formula A(−→z ,−→x ) and a model M−→z on −→z , produce either

I SAT(U(−→z )), with U(−→z ) under-approx. of ∃−→x A(−→z ,−→x ) satisfied by M−→z ; or
I UNSAT(O(−→z )),with O(−→z ) over-approx. of ∃−→x A(−→z ,−→x ) not satisfied by M−→z .”

Algorithm solve:
(0) If A(−→z ,−→x ) is q-f, ask whether M−→z extends to a model M of A(−→z ,−→x ).

I If not, apply model interpolation on M−→z and A(−→z ,−→x ) to get O(−→z );
return UNSAT(O(−→z )).

I Otherwise, apply model generalization on M and A(−→z ,−→x ) to get U(−→z );
return SAT(U(−→z )).

(1) If A(−→z ,−→x ) is not q-f, rewrite it as F (−→z ,−→x ) ∧ ¬∃−→y Arec(−→z ,−→x ,−→y ),
where F (−→z ,−→x ) is q-f

(2) Set L(−→z ,−→x ) := F (−→z ,−→x ) as an over-approx. of A(−→z ,−→x ) to be refined
(3) Ask whether M−→z extends to a model M of L(−→z ,−→x ).

I If not, apply model interpolation on M−→z and L(−→z ,−→x ) to get O(−→z );
return UNSAT(O(−→z )).

I Otherwise, recursively call solve on M and Arec(−→z ,−→x ,−→y ),
and inspect the result:
I UNSAT(Orec(−→z ,−→x ))

apply model generalization on M and F (−→z ,−→x ) ∧ ¬Orec(−→z ,−→x ) to get
U(−→z ); return SAT(U(−→z )).

I SAT(Urec(−→z ,−→x ))
Set L(−→z ,−→x ) := L(−→z ,−→x ) ∧ ¬Urec(−→z ,−→x ) and go back to (3).
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How to answer the 3 kinds of queries
Model extension: Does model M on −→x extend to a model of a q-f formula L(−→x ,−→y )?
Model generalization
y

x1

x2
M

Model interpolation
y

x1

x2
M

It depends on the theory T . At SRI, we have implemented those procedures for:
the Booleans, the theory of bitvectors, real arithmetic (linear and non-linear).
In those theories, we can apply procedure solve to lazily eliminate quantifiers in the
view of determining satisfiability of any formula.

I Model generalization techniques already widely used in the field.

I Model extension not too difficult to achieve using regular SMT constraints.

I Model interpolation based on MCSAT.
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Implementation and related works
SRI’s Yices SMT-solver https://yices.csl.sri.com/ for quantifier-free formulas
offers an API that includes check-with-model, model-interpolant, and
generalize-model

The solving algorithm is implemented in an OCaml solver called YicesQS (for
Quantified Satisfaction): https://github.com/disteph/yicesQS
using the new yices2_ocaml_bindings
https://github.com/SRI-CSL/yices2_ocaml_bindings
that can be used to query Yices via its C API from OCaml programs

See also related works:

I Bjørner and Janota’s algorithm for “playing with quantified satisfaction”,
inspired by QBF [BJ15] and used in z3. A two-player game (one wanting to
satisfy A, the other one ¬A). Based on model projection and unsat cores, but
no model interpolation used.

I Monniaux’s work on quantifier elimination [Mon08, Mon10]. It uses a ground
SMT-solver as a black box (for purely existential problems), and also performs
some QE-elimination steps (e.g., FM resolutions) independently from the
SMT-solver.

I The ANR Decert work on Linear Integer arithmetic, which extends
Fourier-Motzkin with simplex-based techniques [BCC+12]
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Termination of algorithm solve

Even if you can perform model extension/interpolation/generalization for theory T , it
is not always the case that this makes algorithm solve terminate: the incremental
refinement of the over- and under-approximations may not converge in finite time.

Fortunately, this is the case for the Booleans and the bitvectors
(number of models is finite; incrementally refining approximations will converge).

Much less obviously, this is also the case for (linear and non-linear) real arithmetic:
approximations will converge, and quantifiers can be eliminated.
Linear arithmetic: Fourier-Motzkin,
Non-linear arithmetic: cylindrical algebraic decomposition (CAD)

All of these theories are decidable (-ish).
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Related work and future work

Investigate related approaches:
I The ANR Decert work on Linear Integer arithmetic, which extends

Fourier-Motzkin with simplex-based techniques [BCC+12]
I Monniaux’s work on quantifier elimination [Mon08, Mon10]. It uses

a ground SMT-solver as a black box (for purely existential
problems), and also performs some QE-elimination steps (e.g., FM
resolutions) independently from the SMT-solver.

I Dutertre’s work on solving “EF problems” (∃∀) in Yices, also relying
on a ground SMT-solver considered as a black box.

How would the Bjørner-Janota approach work in a combination of
theories?
Just as our CDSAT system generalises MCSAT to a combination of
theories, what would be the equivalent for the Bjørner-Janota approach?
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Questions?
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