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1 Introduction

The satisfiability problem is one of checking if a given formula has a model. In
the propositional case (SAT) a model is an assignment of truth values to propo-
sitional variables that satisfies the input set of clauses. Many SAT solvers em-
ploy a conflict-driven search strategy, known as Conflict-Driven Clause Learn-
ing (CDCL), in which the solver extends a partial assignment until it satisfies
all clauses, or a conflict arises as the assignment falsifies a clause. Nontrivial
inference steps are performed in response to a conflict to roll back the partial
assignment and direct the search elsewhere [35,34]. This conflict-driven style
inspired the design of several solvers for quantifier-free fragments of arithmetic
(e.g., [36,30,18,29,28,14,13] and [6] for more references). These conflict-driven
theory solvers decide the satisfiability of sets of literals in the theory.

The problem of deciding the satisfiability of a quantifier-free formula in
a theory is known as Satisfiability Modulo a Theory (SMT). MCSAT, for
Model Constructing SATisfiability, integrates a CDCL-based SAT solver and
a conflict-driven model-constructing theory solver [20,27,45,26,24,4,25]. CD-
SAT, for Conflict-Driven SATisfiability, generalizes MCSAT to a generic union
of disjoint theories whose solvers may or may not be model-constructing [9].
In CDSAT, both Boolean and first-order terms are given assignments in a trail
representing the candidate model as a partial assignment. First-order terms
are assigned constant symbols representing individuals of the corresponding
sort in a model’s domain (e.g., integer terms are assigned integer constants).
Since CDSAT accepts such first-order assignments also as part of the input,
CDSAT is an engine to determine the satisfiability of a quantifier-free formula
modulo a union of theories (SMT), and possibly modulo an initial assignment
of values to first-order terms appearing in the input formula. We called this
generalization of SMT satisfiability modulo assignment (SMA).

CDSAT is presented as a transition system that combines multiple theory
solvers, all or some of which are conflict-driven, into a conflict-driven solver
for the union of the theories. More precisely, CDSAT combines theory infer-
ence systems, called theory modules: the only relevant component of a theory
solver is its inference system, since the conflict-driven search is performed by
CDSAT for all theories. Every theory module performs inferences to propa-
gate consequences, and detect and explain conflicts in its theory. These theory
inferences can generate new (i.e., non-input) terms. CDSAT allows the intro-
duction of new terms as long as they are drawn from a global finite basis for
the union of the theories. Theory modules for propositional logic, also known
as the Boolean theory (Bool), linear rational arithmetic (LRA), the theory of
equality with uninterpreted function symbols (EUF), and the theory of ar-
rays (Arr) were exhibited [9]. A non-conflict-driven solver is abstracted into a
black-box theory module whose only inference rule invokes the solver to detect
unsatisfiability in the theory. Thus, CDSAT reduces to CDCL, if propositional
logic is the only theory, and to MCSAT, for the union of propositional logic
and another theory with conflict-driven solver. If all modules are black-boxes,
CDSAT can emulate the equality sharing (Nelson-Oppen) method [39,38,32]
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for the combination of disjoint stably infinite theories. CDSAT does not require
stable infiniteness (every satisfiable formula has a countably infinite model),
provided there is a leading theory that knows all sorts in the union of theories.
If the theory modules are sound, leading-theory-complete, that is, complete
relative to the leading theory, and have local finite bases that can be merged
in a global finite basis, CDSAT is sound, complete, and terminating [9].

In this article, we advance the research on CDSAT as follows:
1. We extend CDSAT with lemma learning, preserving soundness, complete-

ness and termination (Section 3);
2. We show that modules for Bool, LRA, EUF, Arr, a generic black-box module,

and a generic module for at-most cardinality constraints, which is relevant
to go beyond stable infiniteness, have finite local bases and are leading-
theory-complete for all suitable leading theories (Section 4);

3. We give a technique to get a global basis from local ones (Section 5); and
4. We enrich CDSAT with proof generation (Sections 6 and 7).
Learning lemmas from conflicts is essential in conflict-driven reasoning, be-
cause it immediately thwarts any attempt to repeat a failed search path. A
global basis is the central ingredient for termination and therefore its con-
structibility is also critical. Proofs are important because many applications
require the solver to generate a satisfying assignment or a proof of unsatisfi-
ability. CDCL-based SAT solvers generate proofs by propositional resolution
[46]. Reasoners based on the DPLL(T ) paradigm (e.g., [40,32,10]), sometimes
renamed CDCL(T ) in later papers, generate proofs by propositional resolu-
tion with proofs of theory lemmas plugged in as leaves or black-box subproofs.
This structure reflects the fact that in DPLL(T ) only propositional reason-
ing is conflict-driven, and non-conflict-driven theory solvers are integrated as
black-boxes, so that their proofs also are black-boxes. In CDSAT, multiple
components are conflict-driven, propositional logic is regarded as one of the
theories, and all theory modules contribute directly to the proof, including
new terms. Thus, CDSAT proofs do not fit in the mold of DPLL(T ) proofs,
and their generation requires new approaches, of which we present two.

The first one is a proof-carrying CDSAT transition system, where proof
terms record the information needed to generate proofs. We describe different
ways to turn proof terms into proofs, including producing resolution proofs
with theory lemmas. The proof objects produced by proof-carrying CDSAT
can be checked directly by a verified checker [43] or exported to a proof for-
mat verifiable by proof checkers. Thus, proof-carrying CDSAT can slot into
pipelines from proof-search to proof-checking [5,1,3], where a minimal amount
of proof information (e.g., an unsatisfiable core) may be sufficient for a the-
orem prover to regenerate a proof in its own format. The second approach
consists of specifying a small kernel of primitives in LCF style [37,23], so that
building proof objects in memory can be avoided. If CDSAT is implemented
on top of this kernel, the LCF type abstraction ensures that an unsat answer
is correct by construction, and CDSAT can be used as a trusted external or-
acle for interactive proof tools. A conference version of this article presenting
lemma learning and proof generation appeared [8].
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2 Basic Definitions

Let T1, . . . , Tn be disjoint theories, each defined by its signature Σk=(Sk, Fk)
and axiomatizationAk, where Sk is the set of sorts and Fk is the set of symbols,
for all k, 1≤k≤n. Every theory has the sort prop of the Boolean values and
sorted equality symbols: 'S = {'s : s×s→prop | s∈Sk} ⊆ Fk. The sorts of
equalities may be omitted. Disjointness means that the theories do not share
symbols except equality on shared sorts. Often one of the theories is Bool, with
logical connectives such as ¬, ∧, and ∨ as symbols. Formulæ are terms of sort
prop. The union of T1, . . . , Tn is denoted T∞, with signature Σ∞=(S∞, F∞),
where S∞=

⋃n
k=1 Sk and F∞=

⋃n
k=1 Fk, and axiomatization

⋃n
k=1Ak.

Let T, Σ, and S stand for Tk, Σk, and Sk (1≤ k≤n), or for T∞, Σ∞,
and S∞. We assume a collection V = (Vs)s∈S of disjoint sets of variables,
where Vs is the set of variables of sort s. We use x, y, and z for variables,
l and p for formulæ, t and u for terms of any sort, and E for the subterm
ordering. If Σ = (S, F ) is a signature with F ⊆ F∞, the Σ-foreign subterms
of a term t are those subterms whose root symbol is not in F , including
variables. The free Σ-variables fvΣ(t) of t are its Σ-foreign subterms with a
E-maximal occurrence, and fvsΣ(t) contains those of sort s. For a setX of terms,
fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X} and fvsΣ(X) = {u | u ∈ fvsΣ(t), t ∈ X}.

A T [V ]-model M interprets each s ∈ S as a non-empty domain sM with
propM = {true, false}, each v ∈Vs as an element vM in sM, each f ∈F with
f : (s1× · · ·×sm)→s as a function fM from sM1 × · · ·×sMm to sM, and each
's as the function 'Ms from sM×sM to {true, false} that returns true if and
only if its arguments are the same element. The interpretation of terms and
formulæ is defined as usual, with the interpretation of term t denoted M(t).
We write T -model when the variables do not matter.

CDSAT works with assignments that assign to terms values of the ap-
propriate sort. For example, assuming theories Bool, Arr, and a fragment of
arithmetic, ((x > 1)∨(y < 0))←true, y←−1, z←

√
2, (store(a, i, v)' b)←true,

select(a, j)←3, and (select(a, j)' v)←true are assignments. The standard ap-
proach to define what the values are is to extend the signature with sorted
constant symbols to name all individuals in the domains used to interpret the
sorts (e.g., the appropriate set of numerals for a fragment of arithmetic).

For each Tk, 1≤ k≤n, a conservative theory extension T +
k is a theory

with signature Σ+
k = (Sk, F+

k ), where F+
k adds to Fk a possibly empty set

of new constant symbols, called Tk-values, accompanied by new axioms as
needed (e.g.,

√
2 with

√
2 ·
√

2' 2). For numerals, as for true and false, a
Tk-value is both the domain element and the constant symbol that names
it. F+

k may be infinite, but it is countable (e.g., using the algebraic reals
as real numbers). The trivial extension only adds {true, false} as Tk-values.
We assume that the extended theories are still disjoint except for true and
false. The union of T +

1 , . . . , T +
n is a conservative extension T +

∞ of T∞, with
signature Σ+

∞ = (S∞, F+
∞) for F+

∞ =
⋃n
k=1 F

+
k . We use c and q for values,

reserving b for true or false. Conservativity means that T +-unsatisfiability
implies T-unsatisfiability for Σ-formulæ: if CDSAT detects T +

∞ -unsatisfiability,
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the problem is T∞-unsatisfiable; if the problem is T∞-satisfiable, there is a T +
∞ -

model that CDSAT can discover.
A T -assignment is a set J = {u1←c1, . . . , um←cm}, where, ∀i, 1≤ i≤ m,

ui is a T∞-term and ci a T -value of the same sort. The set of terms that
occur in J is G(J) = {t | t E ui, 1 ≤ i ≤ m}, and Gs(J) is the subset of
the terms of sort s in G(J). The set of free variables of J is fvΣ(J) = {u |
u ∈ fvΣ(t), (t←c) ∈ J}. We use J for generic T -assignments, A for generic
singleton assignments, L or K for Boolean singleton assignments, H and E
for T∞-assignments. The flip L of L assigns to the same formula the opposite
Boolean value. An assignment is plausible if for no L it contains both L and
L. We abbreviate l←true as l, l←false as l, and (t' u)←false as t 6' u. A
Boolean assignment only assigns Boolean values, while a first-order assignment
only assigns non-Boolean values. An SMT problem is presented as a plausible
Boolean assignment {l1←true, . . . , lm←true}, abbreviated {l1, . . . , lm}, while
an SMA problem also includes first-order assignments.

The theory view, or T-view, HT of a T∞-assignment H comprises the T-
assignments in H and all equalities or inequalities between terms of a sort in S
that are entailed by first-order assignments in H. If {x←3, y←3, z←4} ⊆ H,
the T-view HT also includes x' y, x 6' z, and y 6' z, for all T having the sort
of x, y, and z. If H is Boolean, HT = H. As a Ti-assignment is a special case
of T∞-assignment, the T-view of a Ti-assignment (1 ≤ i, k ≤ n) is also defined.

A T +-modelM endorses a T-assignment J , writtenM |= J , if for all pairs
(u←c)∈J ,M satisfies u' c. It follows that if {u←c, t←c}⊆J ,M also satisfies
u' t. If M |= JT , that is, M endorses the T-view of J , then M also satisfies
u 6' t, for all pairs u←c1 and t←c2 in J with c1 6= c2. A T-assignment J is
satisfiable, if there is a T +-modelM such thatM |= JT , and it is unsatisfiable
otherwise. For T∞-assignments, we write H |= ⊥ if H is unsatisfiable, and we
use M |=G H for M |= HT∞ , saying that M globally endorses H. When T is
clear, we also write J |= L ifM |= L for all T +-modelM such thatM |= JT .

A theory module Ik for theory Tk (1≤ k≤n) is an inference system with
inferences of the form J `Ik

L, or J `k L for short, where J is a Tk-assignment
and L is a Boolean assignment. Theory modules are required to be sound: if
J `k L then J |= L. From now on assignment stands for T∞-assignment.

3 CDSAT with Lemma Learning

In this section we present the CDSAT transition system with lemma learning.
Most of the material in Sect. 3.1 and 3.3 appeared [9] and it is included to
make this article self-contained. Sect. 3.2 discusses lemma learning.

3.1 The CDSAT Transition System with Lemma Learning

CDSAT works with a trail Γ , defined as a sequence of distinct singleton as-
signments that are either decisions, written ?A to convey guessing, or justified
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Trail rules
In the trail rules, let 1≤ k≤n.
Decide Γ −→ Γ, ?A if A is an acceptable Tk-assignment for Ik in ΓTk

The next three rules share the conditions: J ⊆ Γ , (J `k L), and L 6∈ Γ .
Deduce Γ −→ Γ, J `L if L 6∈ Γ and L is in B
Fail Γ −→ unsat if L ∈ Γ and levelΓ (J ∪ {L}) = 0
ConflictSolve Γ −→ Γ ′ if L ∈ Γ , levelΓ (J ∪ {L}) > 0, and 〈Γ ; J ∪ {L}〉 =⇒∗ Γ ′
Conflict state rules
UndoClear
〈Γ ;E ] {A}〉 =⇒ Γ≤m−1 if A is a first-order decision of level m > levelΓ (E)

Resolve
〈Γ ;E ] {A}〉 =⇒ 〈Γ ;E ∪H〉 if (H `A) ∈ Γ and for no first-order decision A′ ∈ H

levelΓ (A′) = levelΓ (E ] {A})
UndoDecide
〈Γ ;E ] {L}〉 =⇒ Γ≤m−1, ?L if (H `L) ∈ Γ and for a first-order decision A′ ∈ H

m = levelΓ (E) = levelΓ (L) = levelΓ (A′)
LearnBackjump
〈Γ ;E ]H〉 =⇒ Γ≤m, E `L if L is a clausal form of H, L is in B,

L /∈ Γ , L /∈ Γ , and levelΓ (E) ≤ m < levelΓ (H)

Fig. 1 The CDSAT transition system with lemma learning

assignments H `A, where H, the justification of A, is a set of singleton assign-
ments that appear before A in Γ . The elements of the input assignment H0 are
listed in Γ as justified assignments with empty justification. A non-input justi-
fied assignment is a Boolean assignment J `L, due to either a theory inference
J `k L for some k, 1≤ k≤n, or a conflict-solving transition. A justified assign-
ment H `A is sound if for all T +

∞ -modelsM, ifM |=G H0∪H thenM |= A. A
first-order assignment in Γ is either an input assignment or a decision. A trail
can be seen as an assignment by ignoring order and justifications.

Given trail Γ with assignments A0, . . . , Am, the level of a singleton assign-
ment Ai, 0 ≤ i ≤ m, is given by levelΓ (Ai) = 1+max{levelΓ (Aj) | j < i}, if Ai
is a decision, and levelΓ (Ai) = levelΓ (H), if Ai is a justified assignment H `Ai.
The level of a set of singleton assignments H ⊆ Γ is given by levelΓ (H) = 0,
if H = ∅, and levelΓ (H) = max{levelΓ (A) | A ∈ H}, otherwise. As the level of
H `A depends on its justification, not on its position on the trail, the trail is
not organized as a stack, and H `A can be added to the trail after assignments
of greater level. This behavior and assignment A are called late propagation.
Γ≤m denotes the restriction of Γ to its elements of level at most m.

The state of a CDSAT-derivation is either a trail Γ or a conflict state 〈Γ ;E〉,
where Γ is a trail, and E is a conflict, that is, an assignment such that E ⊆ Γ
and H0 ∪ E |=⊥. The CDSAT transition system features trail rules, denoted
−→, and conflict-state rules, denoted =⇒, with transitive closure =⇒∗ and ]
for disjoint union (see Fig. 1). As CDSAT may place on the trail assignments
for new (i.e., non-input) terms, for termination all terms must come from a
finite set B, called global basis, which is determined based on the input and
does not change during the derivation. While terms come from B, values come
from F+

∞, which may be infinite: a derivation will use a finite subset of F+
∞ that

is not fixed beforehand. An assignment H is in B if t ∈ B for all (t←c) ∈ H.
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Rule Decide adds a decision u←c if it is acceptable for a theory module Ik
in its view ΓTk

of trail Γ . Acceptability comprises three requirements: (1) Γ
does not assign a Tk-value to u; (2) if u←c is first-order, there is no inference
J ∪ {u←c} `Ik

L such that L ∈ ΓTk
for J ⊆ ΓTk

; and (3) u is relevant to Tk
in ΓTk

. The latter means that either (i) u ∈ G(ΓTk
), Tk has its sort and values

for it, so that Ik can decide an assignment to u; or (ii) u is an equality u1' u2
such that u1, u2 ∈ G(ΓTk

), Tk has their sort, but does not have values for it,
so that Ik can decide the truth value of u1' u2. By Condition (1), if L ∈ Γ ,
both L and L are unacceptable for all theories. By Condition (2), for example,
if {x←1, x < y} ⊆ Γ , y ← 2 is unacceptable for LRA, as {x←1, y←2} `ILRA

x < y by an LRA-evaluation inference (see Sect. 4.4). A decision u←c is forced
when c is the only acceptable value for u, such as if {u' t, t←c} ⊆ Γ for EUF,
or {u ≤ t, t ≤ u, t←c} ⊆ Γ for LRA.

Rule Deduce expands Γ with a Boolean singleton assignment justified by a
theory inference J `k L from assignments J already in Γ . Sound theory infer-
ences yield sound justified assignments. The system proceeds with decisions
and deductions until a conflict arises: if J `k L and L ∈ Γ , the assignment
J ∪ {L} is a conflict. Deduce encompasses propagation, by deducing an as-
signment that is a logical consequence in the theory of assignments in Γ , and
conflict explanation, by performing theory inferences that allow a theory con-
flict to surface on Γ as a Boolean conflict. If the conflict is at level 0, rule Fail
reports unsatisfiability. Otherwise, rule ConflictSolve passes the control to the
conflict-state rules, and resumes the search from the trail Γ ′ they produce.

Rule UndoClear applies if the conflict includes a first-order decision A whose
level m is the greatest in the conflict: UndoClear removes A and all its conse-
quences from the trail. The outcome Γ≤m−1 is new because it must contain
some late propagation: by acceptability, A did not cause a conflict when de-
cided; if A became later part of a conflict, it must be that some late propagation
L with levelΓ (L) < m was added to the trail after A, so that L is in Γ≤m−1.

Rule Resolve explains conflict E ] {A}, by replacing justified assignment
A with its justification H. Since H0 ∪ E ] {A} |=⊥, and H `A is sound, H0 ∪
E ∪ H |=⊥ follows, and E ∪ H is still a conflict. If A is first-order, H = ∅
and A is removed from the conflict. If A is Boolean, H must not contain a
first-order decision A′ such that levelΓ (A′) = m = levelΓ (E ] {A}). Indeed,
suppose that A is {A′}`L and levelΓ (E) < m: if Resolve turns E ] {A} into
E]{A′}, UndoClear undoes A′, Decide retries A′, and Deduce reiterates {A′}`L,
the system loops. If Resolve is forbidden, either UndoDecide or LearnBackjump
applies. If an assignment other than L in the conflict has level m, UndoDecide
undoes A′ and decides L. If L is the only assignment of level m in the conflict,
an instance of LearnBackjump applies, as illustrated in Sect. 3.2.

The CDSAT transition system is nondeterministic, as it leaves room for
heuristic choices. Thus, multiple CDSAT-derivations from a given input exist.
The addition of a search plan that controls the application of the transition
rules yields a CDSAT procedure, whose derivation from a given input is unique.
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3.2 Lemma Learning in CDSAT

The CDCL procedure [35,34] can learn a propositional resolvent generated to
explain a conflict. For example, if a CDSAT trail contains {?d, ?b, {d,¬a ∨ d}`a},
a∨ b is a conflict clause for CDCL, and {a∨ b, a, b} is a conflict for CDSAT.
CDCL can learn b∨ d, resolvent of a∨ b and the CDCL justification ¬a∨ d of
a. CDSAT can Resolve the conflict into {a ∨ b, d, ¬a ∨ d, b}. The new rule
LearnBackjump of Fig. 1 enables CDSAT to learn from this conflict the justi-
fied assignment {a ∨ b, ¬a ∨ d}`b ∨ d, forming clause b∨d from the subset {d, b}
of the conflict. In general, LearnBackjump allows CDSAT to turn any Boolean
subset of a conflict into a disjunction of Boolean terms (i.e., formulæ), that the
system can learn, and that we call clause, slightly abusing the terminology.
This requires ∨ ∈ F∞, which is the case whenever T∞ includes propositional
logic. If ∨ 6∈ F∞, only unit clauses will be learned.

Suppose that E ]H is a conflict, where H contains only Boolean assign-
ments. This means that H0 ∪ (E ]H) |=⊥, for H0 the input assignment. If H
is a singleton L, we have H0 ∪ (E ] {L}) |=⊥, hence H0 ∪ E |= L, and E`L
can be learned. If H is not a singleton, it can be rewritten as the singleton

((
∧

(l←true)∈H l) ∧ (
∧

(l←false)∈H ¬l))←true
whose flip is ((

∧
(l←true)∈H l)∧(

∧
(l←false)∈H ¬l))←false. In order to get a clause,

the latter assignment can be rewritten in the equivalent form
((
∨

(l←true)∈H ¬l) ∨ (
∨

(l←false)∈H l))←true
leading to the next definition.

Definition 1 (Clausal form of an assignment in a conflict) Given a
conflict E ] H, where H is a Boolean assignment, the clausal form of H is
the singleton Boolean assignment ((

∨
(l←true)∈H ¬l) ∨ (

∨
(l←false)∈H l))←true,

or, equivalently, ((
∧

(l←true)∈H l) ∧ (
∧

(l←false)∈H ¬l))←false.

The new rule LearnBackjump allows CDSAT to perform learning and back-
jumping, or learning and restart, and it subsumes the Backjump rule [9], adding
the capability of learning assertion clauses. We examine these features in this
order. Learning and backjumping is the generic behavior of LearnBackjump.
This rule singles out a Boolean subset H of the conflict E ] H, such that
levelΓ (H) > levelΓ (E). Then, it solves the conflict by jumping back to a level
m, such that levelΓ (E) ≤ m < levelΓ (H), and learning a clausal form L of
H. The system learns L by adding to the trail the justified assignment E`L,
which is sound, because H0∪(E]H) |=⊥ implies H0∪E |= L, as L is a clausal
form of H. As L may be a new Boolean term, it must belong to B. Note that
H does not necessarily contain all Boolean assignments in the conflict: the
choice of Boolean subset H and destination level m is left to the search plan.

Example 1 Consider the conflict on the last line of Fig. 2. If LearnBackjump is
applied with H = {l2, l4}, and E = {(¬l2∨¬l4∨¬l5), (¬l4∨l5)}, ((¬l2∨¬l4) ←
true) is a clausal form of H, levelΓ (H) = 4, and levelΓ (E) = 0, so that any
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Input problem H0 including: (¬l4∨l5), (¬l2∨¬l4∨¬l5)
Initial trail Γ0 including: ∅`(¬l4∨l5), ∅`(¬l2∨¬l4∨¬l5)
Extending Γ0 into Γ = Γ0, ?A1, ?l2, ?A3, ?l4, (¬l4∨l5), l4 `l5

(involving unrelated decisions A1 and A3)
First conflict: 〈Γ ; (¬l2∨¬l4∨¬l5), l2, l4, l5〉
Applying Resolve to l5: 〈Γ ; (¬l2∨¬l4∨¬l5), l2, l4, (¬l4∨l5)〉
Fig. 2 Propositional extract from a CDSAT derivation

destination level m such that 0 ≤ m < 4 can be picked. A standard choice for
m would be the second highest level in the conflict, namely m = 2, in which
case the LearnBackjump step jumps over decision A3 and yields

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`(¬l2∨¬l4).
The derivation continues from level 2 with ¬l2∨¬l4 added to level 0.

We consider next learning and restart. It is common to restart after learning
a clause, and search plans with aggressive restart proved successful in SAT
solving. LearnBackjump makes this kind of search plan possible in CDSAT.
Assume that the destination level m is chosen to be the smallest, that is,
m = levelΓ (E). If levelΓ (E) is 0, LearnBackjump produces a trail of the form
Γ≤0, E`L, performing a restart and adding E`L to level 0.

Example 2 The LearnBackjump step of Example 1 with destination level m = 0
generates

Γ0, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`(¬l2∨¬l4).

We analyze next how LearnBackjump subsumes the Backjump rule [9]. The
latter rule applies when CDSAT reaches a conflict state 〈Γ ;E ] {L}〉, where
levelΓ (E) = m and levelΓ (L) > m. Backjump solves such a conflict by produc-
ing the trail Γ≤m, E`L. In words, it jumps back to level m and adds to the
trail the justified assignment E`L as H0 ∪ (E ] {L}) |=⊥ yields H0 ∪E |= L.
LearnBackjump behaves in the same way if H is a singleton L, as L is a
clausal form of a singleton Boolean assignment L in a conflict. However, while
Backjump goes back to level m = levelΓ (E), LearnBackjump allows to choose
any destination level m such that levelΓ (E) ≤ m < levelΓ (L).

Example 3 In the conflict on the last line of Fig. 2, the level of l4 is greater
than that of the rest of the conflict E = {(¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)}, as
levelΓ (l4) = 4 > levelΓ (E) = 2. Thus, Backjump could apply; LearnBackjump
mimics it with H = {l4} and m = 2 to yield

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)`l4.

Alternatively, if m = 3, LearnBackjump produces
Γ0, ?A1, ?l2, ?A3, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)`l4.

The side-conditions L /∈ Γ and L 6∈ Γ prevent LearnBackjump from break-
ing plausibility or adding to the trail a clause that is already there.
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Example 4 Consider the first conflict in Fig. 2: 〈Γ ; (¬l2∨¬l4∨¬l5), l2, l4, l5〉.
For a LearnBackjump step with E = {¬l2∨¬l4∨¬l5} and H = {l2, l4, l5}, we
have levelΓ (H) = 4 and levelΓ (E) = 0. Regardless of the choice of destination
level m, 0 ≤ m < 4, a clausal form of H is redundant since clause ¬l2∨¬l4∨¬l5
is already on the trail and LearnBackjump does not add it.

Unlike Backjump, LearnBackjump does not require that the conflict contains
a singleton assignment L of level greater than the rest of the conflict.

Example 5 In the first conflict in Fig. 2 both l4 and l5 have level 4. If we apply
LearnBackjump with H = {l4, l5}, E = {(¬l2∨¬l4∨¬l5), l2}, levelΓ (H) = 4,
levelΓ (E) = 2, and destination level m = 2, the resulting trail is

Γ0, ?A1, ?l2, E`¬l4∨¬l5
where (¬l4 ∨ ¬l5)← true on level 2 is a clausal form of H.

We examine last the learning of assertion clauses. In CDCL, the last conflict
clause generated prior to backjumping is called backjump clause: the procedure
learns this clause and jumps back to a prior level, undoing at least one decision
and satisfying the learned clause by placing one of its literals on the trail. An
assertion clause is a conflict clause such that only one of its literals, termed
assertion literal, is falsified on the current, or greatest, level of the trail. The
First Unique Implication Point (1UIP) heuristic [35] picks as backjump clause
the first generated assertion clause, as destination level the smallest where
the assertion literal is undefined and all other literals of the assertion clause
are false, and places the assertion literal on the trail. The Backjump rule of
CDSAT [9] generalizes this behavior, taking into account that, unlike in CDCL,
a CDSAT trail is not a stack. Backjump applies to a conflict E ] {L} such
that levelΓ (L)>levelΓ (E), but levelΓ (L) is not necessarily the current one, and
Backjump puts L on the trail without learning an assertion clause. However, if
a CDSAT conflict has the form E]{L} with levelΓ (L)>levelΓ (E), it is possible
to extract from the conflict an assertion clause, and LearnBackjump does it.

Let κ = l1∨· · ·∨lq be an assertion clause and lq its literal such that L =
(lq←false) is on the current level. Assume that κ ∈ B. In order to learn κ, it
suffices to take the Boolean subset H = H ′ ] {L} of the conflict that makes
κ false: for all i, 1≤i≤q, (li←false) ∈ H if and only if li ∈ κ and (li←true) ∈
H if and only if ¬li ∈ κ. By Definition 1, the assignment K = (κ←true)
is a clausal form of H. Let E be the rest of the conflict. Then the system
applies LearnBackjump with destination level m = levelΓ (E]H ′), which means
that m ≥ levelΓ (H ′). This choice satisfies the condition levelΓ (E) ≤ m <
levelΓ (H), because levelΓ (E) ≤ levelΓ (E ]H ′) < levelΓ (H) = levelΓ (L). This
LearnBackjump step yields the trail

Γ≤m, E`K,

and κ is learned. The theory module for Bool features inference rules for unit
propagation (see Sect. 4.1) that allow the inference:

{K} ]H ′ `Bool L. (1)
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t1←c, t2←c ` t1's t2 if c is a T-value of sort s
t1←c1, t2←c2 ` t1 6's t2 if c1 and c2 are distinct T-values of sort s

` t1's t1 (reflexivity)
t1's t2 ` t2's t1 (symmetry)

t1's t2, t2's t3 ` t1's t3 (transitivity)

Fig. 3 Equality inference rules,where t1, t2, and t3 are terms of sort s

Indeed, K is (l1∨ . . .∨lq−1∨lq)← true, and H ′ makes l1, . . . , lq−1 false, so that
unit propagation infers lq. Since L makes lq false, L makes lq true. Because
the destination level m of the LearnBackjump step was chosen in such a way
that m ≥ levelΓ (H ′), the premises K,H ′ of inference (1) are all on the trail
Γ≤m, E`K. Furthermore, literal lq is in B, since L was on the trail. Thus, all
conditions for a Deduce step with inference (1) are met. The resulting trail is

Γ≤m, E`K, {K}]H′ `L

which is similar to the Γ≤m, E]H′ `L produced by Backjump, except for the
learned clause K. The advantage is that K can be reused in future branches
of the search. The smaller the level of E`K, which is levelΓ (E), the longer K
may remain on the trail and be used for inferences.

Example 6 Continuing Example 1 from
Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`(¬l2∨¬l4),

rule Deduce with inference (1) generates
Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`(¬l2∨¬l4), (¬l2∨¬l4), l2 `l4.

A comparison with Example 3 shows the difference between LearnBackjump
imitating Backjump, and a LearnBackjump Deduce sequence that backjumps,
learns the assertion clause, and asserts the assertion literal by Deduce.

A CDSAT search plan may restrict the application of LearnBackjump to
1UIP conflict clauses and couple it with Deduce systematically.

3.3 Soundness, Completeness, and Termination with Lemma Learning

In this section we show that the addition of lemma learning retains the sound-
ness, termination, and completeness properties of CDSAT (cf. [9], Sect. 9).
We begin by reviewing the prerequisites on theory modules (cf. [9], Sect. 8),
which is preparatory material for Sect. 4. Every theory module includes the
equality inference rules of Fig. 3. In order to explain theory conflicts, theory
inferences may introduce new (i.e., non-input) terms. For termination, all new
terms must come from a finite local basis associated with the module and de-
pendent on the input problem. We say that a set X of terms is closed if (i)
it is closed with respect to the subterm ordering, or E-closed for short: for
all u ∈ X, t E u implies t ∈ X, and (ii) it is closed with respect to equality:
for all t, u ∈ X of sort s, s 6= prop, (t's u) ∈ X. The second condition ex-
cludes prop, because otherwise a non-empty closed set is necessarily infinite,
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as it would contain, for all terms t of sort s, the infinite series l1 = (t's t),
l2 = (l1'prop l1), l3 = (l2'prop l2), etc. The closure ⇓X of a set X of terms is
the smallest closed set containing X. The closure operation is idempotent, as
⇓(⇓X) = ⇓X, and monotone: if X ⊆ Y then ⇓X ⊆ ⇓Y .

Definition 2 (Basis) A basis for theory T with signature Σ is a function
basis from sets of terms to sets of terms, such that for all sets X of terms:
– X ⊆ basis(X) (extensiveness),
– If X is finite then basis(X) is finite (finiteness),
– basis(X) = basis(⇓X) = ⇓basis(X) (closedness),
– For all sets Y of terms, if X ⊆ Y then basis(X) ⊆ basis(Y ) (monotonicity),
– basis(basis(X)) = basis(X) (idempotence), and
– fvΣ(basis(X)) ⊆ fvΣ(X) ∪ V∞ (no introduction of foreign terms).

For each theory Tk in the union, 1≤ k≤n, the theory module Ik has a
basis, called local basis and denoted basisIk

or basisk, such that for all sets X
of terms (e.g., X = G(H) for input assignment H in a CDSAT-derivation),
basisk(X) contains all terms that Ik can generate starting from those in X.
Given a T -assignment J , we abbreviate basis(G(J)) as basis(J). The global
basis B is stable if for all k, 1≤ k≤n, basisk(B) ⊆ B.

Definition 3 (Assignment expansion) A T -module I with local basis
basis expands a T -assignment J by adding either (1) a T -assignment A that
is acceptable for I in J , or (2) a Boolean assignment l←b derived by an I-
inference J ′ `I (l←b) such that J ′ ⊆ J , (l←b) /∈ J , and l ∈ basis(J).

Case (1) covers Decide and Case (2) covers Deduce, Fail, and ConflictSolve.

Definition 4 (One-theory-completeness) Given theory T , a T-module I
is complete for T, if, for all plausible T -assignments J , either I can expand J
or there exists a T +[fvΣ(J)]-model M such that M |= J .

For completeness in a union T∞ of theories, the theories need to agree
on cardinalities of shared sorts and equalities between shared terms. CDSAT
achieves this by requiring that every theory agrees on both counts with a
leading theory, say T1, which has all the sorts, that is, such that S1 = S∞.

Definition 5 (Leading-theory-compatibility) Let T1 be the leading the-
ory, T , Σ, and S stand for Tk, Σk, and Sk, 2≤ k≤n, and N be a set of terms.
A T -assignment J is leading-theory-compatible with T sharing N , if for all
T +

1 [V1]-modelM1 such thatM1 |= JT1 with fvΣ1
(J ∪N) ⊆ V1, there exists a

T +[V ]-model M with fvΣ(J ∪N) ⊆ V , such that (i) M |= J , (ii) for all sorts
s ∈ S, |sM| = |sM1 |, and (iii) for all s ∈ S and terms u, u′ ∈ N of sort s,
M(u) =M(u′) if and only if M1(u) =M1(u′).

Since in a worst-case scenario all terms are shared, the next definition picks
as set of shared terms the set of all terms occurring in the assignment.
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Definition 6 (Leading-theory-completeness) For a nonleading theory T ,
a T -module I is leading-theory-complete, if for all plausible T -assignments J ,
either I can expand J or J is leading-theory-compatible with T sharing G(J).

Note that if I cannot expand J , all applicable equality inference steps (see
Fig. 3) have been applied, and therefore J = JT .

Theorem 1 CDSAT with lemma learning and global basis B is
1. Sound: if the theory modules are sound, whenever a CDSAT-derivation

reaches state unsat, the input problem is unsatisfiable;
2. Terminating: if B is finite and closed, every CDSAT-derivation from an

input problem in B is guaranteed to terminate; and
3. Complete: if there is a leading theory T1, module I1 is complete for T1, mod-

ules Ik’s, 2≤ k≤n, are leading-theory-complete, and B is stable, whenever
a CDSAT-derivation from an input problem in B reaches a state other
than unsat such that no transition rule applies, there exists a T +

∞ -model
that globally endorses the assignment on the trail, hence the input problem.

Proof The proof adapts the soundness, termination, and completeness argu-
ments for CDSAT with Backjump to CDSAT with LearnBackjump.
1. The proof of soundness (see [9], Sect. 9.1, Thm. 1) rests on soundness of

the theory modules and a lemma (see [9], Sect. 9.1, Lem. 2) showing that
CDSAT transitions transform sound states into sound states, which means
that justified assignments are sound and conflicts are indeed conflicts. The
replacement of Backjump with LearnBackjump does not affect this result,
because LearnBackjump adds sound justified assignments.

2. The proof of termination (see [9], Sect. 9.2, Thm. 2) is organized in three
lemmas. The first one (see [9], Sect. 9.2, Lem. 4) uses acceptability of
decisions to show that a CDSAT trail does not contain distinct assign-
ments to the same term, unless they are input assignments. For Boolean
assignments, this means that CDSAT rules preserve plausibility: replacing
Backjump with LearnBackjump is safe, because both rules essentially flip a
Boolean assignment. The second lemma (see [9], Sect. 9.2, Lem. 5) employs
closedness of B and relevance of decided terms to show that if the input
assignment is in B so are all derived trails.1 LearnBackjump does not affect
this lemma, as the learned clause is required to be in B. The finiteness
of B is used to establish an upper bound on trail length, which makes it
possible to define a trail measure. The third lemma (see [9], Sect. 9.2, Lem.
6) shows that CDSAT transitions reduce the trail measure with respect to
a well-founded ordering, and LearnBackjump does it like Backjump.

3. The proof of completeness (see [9], Sect. 9.3, Thm. 5) is structured in two
main theorems. The first one (see [9], Sect. 9.3, Thm. 3) uses closedness of
B, which is implied by stability, and completeness of the theory modules to
show that, whenever a CDSAT-derivation reaches a state other than unsat

1 The proof of this lemma works also if relevance (see Sect. 3.1) of term u is weakened to
u ∈ B, which allows CDSAT to decide the value of u even if u 6∈ G(Γ ).
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such that no transition rule applies, its trail Γ is model-describing. The
second one (see [9], Sect. 9.3, Thm. 4) shows that a model-describing trail
is globally endorsed by a T +

∞ -model, and therefore is not affected by replac-
ing Backjump with LearnBackjump. Γ is model-describing if ΓT1 is endorsed
by a T +

1 -model, and for all k, 2≤ k≤n, ΓTk
is leading-theory-compatible

with Tk sharing the set of shared terms of the problem. The generic as-
signment J of the definitions of leading-theory-compatibility and leading-
theory-completeness (see Defs. 5 and 6) is instantiated to ΓTk

, and a the-
ory module Ik, 2≤ k≤n, is leading-theory-complete sharing G(ΓTk

), hence
sharing the set of shared terms of the problem, since the latter is a subset of
G(ΓTk

) for all problems. Replacing Backjump with LearnBackjump preserves
this theorem, because when LearnBackjump does not apply, Backjump does
not apply either, as LearnBackjump subsumes Backjump (see Sect. 3.2).

4 Completeness of Theory Modules

In this section we define theory modules and local bases for Bool, EUF, Arr,
LRA, generic Nelson-Oppen theories, and generic nonstably-infinite theories,
and we prove that these modules are leading-theory-complete for all suitable
leading theories. A theory module is an abstraction of a theory satisfiability
procedure. A theory satisfiability procedure implements the inference rules of
the module, a search plan, and other algorithmic components, such as those
of a full-fledged CDCL procedure for Bool, a congruence-closure algorithm for
EUF, or an LRA-procedure that keeps polynomials in normal form as sums of
monomials and maintains lower and upper bounds for each rational variable.

We begin with a lemma that will be used several times in the sequel. Given
a T -assignment J , let 'Js be the binary relation over Gs(J) defined by t1'Js t2
if and only if (t1's t2) ∈ J . The lemma shows that if module I for theory T
cannot expand J , the relation 'Js is an equivalence, and J provides T -values
for all terms that are relevant to T . For terms of sort s other than prop,
this result relies on two hypotheses: first, J does not exhaust the supply of
s-sorted T -values, so that a decision is doable; second, the only I-rules with
first-order assignments as premises are equality inferences (see Fig. 3), so that
the analysis of acceptability of decisions is module-independent. If T + offers
infinitely many s-sorted T -values, the first hypothesis is satisfied a priori.

Lemma 1 If T -module I cannot expand a plausible T -assignment J , then:
1. For all sorts s ∈ S\{prop}, the relation 'Js is an equivalence, and if
{t1←c1, t2←c2} ⊆ J , then c1 and c2 are identical if and only if t1'Js t2;

2. Assignment J gives a value to every formula that is relevant to T in J ;
3. Assignment J gives a value to every term t of sort s ∈ S\{prop} that

is relevant to T in J , provided that (i) there exists a T -value of sort s
that J does not use, and (ii) the only I-inferences involving first-order
assignments of sort s are equality inferences.

Proof All claims are proved by way of contradiction.
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1. Assume that 'Js is not reflexive. This means there exists a term t ∈ Gs(J)
such that (t's t) 6∈ J . The Boolean assignment t's t can be derived by
reflexivity (see Fig. 3), and (t's t) ∈ basisI(J) since basisI(J) is closed and
therefore contains all equalities between terms in Gs(J) for s 6= prop. Thus,
I can expand J , which is a contradiction. The cases for symmetry and
transitivity are analogous. Similarly, assume that {t1←c1, t2←c2} ⊆ J , c1
and c2 are identical, but (t1's t2) 6∈ J : then I can expand J by an equality
inference deriving t1's t2. Conversely, assume (t1's t2) ∈ J , and c1 and
c2 are distinct: by plausibility (t1 6's t2) 6∈ J , and I can expand J by an
equality inference deriving t1 6's t2.

2. Assume l is a relevant formula without assigned value. Then l←b (for either
truth value) is acceptable for I in J , and therefore I can expand J .

3. Assume that J does not assign a value to such a relevant term t. We find
an acceptable assignment for t, so that I can expand J . It suffices to find
a value that does not cause a conflict (see Sect. 3.1 for acceptability). Con-
sider the 'Js -equivalence class e of t ('Js is an equivalence by Part (1)).
If none of the terms in e are assigned a value in J , then t←c, where c is
the T -value of sort s that J does not use, is acceptable, because other-
wise there would be an assignment (t2←c2) ∈ J and an equality inference
t←c, t2←c2 ` t 6' t2 such that (t' t2) ∈ J , meaning t2 ∈ e is assigned
a value. If for a term t1 ∈ e, J contains t1←c1, then t←c1 is acceptable,
because otherwise there would be an assignment (t2←c2) ∈ J and an equal-
ity inference t←c1, t2←c2 ` (t' t2)←b such that (t' t2)←b ∈ J : if b is
true, then c1 is c2, t1'Js t2 (by Part (1)), hence t'Js t2 by transitivity (since
t1 ∈ e), so that {t' t2, t 6' t2} ⊆ J , violating plausibility; if b is false, then
c1 and c2 are distinct, (t' t2) ∈ J , hence t'Js t2, and, by transitivity (since
t1 ∈ e), t1'Js t2, so that c1 and c2 should be identical by Part (1).

The definition of leading-theory-compatibility with theory T (see Def. 5)
refers to a generic set N of shared terms, and considers models whose sets
of variables include the set of free variables of J ∪ N , for J a T -assignment.
The definition of leading-theory-completeness (see Def. 6) instantiates N to be
G(J) in order to cover all possible sets of shared terms. Thus, when proving
leading-theory-completeness we are interested in showing the existence of a T -
model whose set of variables includes fvΣ(J ∪G(J)), with Σ the signature of
theory T . Clearly, fvΣ(J ∪G(J)) = fvΣ(G(J)). On the other hand, in general,
fvΣ(G(J)) 6= fvΣ(J), because there can be two Σ-foreign terms u, t ∈ G(J)
such that uC t, so that u ∈ fvΣ(G(J)), but u 6∈ fvΣ(J). The following remark
is stated as a corollary of Lemma 1, because Lemma 1 will be applied to show
that a T -assignment J assigns values to all terms in G(J), or to all equalities
between terms in G(J), and then the following corollary will be applied to
conclude that in such cases fvΣ(G(J)) = fvΣ(J), so that it suffices to build a
T -model whose set of variables includes fvΣ(J).

Corollary 1 For all signatures Σ = (S, F ) and assignments J , if either (1)
for all terms t ∈ G(J) there is an assignment (t←c) ∈ J , or (2) for all
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distinct terms t, u ∈ Gs(J) of sort s ∈ S \ {prop} there is an assignment
((t ' u)←b) ∈ J , then fvΣ(G(J)) = fvΣ(J).

Proof The direction fvΣ(J) ⊆ fvΣ(G(J)) is trivially true, as (t←c) ∈ J implies
t ∈ G(J). The direction fvΣ(G(J)) ⊆ fvΣ(J) follows from either hypothesis.

The corollary is true regardless of signature Σ, however it will be applied to
a T -assignment J and the signature Σ of theory T . The following lemma will
be useful to prove leading-theory-completeness for minimal theory modules
and then extend the result to modules with more inference rules.

Lemma 2 Let I1 and I2 such that I1 ⊆ I2 be modules for a theory T . If all
inference rules in I2\I1 infer a Boolean assignment from Boolean assignments,
then if I1 is leading-theory-complete, I2 also is leading-theory-complete.

Proof If I1 ⊆ I2, module I2 can expand an assignment by an inference when-
ever I1 does (Case (2) of Definition 3), but the additional I2-inferences could
make unacceptable a first-order assignment that is acceptable for I1, pre-
venting I2 from expanding an assignment that I1 expands (Case (1) of Def-
inition 3). However, if all rules in I2\I1 derive a Boolean assignment from
Boolean assignments, acceptability of first-order assignments is unaffected,
and this concern does not apply.

Let x be an arbitrary variable of sort prop, > stand for (x'prop x)←true,
and ⊥ for x 6'prop x: no model endorses ⊥ and ` > is an equality inference.

4.1 Propositional Logic

For propositional logic the signature ΣBool has only the sort prop and symbols
'prop for equality, ¬ : prop → prop for negation, ∨ : (prop×prop) → prop for
disjunction, and ∧ : (prop×prop) → prop for conjunction. Let Bool+ be the
trivial extension, and Ieval

Bool the module that only adds to the equality inference
rules of Fig. 3 an inference rule for evaluation of formulæ:

l1←b1, . . . , lm←bm `Bool l←b

where l is in the closure of formulæ l1, . . . , lm under the ΣBool-connectives, and
b is its truth value determined by b1, . . . , bm and the truth tables. Given a set
X of terms, basisBool(X) contains all subformulæ of formulæ in X by closedness
(see Definition 2), and all disjunctions of subformulæ in X for lemma learning.

Theorem 2 Module Ieval
Bool is leading-theory-complete for all leading theories.

Proof Let J be a plausible Boolean assignment that Ieval
Bool cannot expand. Since

all formulæ in Gprop(J) are relevant to Bool, J assigns them values by Part (2)
of Lemma 1. This has two consequences: first, fvΣBool

(G(J)) = fvΣBool
(J) by

Corollary 1; second, J determines a unique Bool+[fvΣBool
(J)]-model M such

that M |= J . We show that J is leading-theory-compatible with Bool sharing
G(J). Let T1 be a leading theory. Since J is a Boolean assignment, JT1 = J . For
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all T +
1 [V1]-model M1 such that fvΣ1

(G(J)) ⊆ V1 and M1 |= J , we have that
|propM| = |propM1 | = 2, and for all terms l and p in Gprop(J), M(l) =M(p)
if and only if M1(l) = M1(p), since this happens if and only if l and p are
assigned the same value in J .

Let IBool be the module that adds to Ieval
Bool rules for negation elimination,

conjunction elimination, and unit propagation as in CDCL:
¬l `Bool l l1 ∨ · · · ∨ lm `Bool li l1 ∨ · · · ∨ lm, {lj | j 6= i} `Bool li
¬l `Bool l l1 ∧ · · · ∧ lm `Bool li l1 ∧ · · · ∧ lm, {lj | j 6= i} `Bool li

where 1 ≤ j, i ≤ m. Then by Lemma 2 we have

Corollary 2 Module IBool is leading-theory-complete for all leading theories.

4.2 The Theory of Equality

For the theory of equality EUF, with signature ΣEUF = (S, 'S ∪ F ), EUF+

may either be trivial, or add a countably infinite set of values for each sort in
S\{prop} and no axioms. A minimal module ImEUF complements the equality
inference rules (see Fig. 3) with an inference rule

(ti' ui)i=1...m, (f(t1, . . . , tm) 6' f(u1, . . . , um)) `EUF ⊥ (2)

for all f ∈ F , that fires when the trail violates a congruence axiom of equality.
In case of nontrivial extension, the equality inference rules are the only rules
that make use of first-order assignments, and values are employed as labels of
congruence classes of terms. For example, the first-order assignment

t1←c, t2←c, t3←c3, t4←c4, t5←c5

and the Boolean assignment
t1' t2, t1 6' t3, t1 6' t4, t1 6' t5, t3 6' t4, t3 6' t5, t4 6' t5

represent the same four congruence classes. The first-order assignment is an op-
timization, because it encodes equalities and inequalities between terms with-
out listing them explicitly, whereas a Boolean assignment requires

(
m
2
)

hence
O(m2) literals for m terms in the worst case.

The local basis basisEUF has to ensure that all formulæ that may be needed
to reason about equality are available. Given a set X of terms, by closedness
basisEUF(X) contains all equalities between subterms of terms in X of a sort
s other than prop. Then basisEUF adds the following equalities between for-
mulae: the formula >, and all equalities l'prop l

′, such that either (i) l and
l′ are formulæ in X with the same root symbol f ∈ F , or (ii) X contains
terms f(t1, . . . , tm, l, u1, . . . , um) and f(t′1, . . . , t′m, l′, u′1, . . . , u′m) with f ∈ F .
We prove completeness assuming the nontrivial EUF+: the proof rests on show-
ing that if ImEUF cannot expand an assignment, all equalities are determined.

Theorem 3 Module ImEUF is leading-theory-complete for all leading theories.
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Proof Let T1 be a leading theory with signature Σ1 and extension T +
1 , and let

J be a plausible EUF-assignment that ImEUF cannot expand. We show that J is
leading-theory-compatible with EUF sharing G(J). We begin by observing that
every formula l ∈ Gprop(J) is relevant to EUF, and therefore J assigns a value
to l by Part (2) of Lemma 1 (†). For s other than prop, every term u ∈ Gs(J) is
relevant to EUF, as EUF+ has (infinitely many) values for such sorts. Moreover,
the only EUF-inferences using first-order assignments are equality inferences,
and therefore J assigns a value to every such term u by Part (3) of Lemma 1 (‡).
It follows that fvΣEUF

(G(J)) = fvΣEUF
(J) by Corollary 1. Let M1 be a T +

1 [V1]-
model such that fvΣ1

(G(J)) ⊆ V1 and M1 |= JT1 . We build an EUF+[V]-
modelM with V = fvΣEUF

(J) that fulfills the requirements for leading-theory-
compatibility (see Definition 5). First,M interprets the sorts in S asM1 does.
This suffices for Part (ii) of Definition 5. Second, M interprets every variable
t ∈ fvΣEUF

(J) asM1(t), every EUF-value c such that (t←c) ∈ J asM1(t), and
every other EUF-value arbitrarily. The interpretation of EUF-values is well-
defined, because if {t←c, u←c} ⊆ J then (t ' u) ∈ JT1 , by definition of T1-
view and because T1 has all the sorts, so thatM1(t) =M1(u) sinceM1 |= JT1 .
Third and last,M interprets every symbol f : (s1× · · ·×sm)→s in F as follows:
for all elements e1 ∈ sM1

1 . . . em ∈ sM1
m , if G(J) contains no term f(t1, . . . , tm)

such thatM1(t1) = e1, . . . ,M1(tm) = em, then fM(e1, . . . , em) is an arbitrary
element in sM1 ; otherwise, fM(e1, . . . , em) is M1(f(t1, . . . , tm)). Note that
fM is well-defined: indeed, if there is in G(J) another term f(u1, . . . , um) such
that M1(u1) = e1, . . . ,M1(um) = em, then by (†) and (‡), J assigns values
to t1, . . . , tm, u1, . . . , um, f(t1, . . . , tm), and f(u1, . . . , um). Also, J contains as-
signments (ti' ui)←bi, for 1 ≤ i ≤ m, and (f(t1, . . . , tm)' f(u1, . . . , um))←b,
because otherwise an equality inference could expand it. The truth values
b1, . . . , bm are all true, becauseM1 |= JT1 . The truth value b is true, as other-
wise inference rule (2) could expand J . SinceM1 |= JT1 ,M1(f(t1, . . . , tm)) =
M1(f(u1, . . . , um)), and fM is well-defined. This completes the construction
of M. For Part (i) of Definition 5, we need to show that for all (t←c) ∈ J ,
we have M(t) =M1(t) = cM. For Part (iii) of Definition 5, we need to show
that for all t ∈ G(J), we have M(t) = M1(t). Both claims are proved by a
straightforward induction on the structure of terms.

If EUF+ is trivial, ImEUF is still leading-theory complete. The proof follows
the same pattern: it is simpler as there are no EUF-values and no first-order
assignments, and the key point is that the assignment gives a value to t's u
for all terms t and u of sort s ∈ S\{prop}. Let IEUF be the module obtained
by adding to ImEUF inference rules that propagate consequences of assignments
on the trail, according to the congruence axioms of equality for all f ∈ F :

(ti' ui)i=1...m `EUF f(t1, . . . , tm)' f(u1, . . . , um)
(ti' ui)i=1...m,i6=j , f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF tj 6' uj .

Corollary 3 Module IEUF is leading-theory-complete for all leading theories.



CDSAT: Lemmas, Modules, and Proofs 19

4.3 The Theory of Arrays

The theory of arrays Arr features sorts for arrays, indices, and values, and
function symbols to select and store array elements. Given a set of basic sorts
that includes prop, let ⇒ be the array sort constructor, so that I⇒V is the
sort of arrays with indices of sort I and values of sort V . We use a, b, c, and d
for variables of an I⇒V sort, u and v for variables of sort V , and i, j, and k
for variables of sort I. In signature ΣArr = (S, F ), the set of sorts S is the free
closure of the set of basic sorts with respect to ⇒, and the set of symbols F is

'S ∪ {(selectI⇒V : (I⇒V )×I→V ) | (I⇒V ) ∈ S}
∪ {(storeI⇒V : (I⇒V )×I×V→(I⇒V ))) | (I⇒V ) ∈ S}
∪ {(diffI⇒V : (I⇒V )×(I⇒V )→I) | (I⇒V ) ∈ S}.

Sort subscripts can be omitted when clear, and store(a, i, v) and select(a, i)
may be abbreviated as a[i]:=v and a[i]. The symbol diff is the Skolem function
symbol in the clausal form of the → direction of the extensionality axiom
∀a ∀b ((∀i a[i]' b[i])↔ a' b): diff maps two arrays to an index, called witness,
where they differ. Similar to EUF, the extension Arr+ may either be trivial, or
add a countably infinite set of values for each sort in S\{prop} and no axioms.
Module IArr augments the equality inference rules (see Fig. 3) with inference
rules that apply when the trail violates an array axiom. Rules (3)-(5) detect
violations of the congruence axioms for the ΣArr-symbols:

a' b, i' j, a[i] 6' b[j] `Arr ⊥ (3)
a' b, i' j, u' v, (a[i]:=u) 6' (b[j]:=v) `Arr ⊥ (4)

a' c, b' d, diff (a, b) 6' diff (c, d) `Arr ⊥. (5)

Violations of the select-over-store axioms

∀a ∀b ∀i ∀j ∀v (i' j → select(store(a, i, v), j)' v)
∀a ∀b ∀i ∀j ∀v (i 6' j → select(store(a, i, v), j)' select(a, j))

are detected by rules (6) and (7) of IArr:

b' (a[i]:=v), i' j, b[j] 6' v `Arr ⊥ (6)
b' (a[i]:=v), i 6' j, j' k, a[j] 6' b[k] `Arr ⊥. (7)

The last inference rule builds into IArr the extensionality axiom:

a 6' b `Arr a[diff (a, b)] 6' b[diff (a, b)]. (8)

Most Arr-satisfiability procedures replace every inequality between arrays with
an inequality between their elements at the witness index in a preprocessing
phase (see [7], Sect. 6 and 7, for more background and references). Rule (8)
is the only rule of IArr that produces new terms. Similar to IEUF, IArr reasons
about Arr-values, if present, by the equality inference rules, treating Arr-values
as labels of equivalence classes.

For the local basis, for all sets X of terms, basisArr(X) is the smallest closed
set Y such that X ⊆ Y , > ∈ Y , and:
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1. For all terms l1 and l2 of sort prop that occur as subterms of terms in Y
with select, store, or diff as root symbol, (l1'prop l2) ∈ Y ;

2. For all terms t, u ∈ Y of an array sort, t[diff (t, u)] ∈ Y and u[diff (t, u)] ∈ Y .
Clause (1) adds equalities between formulæ that may be needed and whose
presence is not already guaranteed by closedness of local bases. Clause (2) adds
the terms that may be generated by rule (8); it preserves finiteness, because
diff produces terms of an index sort which is structurally smaller, in terms of
the array sort constructor ⇒, than the array sort of its arguments.

As arrays represent functions that can be updated, a model can interpret
an array as an updatable function and an array sort as a set of updatable
functions. Given generic sets U and V, let VU denote the set of functions from
U to V. A set W ⊆ VU is an updatable function set from U to V, if every
function obtained by a finite number of updates to a function in W is in W.
As done for EUF, we prove completeness assuming a nontrivial extension.

Theorem 4 Module IArr is leading-theory-complete for all leading theories T1
such that for all T1-models M1 and array sorts I⇒V of ΣArr, there is an
updatable function set X from IM1 to VM1 such that |(I⇒V )M1 | = |X|.

Proof Let J be a plausible Arr-assignment that IArr cannot expand. We show
that J is leading-theory-compatible with Arr sharing G(J). By the same rea-
soning at the beginning of the proof of Theorem 3, J assigns values to all terms
in G(J) (†), and fvΣArr

(G(J)) = fvΣArr
(J) by Corollary 1. Let T1 be a leading

theory that satisfies the hypothesis, Σ1 its signature, T +
1 its extension, and

M1 a T +
1 [V1]-model such that fvΣ1

(G(J)) ⊆ V1 and M1 |= JT1 . For all array
sorts I⇒V of ΣArr, let X be the updatable function set from IM1 to VM1

such that |(I⇒V )M1 | = |X|. We organize the proof in two parts.
1. Definition of a bijective function φ : (I⇒V )M1 → X:

We pick an updatable function f0 ∈ X that will be used as default in the
sequel. Then, we begin by defining the restriction φY of φ to the finite
subset Y ⊆ (I⇒V )M1 consisting of those elements a such that M1(t) = a
for some term t ∈ G(J). For all a ∈ Y , let Ra ⊆ IM1×VM1 be the relation
defined by the following set of pairs:

{(M1(i),M1(t[i])) | t[i] ∈ G(J), M1(t) = a} ∪
{(M1(i),M1(u)) | t[i]:=u ∈ G(J), M1(t[i]:=u) = a} ∪

{(M1(i),M1(t[i])) | t[k]:=u ∈ G(J), M1(t[k]:=u) = a, M1(i) 6=M1(k)}.
In other words, Ra is the set of index-value pairs dictated by those terms in
G(J) where either select is applied to an array term thatM1 interprets as
a or the application of store forms an array term that M1 interprets as a.
Since G(J) is finite, Ra is finite. Also, Ra is a partial function Ra : IM1 →
VM1 , because otherwise IArr could expand J by rules (6)-(7). Let φY (a)
be the total function that is identical to Ra where Ra is defined, and maps
every e ∈ IM1 where Ra is undefined to f0(e) ∈ VM1 . Since Ra is finite,
φY (a) differs from f0 by finitely many updates, and therefore φY (a) ∈ X.
Next, we show that φY is injective. By way of contradiction, suppose that
there are two elements a, a′ ∈ Y such that a 6= a′ and φY (a) = φY (a′). Since
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a, a′ ∈ Y , it is a =M1(t) and a′ =M1(t′) for some terms t, t′ ∈ G(J). This
means thatM1 |= t 6' t′. By (†), J assigns values to t and t′, and therefore it
also assigns a truth value b to t' t′, because otherwise an equality inference
could expand it. Also, ((t' t′)←b) ∈ JT1 by definition of theory view. Since
M1 |= t 6' t′ and M1 |= JT1 , b must be false, or, equivalently, (t 6' t′) ∈
J . Therefore, also t[diff (t, t′)] 6' t′[diff (t, t′)] ∈ J , because otherwise IArr
could expand J by rule (8). As before, (t[diff (t, t′)] 6' t′[diff (t, t′)]) ∈ JT1 .
Since M1 |= JT1 , it follows that M1(t[diff (t, t′)]) 6= M1(t′[diff (t, t′)]). By
definition of φY (a) for a generic a, we have:

φY (a)(M1(diff (t, t′))) =M1(t[diff (t, t′)])
φY (a′)(M1(diff (t, t′))) =M1(t′[diff (t, t′)]).

Since the two right hand sides are different, the two left hand sides are also
different, so that φY (a) 6= φY (a′), a contradiction.
Given that φY is injective, we can extend φY to the sought-after bijective
function φ, by taking as pre-images of the elements of X that are not
images of elements of Y other elements of (I⇒V )M1 and there are enough
distinct such elements as |(I⇒V )M1 | = |X|.

2. Construction of an Arr+[V]-model M with V = fvΣArr
(J):

The first part of the definition of M follows the same pattern as in the
proof of Thm. 3:M interprets all sorts in S, all variables t ∈ fvΣArr

(J), and
all Arr-values c such that (t←c) ∈ J , as M1 does, and all other Arr-values
arbitrarly. The point on sorts suffices for Part (ii) of Def. 5. Then, for all
array sorts I⇒V ,M interprets the select, store and diff symbols as follows:
– For all array-index pairs (a, e) ∈ (I⇒V )M×IM, let selectMI⇒V (a, e) =
φ(a)(e) ∈ VM;

– For all array-index-value triples (a, e, v) ∈ (I⇒V )M×IM×VM, let f ∈
X be the function mapping e to v and every other e′ ∈ IM to φ(a)(e′) ∈
VM; then storeMI⇒V (a, e, v) = φ−1(f) ∈ (I⇒V )M;

– For all pairs (a, a′) ∈ (I⇒V )M×(I⇒V )M with a 6= a′, diffMI⇒V (a, a′) =
e ∈ IM such that φ(a)(e) 6= φ(a′)(e), and diffMI⇒V (a, a) is an arbitrary
element of IM.

By construction, M satisfies the Arr-axioms and it is an Arr+[fvΣArr
(J)]-

model. Parts (i) and (iii) of Def. 5 follow by induction on the term structure.

The same property holds for the trivial Arr+ with an almost identical proof,
except that non-Boolean terms in G(J) are not assigned values. Rules obtained
from rules (3)-(7) by removing the last premise and adding its flip as conclusion
can be added to IArr, preserving leading-theory-completeness by Lemma 2.

4.4 Linear Rational Arithmetic

Theory LRA has signature ΣLRA with sorts SLRA = {prop,Q} and set of sym-
bols FLRA with equality symbols '{prop,Q} , the constant 1: Q, the symbol
+: (Q×Q)→Q for addition, the predicates <,≤ : (Q×Q)→prop for the or-
derings, and the collection of unary function symbols {c· : Q→Q | c ∈ Q},
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indexed by the set Q of the rational numbers, for multiplication by con-
stants. The extension LRA+ adds constants for all rational numbers, namely
Σ+

LRA = ({prop,Q}, FLRA ∪ {q̃ : Q | q ∈ Q}) with axioms q̃'Q q·1 for all q ∈ Q.
The Fourier-Motzkin (FM) algorithm [33,42,31] determines the satisfia-

bility of a set of linear disequalities over the reals, by performing iteratively
the following variable elimination step: select a variable x; if x appears only
with positive, or negative, coefficients, remove all constraints where x ap-
pears; otherwise, compute all linear combinations of constraints t1+c1·x≤u1
and t2−c2·x≤u2 where x appears with positive and negative coefficient, re-
spectively, generating the constraint c2·t1+c1·t2≤c2·u1+c1·u2 (if a premise is
a strict disequality, the result is also strict). Variable elimination is also pre-
sented as computing all transitive closures, by rearranging the constraints
where x appears with positive coefficient into upper bounds x ≤ t, and those
where x appears with negative coefficient into lower bounds u ≤ x, whose con-
catenation generates u ≤ t (if a premise is strict, the result is also). If this
process yields a constraint 0 ≤ q̃ with negative q̃, the algorithm returns un-
satisfiable; otherwise it eliminates all variables and returns satisfiable. Since
this algorithm generates m2n

4n constraints in the worst-case from an input with
m constraints and n variables [31], most LRA-satisfiability procedures adopt
a modern version [21], dealing also with strict disequalities, of the simplex
algorithm [42,31], whose worst-case complexity is deemed rare in practice.

Since a linear combination eliminating x recalls a propositional resolution
inference eliminating the propositional variable of the literals resolved upon,
a single linear combination, or transitive closure step, is known as Fourier-
Motzkin (FM) resolution. A variable x appearing only with one sign parallels a
pure literal in a set of clauses, and the elimination of all constraints where x oc-
curs reminds one of the pure literal rule that eliminates, or deems satisfied, all
clauses where a pure literal occurs [15]. The FM-algorithm resembles the level-
saturation strategy for propositional resolution: select a propositional variable
l, add all resolvents generated by resolving upon l, remove all clauses where
l appears, and repeat, until either the empty clause arises or the set is emp-
tied. The CDCL procedure [35,34] applies resolution only to explain Boolean
conflicts. Similarly, conflict-driven LRA-satisfiability procedures [18,36,30] ap-
ply FM-resolution only to explain LRA-conflicts, and so do MCSAT [27] and
CDSAT [9]. However, since the Deduce rule of CDSAT, that MCSAT does
not have, covers both propagation and conflict explanation for every theory, a
CDSAT search plan may apply FM resolution more liberally.

Module ILRA adds to the equality rules (see Fig. 3) the following inference
rules. Assume that t0, . . . , tm are terms of sort Q. The equality elimination
rules replace an equality by disequalities:

t1'Q t2 `LRA t1 ≤ t2 t1'Q t2 `LRA t2 ≤ t1,
and the positivization rules handle the flipping of disequalities:

t1 < t2 `LRA t2 ≤ t1 t1 ≤ t2 `LRA t2 < t1.

Let l be a formula whose normal form is in the closure of t1, . . . , tm with
respect to the symbols of FLRA. The evaluation rule evaluates the truth value
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l0 :−2·x− y < 0
l1 : x+ y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .

Fig. 4 An infinite series of FM-resolution inferences from input R = {l0, l1, l2}

of l when values for t1, . . . , tm are available on the trail:
t1←q̃1, . . . , tm←q̃m `LRA l←b.

For example, as the normal form of w+2'Q w+z is −z+2'Q 0, the evaluation
inference (z←1) `LRA (w+2'Q w+z)←false does not need a value for w. Let
x be a free ΣLRA-variable of sort Q that does not occur free in t0, t1, and t2.
Disequality elimination detects a situation where is no value for x:

t1 ≤ x, x ≤ t2, t1'Q t0, t2'Q t0, x 6'Q t0 `LRA ⊥,
while FM-resolution proceeds as explained above:

t1 l1 x, xl2 t2 `LRA t1 l3 t2,

where l1,l2,l3 ∈ {<,≤} and l3 is < if and only if either l1 or l2 is <.
The two preceding rules apply also to formulæ reducible to the form of their
premises, as in y−x<0, 3·x<5 `LRA y<

5
3 for FM-resolution.

The FM-algorithm bundles in one step all FM-resolutions on one variable,
eliminating it altogether; as there are finitely many variables, the algorithm
terminates. However, other strategies for applying FM-resolution may generate
infinitely many terms as shown in Fig. 4: the never-halting series alternates
FM-resolutions on a variable x with FM-resolutions on another variable y.

In CDSAT, the FM-algorithm can be emulated with ILRA-inferences, as a
series of Deduce transitions applied with a level-saturation search plan. The
local basis can be set to those terms that are newly generated by the algo-
rithm, in finite numbers, so that termination follows. This search plan thus
provides a decision procedure for satisfiability, but it is not conflict-driven and
is as inefficient as the FM-algorithm. Other search plans may be more inter-
esting, but may raise termination issues: were it not for the finite global basis
of CDSAT that forces termination, the never-halting series of Fig. 4 could
also be emulated in CDSAT, for instance as a never-ending search phase that
never generates any conflict. While a conflict-driven search plan would not
apply Deduce in this manner, this infinite series may ensue also if Deduce only
explains conflicts, as detailed in the following example.

Example 7 Consider the set R = {l0 : −2·x−y<0, l1 : x+y<0, l2 : x<−1} of
Figure 4. Suppose that Decide tries y←0. The LRA-procedure sees LRA-conflict
{−2·x−y<0, x < −1, y←0}, and explains it by the FM-resolution inference
{−y < 2·x, 2·x < −2} `LRA −y < −2, so that Deduce places l3 : − y < −2
on the trail. Literal l3 is a late propagation, as it has level 0, but it comes
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after the first decision. The evaluation inference y←0 `LRA −y<− 2 reveals
conflict {y←0, −y < −2} on the trail. Since its level is 1, ConflictSolve fires,
and UndoClear solves the conflict by undoing y←0. If Decide tries next x←−2,
the LRA-procedure detects LRA-conflict {x + y<0, −y < −2, x← − 2}, and
explains it by the FM-resolution inference {x<−y, −y<−2} `LRA x < −2, so
that Deduce puts l4 : x < −2 on the trail. The evaluation inference x←−2 `LRA
x<− 2 exposes conflict {x← − 2, x < −2} on the trail. Since its level is 1,
ConflictSolve applies, and UndoClear solves the conflict by retracting x←−2. A
subsequent Decide with y←3 causes LRA-conflict {−2·x−y<0, x<−2, y←3},
that Deduce explains by the FM-resolution {−y<2·x, 2·x<−4} `LRA −y<−4,
generating l5 : − y < −4. The evaluation inference y←3 `LRA −y<− 4 gets
conflict {y←3, −y < −4} on the trail, and the same ConflictSolve UndoClear
pair of transitions undoes y←3. Again, a Decide with x← − 3 leads to LRA-
conflict {x + y<0, −y < −4, x← − 3}, explained by Deduce with the FM-
resolution {x<− y, −y<− 4} `LRA x<− 4, so that l6 : x<− 4 is added to the
trail. Evaluation inference x←−3 `LRA x<− 4 unveils conflict {x←−3, x<−
4} on the trail, so that ConflictSolve and UndoClear apply, repealing x← − 3.
The last FM-resolution in Figure 4 may respond to a Decide with y←5, so that
LRA-conflict {−2·x − y<0, x< − 4, y←5} is explained by Deduce with FM-
resolution {−y<2·x, 2·x<−8} `LRA −y<−8, adding l7 : −y<−8 to the trail.
The evaluation inference y←5 `LRA −y<− 8 shows conflict {y←5, −y<− 8}
on the trail, so that ConflictSolve applies and UndoClear removes y←5.

A well-known solution to this problem assumes a total ordering ≺LRA on
ΣLRA-variables of sort Q, and restricts FM-resolution by requiring that the
resolved variable x is ≺LRA-maximum in both premises [18,36,30,27,9].

Example 8 Assuming y ≺LRA x, the first FM-resolution step in Fig. 4, namely
{−y<2·x, 2·x<−2} `LRA −y<−2, still applies, as it eliminates the ≺LRA-
maximum variable x, and generates l3 : −y < −2. The second FM-resolution
step of the diverging series, namely {x< − y, −y< − 2} `LRA x< − 2, is
barred, because y is not the ≺LRA-maximum variable in the premises. Thus,
all CDSAT-derivations embedding that diverging series of FM-resolution in-
ferences are excluded. More than one CDSAT-derivations discover that R is
LRA-unsatisfiable. One that does it by mere theory propagations at level 0 be-
gins with Deduce placing l3 on the trail. Another Deduce applies FM-resolution
to compute linear combination l0+2l1 as {−y<2·x, 2·x<−2·y} `LRA −y<−2·y,
adding the normal form l4 : y < 0 of −y < −2·y to the trail. A third Deduce
with FM-resolution inference {2<y, y<0} `LRA 2<0, computing linear com-
bination −l3 + l4, expands the trail with l5 : 2<0. The evaluation step ∅ `LRA
2 < 0 leads to a Fail transition as 2<0 has level 0.

In CDSAT, termination is ensured by the finiteness of the global basis
B which restricts Deduce. For completeness, B must be stable, requiring in
particular that basisLRA(B) ⊆ B for the local basis basisLRA. Thus, basisLRA must
be limited so as to never introduce infinitely many terms, which is obtained
by incorporating the restriction to FM-resolution as follows. For all sets X of
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terms, basisLRA(X) is the smallest closed set Y such that X⊆Y , > ∈ Y , and,
for all terms t1 and t2 of sort Q:
1. If t1'Q t2∈Y then t1 ≤ t2∈Y and t2 ≤ t1∈Y ;
2. If (t1 < t2)∈Y then (t2 ≤ t1)∈Y , and if (t1 ≤ t2)∈Y then (t2 < t1)∈Y ;
3. If (t1 l1 x) ∈ Y and (xl2 t2) ∈ Y , then (t1 l3 t2) ∈ Y , where l1,l2,l3 ∈
{<,≤}, l3 is < if and only if either l1 or l2 is <, and x is the ≺LRA-
maximum variable in both fvQ

ΣLRA
(t1 l1 x) and fvQ

ΣLRA
(xl2 t2).

Clauses (1) and (2) add the terms that may be generated by the equality elimi-
nation and positivization rules, respectively, which do not challenge finiteness.
Clause (3) adds the terms that may be inferred by FM-resolution, and it pre-
serves finiteness thanks to the ≺LRA-based restriction. The side-condition of
Deduce (see Fig. 1) ensures that the evaluation rule evaluates a formula in B.

For ILRA to be complete with FM-resolution thus restricted, it suffices to
add the following inference rule, named detection of an empty solution space:

{y1←q̃1, . . . , ym←q̃m} ] E `LRA ⊥
where y1, . . . , ym are ΣLRA-variables of sort Q, E is an LRA-assignment such
that for all x in fvQ

ΣLRA
(E), x ≺LRA yi or x = yi for some i, 1≤ i≤m, and

{y1←q̃1, . . . , ym←q̃m}]E is unsatisfiable. Alternatively, and in practice, since
Deduce applies FM-resolution to explain LRA-conflicts typically due to deci-
sions on rational variables, one may adopt a search plan that select rational
variables for decisions in ≺LRA-increasing order. We call such a search plan sen-
sible. An LRA-assignment J generated by a sensible search plan is also termed
sensible and has the following property: for all variables x, y ∈ fvQ

ΣLRA
(J), if

x ≺LRA y and J assigns a value to y, then J assigns a value to x.
Towards completeness, since ILRA does not fulfill Condition (ii) of Part (3)

of Lemma 1, we prove another lemma. Preliminarly, we observe that the eval-
uation rule of ILRA subsumes the equality inference rules that take as premises
first-order assignments (the first two in Fig. 3), and therefore we can assume
that evaluation and detection of an empty solution space are the only rules
of ILRA that deal with first-order assignments. Also, the only sort of LRA
other then prop is Q, and all terms in GQ(J) are relevant to LRA in an LRA-
assignment J . Given LRA-assignment J and variable x ∈ fvQ

ΣLRA
(J), a unit

constraint [27] about x in J is a singleton Boolean assignment L ∈ J where
only x is unassigned: J assigns a value to all y, y ∈ fvQ

ΣLRA
(L) and y 6= x.

Lemma 3 If module ILRA cannot expand a plausible LRA-assignment J , then
J assigns values to all terms in GQ(J).

Proof As a preliminary remark, all Boolean assignments in J concern terms of
the form t1 ≤ t2, t1 < t2, or t1 6'Q t2, because otherwise an equality elimination
or positivization inference rule could expand J . We begin by showing that J
assigns values to all variables in fvQ

ΣLRA
(J). By way of contradiction, assume

this is not the case, and let x be the ≺LRA-smallest variable to which J does
not assign a value. If J is sensible, for all variables y ∈ fvQ

ΣLRA
(J) such that

y 6= x, if J assigns a value to y then y ≺LRA x (†). No LRA-assignment x←q̃
is acceptable for ILRA in J (‡), because otherwise ILRA could expand J by a
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decision. Property (‡) implies that for all values q̃ there exist L ∈ J and J ′ ⊆ J
such that J ′ ∪ {x←q̃} `LRA L. This means that the space of possible solutions
for x is empty: we distinguish three cases.
1. For variable x the lower bound is greater than the upper bound:
E = {t1 ≤ x, x ≤ t2, t1←q̃1, t2←q̃2} ⊆ J and q̃2 < q̃1; every assignment
x←q̃ triggers an evaluation inference contradicting either t1 ≤ x or x ≤ t2
or both. It follows that t1 ≤ x and x ≤ t2 are unit constraints about x
in J , because the evaluation rule determines the value of a Boolean term
when all its rational subterms are assigned. If x is the ≺LRA-maximum
variable in fvQ

ΣLRA
(t1 ≤ x) ∪ fvQ

ΣLRA
(x ≤ t2), the FM-resolution inference

{t1 ≤ x, x ≤ t2} `LRA t1 ≤ t2 is enabled. If J is sensible, this is guaranteed
by (†). Otherwise, if y1, . . . ym are the variables other than x in fvQ

ΣLRA
(t1 ≤

x) ∪ fvQ
ΣLRA

(x ≤ t2), x ≺LRA yi for some i, 1≤ i≤m. Since t1 ≤ x and
x ≤ t2 are unit constraints about x in J , {y1←q̃3, . . . , ym←q̃3+k} ⊆ J
(3 + k = m). As {y1←q̃3, . . . , ym←q̃3+k} ] E is unsatisfiable, an inference
by the detection of an empty solution space rule is enabled.

2. For variable x the lower bound and the upper bound are equal, but one
of them is strict: either E = {t1 < x, x ≤ t2, t1←q̃, t2←q̃} ⊆ J or
E = {t1 ≤ x, x < t2, t1←q̃, t2←q̃} ⊆ J . The reasoning is the same as
in Case (1) except that the enabled instance of FM-resolution is either
{t1 < x, x ≤ t2} `LRA t1 < t2 or {t1 ≤ x, x < t2} `LRA t1 < t2.

3. The lower bound and the upper bound for x are equal, and neither is strict,
but a disequality excludes the only possible value: {t1 ≤ x, x ≤ t2, t1 '
t0, t2 ' t0, x 6' t0} ⊆ J , so that a disequality elimination is enabled.

In all three cases an inference is enabled, contradicting the hypothesis. Thus, J
assigns values to all variables in fvQ

ΣLRA
(J). We complete the proof by showing

that J assigns values to all nonvariable terms t ∈ GQ(J). Since J assigns
values to all variables x1, . . . , xr in t (i.e., {x1←q̃1, . . . , xr←q̃r} ⊆ J), these
assignments dictates a value q̃ for t. If t←q̃ is acceptable for ILRA in J , ILRA can
expand J deciding t←q̃, a contradiction. If t←q̃ is not acceptable for ILRA in
J , it means that t←q̃ enables an evaluation step generating L for some L ∈ J ;
then also {x1←q̃1, . . . , xr←q̃r} enables an evaluation inference generating L,
and ILRA can expand J , again a contradiction.

The above proof shows that with a sensible search plan the rule for detec-
tion of an empty solution space is unnecessary.

Theorem 5 Module ILRA is leading-theory-complete for all leading theories
whose models interpret Q as an infinite set.

Proof Let J be a plausible LRA-assignment that ILRA cannot expand. We
show that J is leading-theory-compatible with LRA sharing G(J). Assignment
J gives values to all terms in Gprop(J) by Part (2) of Lemma 1 and to all terms
in GQ(J) by Lemma 3 (†). Since SLRA = {prop,Q}, G(J) = Gprop(J)]GQ(J),
and fvΣLRA

(G(J)) = fvΣLRA
(J) by Corollary 1. Let T1 be a leading theory,

and M1 a T +
1 [V1]-model such that fvΣ1

(G(J)) ⊆ V1, M1 |= JT1 , and |QM1 |
is infinite. We define an LRA+[V]-model M with V=fvΣLRA

(J) and we show
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that it satisfies Def. 5. M interprets Q as Q, every symbol in Σ+
LRA in the

standard way (e.g., q̃ as q), and every Q-sorted ΣLRA-variable x ∈ fvΣLRA
(J)

as q̃ for (x←q̃) ∈ J . For Part (i) of Def. 5, we show that M |= J . For all
(t←c) ∈ J , there are three cases: t is either a ΣLRA-variable, or a formula, or
a non-variable term of sort Q. If t is a ΣLRA-variable, then M(t) = cM by
construction of M. Otherwise, J assigns values to all Q-sorted subterms of t
by (†). If t is a formula and M(t) 6= cM, then ILRA can expand J with an
evaluation inference deriving t←c. If t is a non-variable term of sort Q and
M(t) 6= cM, then ILRA can expand J with an evaluation inference deriving
t 6'Q t. Both conclusions contradict the hypothesis that ILRA cannot expand
J , and therefore M(t) = cM holds. For Part (ii) of Def. 5, QM is countably
infinite. If QM1 is countably infinite, we are done. Otherwise, |QM1 | is some
larger infinite cardinality: |QM1 | > |QM|. Since Σ+

LRA is countable, by the
Löwenheim-Skolem theorem, there exists another LRA+[V]-model M′ such
that |QM′ | = |QM1 | and M′ agrees with M on everything else. For Part (iii)
of Def. 5, we observe that J ⊆ JT1 by the definition of theory view, since J is
an LRA-assignment and T1 has the sorts of LRA, so that LRA-values are also
T1-values. Thus, M1 |= JT1 implies M1 |= J . For all t, t′ ∈ Gprop(J), M1 |= J
and M |= J suffice for M(t) =M(t′) if and only if M1(t) =M1(t′). For all
t, t′ ∈ GQ(J), J assigns a truth value to t'Q t

′, because if this were not the
case, J could be expanded by an equality inference, since J gives values to t
and t′ by (†). Thus, M1 |= J and M |= J imply M(t) =M(t′) if and only if
(t'Q t

′) ∈ J if and only if M1(t) =M1(t′).

A module I is unit-constraint complete [27] for sort s of its theory T , if for
all trails Γ and unassigned variables x of sort s for which Γ contains a unit
constraint, module I offers either an acceptable assignment x←c or an infer-
ence revealing a conflict. The above results show that ILRA is unit-constraint
complete for Q. In general, unit-constraint completeness is subsumed by the
CDSAT completeness requirements on theory modules.

4.5 Generic Theories: Stable Infiniteness and Beyond

We consider first a generic theory T with signature Σ = (S, F ) that can be
part of a combination by equality sharing (e.g., , [39,38,32]): (i) there exists a
decision procedure for the T -satisfiability of conjunctions, or, equivalently, sets
of T -literals; and (ii) T is stably infinite (every T -satisfiable Σ-formula has a
T -model with countably infinite domains for all sorts in S\{prop}). In equality
sharing the decision procedures cooperate by exchanging equalities between
shared variables towards building an arrangement, namely a satisfiable set of
sorted equalities and inequalities telling whether any two variables of the same
sort are equal (e.g., , [7], Sect. 3, for more background). CDSAT handles T
with a black-box theory module Ibb

T . The extension T + either is trivial or adds
a countably infinite set of values for each sort s∈S\{prop} and no axioms.
Module Ibb

T includes the equality inference rules and a black-box inference rule
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l1←b1, . . . , lm←bm `T ⊥,
where l1, . . . , lm are Σ-formulæ (Σ-atoms as Σ has no connectives). A black-
box inference J `T ⊥ applies if the set of literals defined by the Boolean
assignment J , namely CJ = {l | (l←true) ∈ J}∪{¬l | (l←false) ∈ J}, is found
T -unsatisfiable by the T -satisfiability procedure. If T + is nontrivial, the only
rules of Ibb

T that may use first-order T -assignments are the equality inference
rules, and T -values act as labels of congruence classes of terms. The local basis
only adds >: for all sets X of terms, basisT (X) = X ∪{>}. Indeed, in equality
sharing, no new terms introduced by nontrivial inferences are shared.

Theorem 6 Module Ibb
T is leading-theory-complete for all leading theories

whose models interpret all sorts other than prop as countably infinite sets.

Proof Let J be a plausible T -assignment that Ibb
T cannot expand. We show

that J is leading-theory-compatible with T sharing G(J) (see Def. 5). Let T1 be
a leading theory satisfying the hypothesis, Σ1 its signature, T +

1 its extension,
and M1 any T +

1 [V1]-model such that fvΣ1
(G(J)) ⊆ V1 and M1 |= JT1 . We

distinguish two cases depending on the choice of T +.
1. Trivial T +: all terms l ∈ Gprop(J) including all equalities t's u for t, u ∈
Gs(J) of sort s ∈ S\{prop} are relevant to T , so that J assigns them values
by Part (2) of Lemma 1 (†), and fvΣ(G(J)) = fvΣ(J) by Corollary 1. CJ
is T -satisfiable, because otherwise Ibb

T could expand J with a black-box
inference. Thus, there exists a T -model M′ of CJ . Since T + is trivial, it
suffices to interpret the Boolean values as themselves to get from M′ a
T +[V ]-model M, with V = fvΣ(J), such that M |= J , fulfilling Part (i)
of Def. 5. For Part (ii), since T is stably infinite, we letM interpret every
sort in S \ {prop} as a countably infinite set, thus agreeing with M1. For
Part (iii), J ⊆ JT1 by definition of theory view, so that M1 |= JT1 implies
M1 |= J . For all terms t, u ∈ Gprop(J), J gives them values by (†),M(t) =
M(u) if and only if {t←b, u←b} ⊆ J sinceM |= J , andM1(t) =M1(u) if
and only if {t←b, u←b} ⊆ J sinceM1 |= J , so thatM andM1 agree. For
all terms t, u ∈ Gs(J) with s ∈ S \ {prop}, J gives a value to t's u by (†),
M(t) =M(u) if and only if (t's u) ∈ J since M |= J , M1(t) =M1(u) if
and only if (t's u) ∈ J since M1 |= J , so that M and M1 agree.

2. Nontrivial T +: by the same reasoning in the proof of Thm. 3, assignment
J gives values to all terms in G(J) (†), and fvΣ(G(J)) = fvΣ(J) by Corol-
lary 1. Also, J assigns a truth value to t's u for all t, u ∈ Gs(J) of sort
s ∈ S \ {prop} (‡), because otherwise I could expand J with an equality
inference, since J assigns values to t and u by (†) and (t's u) ∈ basisT (J)
by closedness of the local basis. As in Case (1), the set CJ has a T -model
M′. We show how to get from M′ a T +[V ]-model M, with V = fvΣ(J),
such that M |= J . Let M interpret the sorts in S, the symbols in F ,
and the Σ-variables as M′ does. The Boolean values are interpreted as
themselves. For a non-Boolean T +-value c of sort s, either it is never used
in J or there is some assignment (t←c) ∈ J . In the first case we let M
interpret c arbitrarily in sM. In the second case t appears in equalities in
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J by (‡), hence t appears in CJ , and we define cM as M′(t). The inter-
pretation of T +-values is well-defined, because if {t1←c, t2←c} ⊆ J , then
(t1's t2) ∈ J by (‡) and (t1's t2) ∈ CJ , so that M′(t1) = M′(t2). By
construction,M |= J , and the rest of the proof is the same as in Case (1).

This theorem shows that the equality sharing method is a special case of
the CDSAT framework: when the T -module cannot expand a T -assignment J
(the T -view of the trail) it follows that: (1) there exists a T -model endorsing
J , and (2) J determines the truth value of all equalities, and therefore defines
an arrangement of shared variables. If this is the case for all theories in T∞,
an endorsing T∞-model also exists, which is an instance of the CDSAT com-
pleteness theorem (see Thm. 1, and [9], Sect. 9.3). Theorem 6 also holds if the
black-box rule is restricted to apply only to T -unsatisfiable cores or minimal
T -unsatisfiable assignments, where it suffices to remove any single element to
make the assignment T -satisfiable.

We describe next how CDSAT also handles a generic nonstably-infinite the-
ory T with signature Σ = (S, F ) (see also [9], Sections 8 and 10.1). Suppose
T is stably infinite for the sorts in S \ {prop, s1, . . . , sk}, whereas all T -models
interpret sorts s1, . . . , sk as sets of fixed finite cardinalities m1, . . . ,mk, respec-
tively. The proof of Theorem 6 can be adapted to prove the following.

Theorem 7 Module Ibb
T is leading-theory-complete for all leading theories

whose models interpret all sorts in S \ {prop, s1, . . . , sk} as countably infinite
sets and s1, . . . , sk as sets of cardinality m1, . . . ,mk, respectively.

For example, T could be a theory of bitvectors of different lengths, where
for all l, 1 ≤ l ≤ k, sl is the sort bv[l] of bitvectors of length l and ml = 2l.
Theorem 7 does not need k to be finite: for bitvectors, l could range over all
non-zero natural numbers. Thus, the cardinality constraints in T affect the
choice of the leading theory T1, for which S1 = S∞. If the leading theory
can be picked so that all theory modules involved in the combination are
leading-theory complete, the cardinality constraints in T are imposed to the
other theories sharing {s1, . . . , sk} or a subset thereof. More generally, different
theories in the union T∞ may pose cardinality requirements on a shared sort s,
and the leading theory T1 acts as an aggregator of such requirements (see [9],
Ex. 9 and 10). Once chosen, the leading theory T1 needs a theory module I1
that can be used in CDSAT and that enforces the cardinality constraints.

We illustrate this point for an at-most-m cardinality constraint on sort
s, given an integer m>0. The constraint can be expressed by the sentence
∀x0, . . . ,∀xm.

∨
0≤i6=k≤m xi's xk, for x0, . . . , xm distinct variables of sort s,

which could be an axiom or a theorem of one of the nonleading theories in T∞,
or an axiom of the leading theory T1, resulting from aggregating cardinality
constraints from nonleading theories in T∞. For instance, if T2 entails the at-
most-m1 cardinality constraint on s and T3 entails the at-most-m2 cardinality
constraint on s, the leading theory T1 is picked so that its models satisfy the
at-most-min(m1,m2) cardinality constraint. Then, theory module I1 for T1
includes the at-most-m inference rule:
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∧
0≤i6=k≤m ui 6's uk `T1 ⊥

where u0, . . . um are any m + 1 distinct terms of sort s. If T +
1 is nontrivial

with values for sort s, the at-most-m inference rule can be abbreviated as
u0←c0, . . . , um←cm `T1 ⊥, for c0, . . . , cm any distinct m+1 T1-values of sort
s. If both T and the leading theory T1 have nontrivial extensions, T + and
T +

1 use different sets of constant symbols to name s-sorted elements, and the
construction of a T∞-model for an assignment J that cannot be expanded
establishes a bijection between the s-sorted T -values that appear in J and the
s-sorted T1-values that appear in J (see [9], Sect. 9.3, Thm. 4). A module with
an at-most-m inference rule satisfies a lemma that complements Lemma 1.

Lemma 4 If a T -module I with the at-most-m inference rule for sort s cannot
expand a plausible T -assignment J , the relation 'Js is an equivalence with at
most m equivalence classes.

Proof By definition of 'Js (see the text in Sect. 4 preceding Lemma 1), for all
t1, t2 ∈ Gs(J), t1'Js t2 if and only if (t1's t2) ∈ J . By Part (1) of Lemma 1
the relation 'Js is an equivalence. If 'Js had m+1 equivalence classes, J would
contain an instance of the premises of the at-most-m inference rule for sort s,
and I could expand J , a contradiction.

This lemma suffices to obtain the following theorem that says how to build
a leading theory and its module to enforce the at-most cardinality constraint
coming from the theories in T∞. Given a theory T1, let T s≤m1 be T1 plus the
at-most-m cardinality constraint on sort s as additional axiom. Given a theory
module I, let Is≤m be I plus the at-most-m inference rule on sort s.

Theorem 8 If I1 is sound and complete for theory T1, then Is≤m1 is sound
and complete for theory T s≤m1 .

Once the enforcement of cardinality constraints is handled by the leading
theory module, it is not necessary to handle them in other modules.

Theorem 9 Given a theory T with signature Σ = (S, F ) and a leading theory
T1 that entails the at-most-m constraint on sort s ∈ S, a T-module I is leading-
theory complete if and only if Is≤m is leading-theory complete.

Proof The (⇒) direction holds by Lemma 2. The (⇐) direction holds because
whenever the at-most-m inference rule of Is≤m can be applied to expand an
assignment J , there can be no T1-model endorsing JT1 so that leading-theory
compatibility is vacuously true.

In summary, the completeness of a leading theory module with the appro-
priate at-most rules ensures that cardinality constraints on shared sorts are
satisfied; and all theories sharing those sorts concur on their cardinalities by
leading-theory-completeness of their modules.
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5 Global Basis Construction

Termination of CDSAT requires the global basis B to be finite and closed (see
Sect. 3.3), and completeness requires it to be stable, which implies that it is
closed. The meaning of stability (for all k, 1≤ k≤n, basisk(B) ⊆ B) is that
the global basis “contains” the local bases basis1, . . . , basisn associated to the
theory modules I1, . . . , In for theories T1, . . . , Tn: for all sets X of terms, if
X ⊆ B then for all k, 1≤ k≤n, basisk(X) ⊆ basisk(B) by monotonicity (see
Def. 2) and basisk(X) ⊆ B by stability. Thus, for all input assignments H, if
H is in B, or, equivalently, G(H) ⊆ B, no Ik-inference can take us outside of
B. In this section we show how to build a stable global basis from local ones.

The existence of a finite stable global basis does not necessarily follow from
that of local bases. Given input assignmentH andX0=G(H), a module Ik may
introduce a term u0 in Y0=basisk(X0), which prompts Ij to introduce a term t1
in X1=basisj(basisk(X0)), which in turns prompts Ik to introduce a term u1 in
Y1=basisk(basisj(basisk(X0))), and so on. In other words, even if all these sets
are finite,

⋃
m≥0 Xm may be infinite, where Xm+1=basisj(basisk(Xm)). The

aim is to find sufficient conditions on local bases to avoid such cyclic behavior.
Since the problem arises from a cyclic alternation, the point is whether it is pos-
sible to permute local bases, relating basisj(basisk(X)) and basisk(basisj(X)).
To this end, we introduce the following notions.
Definition 7 (Production and consumption of a sort) Let basis be a
basis for theory T with signature Σ = (S, F ). For all sorts s ∈ S, basis produces
sort s if for some closed set of terms X and term t of sort s, t ∈ basis(X) \X;
basis consumes sort s if for some closed set of terms X and term t of sort
s, basis(X ] {t}) 6⊆ ⇓ (basis(X) ] {t}), where t is either a Σ-variable or an
equality whose strict subterms are in X.

In plain words, basis produces sort s if its application to a closed set X
yields some term t of sort s which is not in X and does not arise from the
closure of X, since X is already closed; basis consumes sort s if its application
to X ] {t}, where t is a term of sort s, yields some term u which is not in
⇓(basis(X)]{t}), where basis is applied to X only. Term t is restricted based
on what suffices for the forthcoming Lemma 5.
Example 9 Most local bases produce prop, as they add >; basisBool produces
and consumes prop, as it forms clauses for lemma learning; basisEUF only pro-
duces prop by adding equalities, and does not consume any sort. For Arr,
basisArr produces all sorts in ΣArr and consumes all array sorts: given array
terms t and u of sort I⇒V , basisArr consumes I⇒V and produces sorts I and
V , by introducing terms diff (t, u), t[diff (t, u)], and u[diff (t, u)]; it produces also
array sorts, because arrays can be values or indices, as there can be arrays of
arrays and array-indexed arrays. For LRA, basisLRA produces sorts prop and
Q and only consumes Q, where Q is produced when polynomials are reduced
to normal form. For example, the FM-resolution y−x<0, 3·x<5 `LRA y< 5

3
produces prop by introducing y< 5

3 and Q by introducing 5
3 . The bases of Ibb

and Imbb only produce prop and do not consume any sort.
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The next move is to define a theory ordering on the theories that captures
producer-consumer dependencies between their local bases: for all k, j such
that 1≤k 6=j≤n, let Tk ≺ Tj if there exists a sort s that basisk produces and
basisj consumes. By the contrapositive, if Tk 6≺ Tj , then basisj is independent
of basisk, hence basisj(basisk(X)) ⊆ basisk(basisj(X)) for all X. Intuitively,
if ≺ is acyclic, the cyclic behavior described above cannot happen. Formally,
if ≺ is acyclic, the listing of the theories and a basis for T∞ can be defined
accordingly: for all k and j, 1≤k<j≤n, if Tk ≺ Tj then k < j, and for all sets
X of terms, basis∞(X) = basisn(. . . basis1(X)). The next lemma shows that
under these hypotheses local bases can be permuted.
Lemma 5 If T1, . . . , Tn are disjoint theories with an acyclic ordering ≺, then
for all k and j, 1≤k<j≤n, and for all closed sets X of terms: (1) For all E-
closed sets Y of terms such that X⊆Y⊆basisj(X), it holds that basisk(Y ) ⊆
⇓(basisk(X) ∪ Y ); and (2) basisk(basisj(X)) ⊆ basisj(basisk(X)).
Proof First, k < j implies j 6< k, hence Tj 6≺ Tk, so that no sort produced by
basisj is consumed by basisk.
1. The proof is by induction on the (finite) cardinality of Y \X, denoted
|Y \X|. For the base case, if |Y \X| = 0 (i.e., Y = X), the claim is trivially
true. For the induction hypothesis, let the claim be true for any such Y with
|Y \X| = q > 0. For the induction step, let |Y \X| = q+1 and t be a term of
largest size (symbol count) in Y \X. By hypothesis, t is in basisj(X). Since
the theories are disjoint, t is either Σj-foreign, or Σk-foreign, or an equality.
By the last property of a basis in Def. 2, t being in V∞ is the only way that
it can be Σj-foreign, in which case it is also Σk-foreign. Therefore, it is
either Σk-foreign or an equality. By E-closedness of Y , all strict subterms
of t are in Y \{t}, hence in ⇓(Y \{t}). Since t ∈ (basisj(X) \X), the sort s
of t is produced by basisj . Last, basisk does not consume s, because basisk
does not depend on basisj , as k < j by hypothesis. By Def. 7 applied to
basisk and the closed set ⇓(Y \{t}), we get

basisk(⇓(Y \{t}) ∪ {t}) ⊆ ⇓(basisk(⇓(Y \{t})) ∪ {t}) (†).
Next, we observe that X ⊆ (Y \{t}), since X ⊆ Y and t ∈ Y \ X, and
Y \{t} is E-closed: indeed, if it were tCu for some term u ∈ Y , then either
u ∈ X, in which case t ∈ X, because X is closed, or u ∈ Y \X, in which
case t would not be a term of greatest size in Y \X. Therefore, we can apply
the induction hypothesis to Y \{t} and get

basisk(Y \{t}) ⊆ ⇓(basisk(X) ∪ (Y \{t})) (‡).
Then the claim is established as follows:

basisk(Y ) = basisk((Y \{t}) ∪ {t})
⊆ basisk(⇓(Y \{t}) ∪ {t}) by monotonicity of basisk
⊆ ⇓(basisk(⇓(Y \{t})) ∪ {t}) by (†)
= ⇓(basisk(Y \{t}) ∪ {t}) by closedness of basisk
⊆ ⇓(⇓(basisk(X) ∪ (Y \{t})) ∪ {t}) by (‡)
⊆ ⇓⇓(basisk(X) ∪ (Y \{t}) ∪ {t})
= ⇓(basisk(X) ∪ Y ) by idempotence of ⇓.
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2. The second claim is derived as follows:
basisk(basisj(X)) ⊆ ⇓(basisk(X) ∪ basisj(X)) by Claim 1

⊆ ⇓(basisj(basisk(X)) ∪ basisj(X)) by extensiveness
= ⇓(basisj(basisk(X))) as X ⊆ basisk(X)

and by monotonicity of basisj
= basisj(basisk(X)) by closedness.

Next, we use Lemma 5 to show that basis∞(X) is stable.

Lemma 6 If T1, . . . , Tn are disjoint theories with an acyclic ordering that
defines basis∞, then for all k, 1≤ k≤n, basisk(basis∞(X))=basis∞(X) for all
sets X of terms.

Proof We prove a more general property, namely that ∀j, 1≤k≤j≤n, we have
basisk(basisj(. . . basis1(X))) = basisj(. . . basis1(X)). The ⊇-direction holds by
extensiveness of basisk. For the ⊆-direction, the proof is by induction on j.
For the base case, if j=k, the claim holds by idempotence. For the induction
hypothesis, let the claim be true for j. For the induction step, we prove the
claim for j+1. Let Z stand for basisj(. . . basis1(X)). Since k < j+1 and Z is
closed by closedness of the bases, basisk(basisj+1(Z)) ⊆ basisj+1(basisk(Z))
holds by Lemma 5. Then, basisk(Z) ⊆ Z holds by induction hypothesis, and
basisj+1(basisk(Z)) ⊆ basisj+1(Z) follows by monotonicity of basisj+1.

Theorem 10 Given disjoint theories T1, . . . , Tn with modules I1, . . . , In and
local bases basis1, . . . , basisn such that the theory ordering is acyclic, if basis∞
is defined based on the theory ordering, then for all input assignments H, the
set B=basis∞(G(H)) is a finite stable global basis.

Proof The function basis∞ is a basis for the union theory T∞ according to
Def. 2, as it inherits the properties of local bases. Thus, B is finite, as G(H)
is finite, and it is stable by Lemma 6.

For example, basisBool(basisI(basisEUF(basisLRA(basisArr(G)(H))))), where I
is a black-box module for a generic theory T , is a global basis for the union of
theories Bool, T , LRA, EUF, and Arr, given an input assignment H. The next
section opens the part of the article devoted to proof generation in CDSAT.

6 Proof Reconstruction: Proof-Carrying CDSAT

When a derivation terminates detecting unsatisfiability, it is desirable to return
a proof. Proof reconstruction is the activity of extracting a proof from the
final state of the derivation, provided that the final state contains enough
information. In this section we instrument CDSAT for proof reconstruction.
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6.1 Theory Proofs

Because CDSAT combines theory modules, proof reconstruction in CDSAT
requires that all theory modules produce proofs. Therefore, we assume that
each theory module is equipped with a proof annotation system that annotates
theory inferences with theory proofs:

J `̀̀k jk :L
states that module Ik infers L from J with theory proof jk. A theory proof
from Ik is called Tk-proof. Theory proofs, hence CDSAT proofs, may refer to
singleton assignments by means of identifiers. A T-assignment with identifiers
is a set of triples a(t←c), where a is the identifier of t←c. From now on all as-
signments are assignments with identifiers, the trail contains a T∞-assignment
with identifiers, and the subset relation between assignments take identifiers
into account. For example, IBool-inference (1) from Sect. 3.2 can be annotated
with a theory proof denoted UP(a, {a1, . . . , an}), as follows:

{aK} ]H ′ `̀̀Bool UP(a, {a1, . . . , an}) :L
where UP stands for unit propagation, and a1, . . . , an are the identifiers of the
assignments in H ′. Annotated ILRA-inferences include instances of Fourier-
Motzkin resolution and of the evaluation rule:

a1(e1 ≤ t), a2(t ≤ e2) `̀̀LRA FM(a1, a2) : (e1 ≤ e2),
a1(x1←q1), . . . , am(xm←qm) `̀̀LRA eval({a1, . . . , am}) : l←b.

Equality inferences are annotated with theory proofs as shown in Fig. 5.
a1 (t1←c), a2 (t2←c) `̀̀ eq(a1, a2) : t1' t2 if c is a T-value of sort s

a1 (t1←c1), a2 (t2←c2) `̀̀ neq(a1, a2) : t1 6' t2 if c1 and c2 are distinct T-values of sort s
`̀̀ refl : t' t (reflexivity)

a(t1' t2) `̀̀ sym(a) : t2' t1 (symmetry)
a1 (t1' t2), a2 (t2' t3) `̀̀ trans(a1, a2) : t1' t3 (transitivity)

Fig. 5 Annotated equality inference rules, where t1, t2, and t3 are terms of sort s

Assuming J is a1(t1' u1), . . . , am(tm' um), an instance of annotated IEUF-
inference is:

J `̀̀EUF Cong(a1, . . . , am) : f(t1, . . . , tm)' f(u1, . . . , um)
where Cong stands for congruence.

If an assignment appears on the trail, its identifier in any theory proof is
the same as its identifier on the trail: for a Deduce transition supported by a
theory inference J `̀̀k jk :L, the assignments in J appear on the trail Γ , and
their identifiers in jk are the same as in Γ . Since identifiers are mere names,
theory proof annotations are stable under their permutations: any permuta-
tion π of identifiers transforms a theory proof jk into a theory proof π(jk),
such that, if a1(t1←c1), . . . , am(tm←cm) `̀̀k jk :L then

π(a1)(t1←c1), . . . , π(am)(tm←cm) `̀̀k π(jk) :L.
For example, if 1(x←c1), 4(y←c1) `̀̀k Cong(1, 4) : f(x)' f(y), with π(1) = 4
and π(4) = 1, it is also 4(x←c1), 1(y←c1) `̀̀k Cong(4, 1) : f(x)' f(y). The as-
sumption that theory modules have proof annotation systems is not a restric-
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A is initial

∅ `̀̀ in(A) :A

J `̀̀k jk :L

J `̀̀ jk :L

E ]H `̀̀ c :⊥
L is a clausal form of H

E `̀̀ lem(H.c) :L

J `̀̀k jk :L

J ∪ {aL} `̀̀ cfl(jk, a) :⊥

H `̀̀ j :A E ] {aA} `̀̀ c :⊥

E ∪H `̀̀ res(j, aA.c) :⊥

Fig. 6 Proof system for the CDSAT proof terms

tion, as the proof annotation system can be a trivial one that uses a dummy
theory proof for all theory inferences. The resulting theory proofs convey no
information, which is acceptable if they are not required to offer more.

6.2 Proof Terms, Proof System, and Invariants for CDSAT

In order to enable CDSAT to compose theory proofs into CDSAT proofs, we
will equip the CDSAT transition system with the capability of building proof
terms. These proof terms keep track of soundness invariants that ensure that
transitions do not change the problem, so that invariant-preserving transition
rules are sound. The CDSAT soundness invariants are:
1. For all justified assignments H `A on the trail, H0 ∪H |= A, and
2. For all conflict states 〈Γ ;E〉, H0 ∪ E |= ⊥,
where H0 is the input, or initial, assignment. A proof term is either a deduction
proof term recording why a justified assignment is on the trail to enforce (1),
or a conflict proof term recording why a conflict is a conflict to enforce (2).

Definition 8 (CDSAT proof terms) A CDSAT proof term is
– Either a deduction proof term j ::= in(A) jk lem(H.c)
– Or a conflict proof term c ::= cfl(jk, a) res(j, aA.c)

where in, lem, cfl, and res, abbreviating initial, lemma, conflict, and resolve,
respectively, are the CDSAT proof constructors, jk is a Tk-proof for some k,
1≤ k≤n, A is a singleton assignment, H is a Boolean assignment with iden-
tifiers, and the dot notation means that res(j, aA.c) binds a in c and lem(H.c)
binds the identifiers of H in c.

The CDSAT proof terms come with the CDSAT proof system in Fig. 6. Its
first three rules establish the derivability of judgments of the form H `̀̀ j :A.
Proof term in(A) witnesses the fact that an initial assignment A holds. The
second rule coerces a theory proof jk into a CDSAT deduction proof term. The
third rule says that, whenever there is a conflict including a Boolean assign-
ment H, a clausal form of H is a lemma entailed by the rest of the conflict.
The proof term lem(H.c) carries H to record which part of the conflict became
a lemma. If identifiers of assignments in H occur in c, such occurrences are
bound in lem(H.c). The last two rules establish the derivability of judgments
of the form E `̀̀ c :⊥. Proof term cfl(jk, a) witnesses the conflict between the
conclusion L of a theory inference and its flip L (with identifier a). Proof term
res(j, aA.c) is the only construct that combines two subproofs, connecting the
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conclusion A of the left premise with the hypothesis aA of the right premise:
the proof of A from H is plugged as a subproof in the proof of ⊥ from E]{aA}
to get a proof of ⊥ from E∪H. Any occurrence of a in c is bound in res(j, aA.c).
The following theorem connects provability in the CDSAT proof system with
endorsement, showing the soundness of the CDSAT proof system.

Theorem 11 If H `̀̀ j :A, then H0 ∪H |= A; if E `̀̀ c :⊥, then H0 ∪E |= ⊥.

Proof The proof is by structural induction. The base case covers in and coer-
cion: if H `̀̀ j :A has the form ∅ `̀̀ in(A) :A, then A is initial, which means
that A ∈ H0 and H0 |= A; if H `̀̀ j :A has the form J `̀̀ jk :L, then
J `̀̀k jk :L and by soundness of theory inferences J |= L, hence H0 ∪ J |=
L. The induction step covers lem, cfl, and res. If H `̀̀ j :A has the form
E `̀̀ lem(H.c) :L, then E]H `̀̀ c :⊥, by induction hypothesis H0∪E]H |=⊥,
hence H0 ∪ E |= L as L is a clausal form of H. If E `̀̀ c :⊥ has the form
J ∪{aL} `̀̀ cfl(jk, a) :⊥, then J `̀̀k jk :L, by induction hypothesis H0∪J |= L,
hence H0 ∪ J ∪ {aL} |=⊥. If E `̀̀ c :⊥ has the form E ∪H `̀̀ res(j, aA.c) :⊥,
then H `̀̀ j :A and E]{aA} `̀̀ c :⊥; by induction hypothesis H0∪H |= A and
H0 ∪ E ] {A} |=⊥, hence H0 ∪ E ∪H |=⊥.

6.3 The Proof-Carrying CDSAT Transition System

In the proof-carrying CDSAT transition system (see Fig. 7), justified assign-
ments are decorated with deduction proof terms, and conflict states are triples
of the form 〈Γ ;E; c〉, where c is a conflict proof term. A justified assignment
H `j :A carries a deduction proof term j such that H `̀̀ j :A. Initial assignments
have the form ∅`in(A) :A where the deduction proof term presents the initial
assignment as a premise of the proof.

Comparing Figures 7 and 1, Decide is unchanged as a decision does not
carry a proof term; Deduce is modified as the supporting theory inference
J `̀̀k jk :L is annotated with a theory proof that the added justified assignment
J `jk :L carries with itself. In Fig. 1 the choice between Fail and ConflictSolve
depends on the level of the conflict, whereas in Fig. 7 it depends on the out-
come of the conflict resolution phase, because proof-carrying CDSAT fires Fail
and returns unsat, if it can return a proof of unsatisfiability. If the outcome of
the conflict resolution phase is a trail, the conflict was solved and ConflictSolve
applies; if it is a state 〈Γ ; ∅; c〉, the system is still in conflict state, but there
is no conflict to solve. The system concludes that the input assignment is
T +
∞ -unsatisfiable and that proof term c encodes the discovered proof of unsat-

isfiability: Fail applies and the derivation terminates in state unsat(c) returning
proof term c. It is simple to show that the conflict state rules of proof-carrying
CDSAT reduce a conflict state 〈Γ ;E; c1〉, where E 6= ∅, to one of the form
〈Γ ; ∅; c〉 if and only if levelΓ (E) = 0; and that they solve the conflict produc-
ing some trail Γ ′ different from Γ if and only if levelΓ (E) > 0.

Continuing with the conflict state rules, UndoClear and UndoDecide are
unchanged. Proof-carrying LearnBackjump generates the proof term lem(H.c),
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Trail rules
In the trail rules, let 1≤ k≤n.
Decide Γ −→ Γ, ?A if A is an acceptable Tk-assignment

for Ik in ΓTk

The next three rules share the conditions: J ⊆ Γ , (J `̀̀k jk :L), and L 6∈ Γ .
Deduce Γ −→ Γ, J `jk :L if L 6∈ Γ and L is in B
Fail Γ −→ unsat(c) if aL ∈ Γ and

〈Γ ; J ∪ {aL}; cfl(jk, a)〉 =⇒∗ 〈Γ ; ∅; c〉
ConflictSolve Γ −→ Γ ′ if aL ∈ Γ and

〈Γ ; J ∪ {aL}; cfl(jk, a)〉 =⇒∗ Γ ′
Conflict state rules
UndoClear
〈Γ ;E ] {aA}; c〉 =⇒ Γ≤m−1 if A is a first-order decision such that

levelΓ (A) = m > levelΓ (E)
In the next two rules A′ is a first-order decision.
Resolve
〈Γ ;E ] {aA}; c〉 =⇒ 〈Γ ;E ∪H; res(j, aA.c)〉 if (H `j :A) ∈ Γ and for no A′ ∈ H

levelΓ (A′) = levelΓ (E ] {A})
UndoDecide
〈Γ ;E ] {aL}; c〉 =⇒ Γ≤m−1, ?L if (H `j :L) ∈ Γ and for an A′ ∈ H

m = levelΓ (E) = levelΓ (L) = levelΓ (A′)
LearnBackjump
〈Γ ;E ]H; c〉 =⇒ Γ≤m, E `lem(H.c) :L if L is a clausal form of H, is in B, L /∈Γ ,

L /∈ Γ , and levelΓ (E) ≤ m < levelΓ (H)

Fig. 7 The proof-carrying CDSAT transition system

recording that the learned lemma L is a clausal form of H, and turning the
conflict proof term c that represents a proof of unsatisfiability of E ]H into a
deduction proof term that represents a proof of L from E. The main rule for
proof reconstruction is proof-carrying Resolve, which combines proof term c,
witnessing the unsatisfiability of the conflict, with proof term j witnessing that
one of the assignments in the conflict, named A, follows from prior assignments:
A is retained in the proof term res(j, aA.c). By applying this mechanism, proof-
carrying CDSAT connects a proof of why a conflict E follows from H0 with
a proof of why E is unsatisfiable, and generates a proof of unsatisfiability
of H0. The following theorem shows that proof-carrying CDSAT maintains
provability invariants connecting the operations of the transition system with
provability in the CDSAT proof system.

Theorem 12 For all proof-carrying CDSAT-derivations
– If a trail containing H `j :A is generated, then H `̀̀ j :A;
– If a conflict state 〈Γ ;E; c〉 is reached, then E `̀̀ c :⊥.

Proof The two claims are proved simultaneously by induction on the num-
ber of transition steps yielding the justified assignment or the conflict state,
respectively. The base case covers input justified assignments, justified as-
signments placed on the trail by Deduce, and conflict states of the form
〈Γ ; J ∪ {aL}; cfl(jk, a)〉. A justified assignment ∅`in(A) :A is on the trail be-
cause A is initial: ∅ `̀̀ in(A) :A follows by the in rule of the CDSAT proof
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system. For a justified assignment J `jk :L placed on the trail by Deduce,
J `̀̀k jk :L, hence J `̀̀ jk :L by coercion. For a conflict state of the form
〈Γ ; J ∪ {aL}; cfl(jk, a)〉, we have J `̀̀k jk :L, hence J ∪ {aL} `̀̀ cfl(jk, a) :⊥
by the cfl rule. The inductive step covers a justified assignment placed on the
trail by LearnBackjump and conflict states generated by Resolve. For a justified
assignment E`lem(H.c) :L, by induction hypothesis E ] H `̀̀ c :⊥, and L is a
clausal form of H, so that E `̀̀ lem(H.c) :L by the lem rule. For a conflict state
of the form 〈Γ ;E ∪H; res(j, aA.c)〉, by induction hypothesis E ]{aA} `̀̀ c :⊥,
and (H `j :A) ∈ Γ , so that E ∪H `̀̀ res(j, aA.c) :⊥ by the res rule.

Theorems 11 and 12 together show that proof-carrying CDSAT builds a
trace of proof terms in such a way to keep track of the CDSAT soundness
invariants through the provability invariants. The next example expands Fig. 2
into a full derivation by proof-carrying CDSAT. For the sake of readability,
we omit identifiers and we abuse the formalism by building proof terms made
of assignments rather than their identifiers.

Example 10 Assume that the input assignment for the example in Fig. 2 is
{¬l4∨l5, ¬l2∨¬l4∨¬l5, l2∨(z' y), x6≤0∨l2, x6≤0∨l4, f(z)←blue, f(y)←red},
where l2 is y≥0, l4 is x+y>0, and x 6≤0 abbreviates ¬(x≤0). The initial trail
Γ0 contains these assignments. The derivation proceeds as in Fig. 2 with de-
cisions ?A1, ?l2, ?A3, ?l4, and propagation (¬l4∨l5), l4 `l5, but here we assume
that A1 is x←3/4. Let Γ1 be the trail up to this point. The first conflict state
is 〈Γ1; {¬l2∨¬l4∨¬l5, l2, l4, l5}; c1〉 with conflict proof term

c1 = cfl(UP(¬l2 ∨ ¬l4 ∨ ¬l5, {l2, l4}), l5)
that registers the conflict between l5 and ¬l5, the latter derived by Unit
Propagation from ¬l2∨¬l4∨¬l5, l2, and l4. The Resolve step from Fig. 2 re-
places l5 in the conflict by its justification {¬l4∨l5, l4}, yielding conflict state
〈Γ1; {¬l2∨¬l4∨¬l5, l2, l4,¬l4∨l5}; c2〉. The associated conflict proof term is

c2 = res(UP(¬l4∨l5, {l4}), l5.c1),
which plugs on top of the leaf l5 of c1 its theory proof UP(¬l4∨l5, {l4}). Let
LearnBackjump solve the conflict as in Example 1 by placing on the trail

(¬l2∨¬l4∨¬l5), (¬l4∨l5)`j1 :¬l2∨¬l4,

with deduction proof term j1=lem({l2, l4}.c2) recording that conflict proof c2
showed that the learned lemma ¬l2∨¬l4 is inferred from ¬l2∨¬l4∨¬l5 and
¬l4∨l5. Proceeding as in Ex. 6, a Deduce step adds (¬l2∨¬l4), l2 `j2 :l4, with
deduction proof term j2 = UP(¬l2∨¬l4, {l2}). Suppose that the derivation
continues with a Deduce step encapsulating the LRA evaluation inference

(x← 3/4) `̀̀ j3 :x≤0,
with deduction proof term j3 = eval({x ← 3/4}). The resulting trail Γ2 con-
tains the initial assignments followed by
?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`j1 :(¬l2∨¬l4), (¬l2∨¬l4), l2 `j2 :l4, A1 `j3 :(x≤0).
At this stage, the LRA-procedure detects the LRA-conflict {l2, l4, x≤0}, and
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explains it by the FM-resolution inference
0 ≤ y, y ≤ −x `̀̀LRA FM(0 ≤ y, y ≤ −x) : 0 ≤ −x,

mirrored in CDSAT proof system as the inference
y≥0, x+y>0, x≤0 `̀̀ c3 :⊥,

(see the cfl rule in Fig. 6) with conflict proof term
c3 = cfl(FM(0 ≤ y, y ≤ −x), 0 ≤ −x).

The conflict state is 〈Γ2; l2, l4, x≤0; c3〉. A Resolve step replaces l4 by its jus-
tification {¬l2∨¬l4, l2}, producing conflict state 〈Γ2; {l2,¬l2∨¬l4, (x≤0)}; c4〉
with conflict proof term c4 = res(j2, l4.c3) that expands upward leaf l4 of c3
with its proof j2. The system exits from this conflict by a LearnBackjump tran-
sition that jumps back to level 1 and learns lemma (x≤0)∨¬l2 with deduction
proof term j4 = lem({x≤0, l2}.c4). The resulting trail Γ3 contains the initial
assignments followed by
?A1, (¬l2∨¬l4∨¬l5), (¬l4∨l5)`j1 :(¬l2∨¬l4), A1 `j3 :(x≤0), (¬l2∨¬l4)`j4 :(x≤0)∨¬l2.
With the last lemma the system has learned that if y ≥ 0 (l2) implies x+y>0
(¬l4), then y ≥ 0 implies x≤0. Next, Deduce expands Γ3 with the assignments

(x≤0)∨¬l2, x≤0`j5 :l2, l2∨(z' y), l2 `j6 :z' y,

carrying proof terms j5=UP(x≤0∨¬l2, {x ≤ 0}) and j6=UP(l2∨(z' y), {l2}).
A Deduce step for EUF inference {f(z)←blue, f(y)←red} `̀̀ j7 : f(z) 6' f(y)
further adds

f(z)←blue, f(y)←red`j7 :f(z) 6' f(y)
where j7 = neq(f(z)←blue, f(y)←red). Let Γ4 be the resulting trail. At this
point ConflictSolve fires, as the EUF inference {z' y, f(z) 6' f(y)} `̀̀ c5 :⊥
leads to conflict state 〈Γ4; {f(z) 6' f(y), z' y}; c5〉, with conflict proof term

c5 = cfl(Cong(z' y), f(z) 6' f(y)).
A Resolve step yields conflict state 〈Γ4; {f(z) 6' f(y), l2∨(z' y), l2}; c6〉, with
conflict proof term c6 = res(j6, (z' y).c5) that expands upward leaf z' y of
c5 with its proof j6. Similarly, another Resolve step produces conflict state

〈Γ4; {f(z) 6' f(y), l2∨(z' y), (x≤0)∨¬l2, x≤0}; c7〉,
with conflict proof term c7 = res(j5, l2.c6) that expands upward leaf l2 of c6
with its proof j5. The conflict is solved by a LearnBackjump transition that
jumps back to level 0 and learns x≤0 as

f(z) 6' f(y), l2∨(z' y), (x≤0)∨¬l2 `j8 :(x≤0),
with deduction proof term j8 = lem({x≤0}.c7). As a byproduct, decision A1
is gone, and the resulting trail Γ5 contains the initial assignments, the learned
lemmas, namely ¬l2 ∨ ¬l4, x≤0 ∨ l2, and x≤0, and the level 0 propagation
f(z) 6' f(y). Lemma x≤0 enables Deduce to perform two unit propagations
involving input clauses:

x 6≤0∨l2, x≤0`j9 :l2, x6≤0∨l4, x≤0`j10 :l4,

with j9 = UP(x 6≤0 ∨ l2, {x≤0}) and j10 = UP(x6≤0 ∨ l4, {x≤0}). Let Γ6 be
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{¬l2∨¬l4, l2, x 6≤0∨l4, x≤0} c9 = res(j10, l4.c8)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, x≤0} c10 = res(j9, l2.c9)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, f(z) 6' f(y), l2 ∨ z' y, x≤0∨¬l2} c11 = res(j8, x≤0.c10)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, f(z) 6' f(y), l2 ∨ z' y} c12 = res(j4, x≤0∨¬l2.c11)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, f(z) 6' f(y)} c13 = res(in(l2∨z' y), l2∨z' y.c12)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, f(z)←blue, f(y)←red} c14 = res(j7, f(z) 6' f(y).c13)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4, f(z)←blue} c15 = res(in(f(y)←red), f(y)←red.c14)
{¬l2∨¬l4, x 6≤0∨l2, x 6≤0∨l4} c16 = res(in(f(z)←blue), f(z)←blue.c15)
{¬l2∨¬l4, x 6≤0∨l2} c17 = res(in(x 6≤0∨l4), x6≤0∨l4.c16)
{¬l2∨¬l4} c18 = res(in(x 6≤0∨l2), x6≤0∨l2.c17)
{¬l2∨¬l4∨¬l5, ¬l4∨l5} c19 = res(j1, ¬l2∨¬l4.c18)
{¬l2∨¬l4∨¬l5} c20 = res(in(¬l4∨l5), ¬l4∨l5.c19)
∅ c21 = res(in(¬l2∨¬l4∨¬l5), ¬l2∨¬l4∨¬l5.c20)

Fig. 8 Conflicts and conflicts proof terms produced by the final series of steps in Ex. 10

Γ5 thus expanded. At this point the conflict in 〈Γ6; {¬l2∨¬l4, l2, l4}; c8〉 is at
level 0. Conflict proof term c8 = cfl(UP(¬l2∨¬l4, {l2}), l4) records the conflict
between l4 and ¬l4, the latter derived by Unit Propagation from ¬l2 ∨ ¬l4
and l2. While CDSAT would halt, proof-carrying CDSAT performs the series
of Resolve steps in Fig. 8. When Resolve replaces a justified assignment by its
justification, the proof term evolves as seen before. When Resolve removes an
initial assignment from the conflict, the corresponding leaf in the associated
proof term gets surrounded by the in constructor to mark it as a leaf of the
final proof. When the conflict is empty, Fail fires returning unsat(c21).

This example shows how lemma learning avoids repeating work: if conflict
{¬l2∨¬l4∨¬l5, l2, l4, ¬l4∨l5} is solved by Backjump (see Ex. 3), rather than
LearnBackjump (see Ex. 1 and 10), trail Γ1 of Ex. 10 would be expanded with

(¬l2∨¬l4∨¬l5), (¬l4∨l5), l2 `j11 :l4

where j11 = lem({l4}.c2). Conflict {¬l2∨¬l4, l2, l4} would not be detected as
in Ex. 10, and more steps would be necessary to discover it. Such steps would
build another proof of ¬l2 ∨ ¬l4, possibly identical to the first forgotten one.
Furthermore, lemmas can be reused and may appear multiple times in the
final proof term. Lemma ¬l2∨¬l4 is used twice in Ex. 10 and it occurs twice in
c13−c21: once in c8, and once in c12, because c12 contains j4, which contains c4,
which contains j2, where ¬l2∨¬l4 appears. Also, deduction proof terms refer-
ring to first-order decisions do not appear in the final proof term: an inspection
of c21 shows that j3 is absent. The reason is that first-order decisions play a
role in finding models, not proofs. An easy optimization avoids constructing
deduction proof terms involving first-order decisions.

7 Proof Reconstruction: From Proof Terms to Proofs

The motivation for using the proof-carrying CDSAT system is the ability to
justify the unsatisfiability of an input with a proof. When CDSAT concludes
unsat(c), the proof term c and its associated derivation of `̀̀ c :⊥ can be
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considered as a proof of unsatisfiability of the input, following Thm. 11. If need
be, the rules of Fig. 6 can be used for proof checking. If another proof format is
preferred, c indicates how a proof in that format can be reconstructed, having
CDSAT traced in c how a contradiction was reached from a logical point of
view. Indeed, a deduction proof term j with H `̀̀ j :A (resp. a conflict proof
term c with E `̀̀ c :⊥) can be decoded into, or can be seen as denoting, a proof
of H0 ∪H |= A (resp. H0 ∪ E |= ⊥) in the format of choice.

A first option is to decode proof terms into proofs after CDSAT halts, in a
post-processing phase. A second option consists of identifying first the proof
operations corresponding to the rules of Fig. 6 in the target proof format,
and then reading the proof-carrying CDSAT system as manipulating directly
the proofs denoted by proof terms such as in(A), jk, lem(H.c), cfl(jk, a), and
res(j, aA.c). In other words, a CDSAT-based solver would build in memory
not the proof terms, but the proofs themselves. Of course, the execution of
the above mentioned proof operations during a CDSAT derivation may in-
crease its runtime. In any case, proof-carrying CDSAT is modular in the way
theory proofs are handled, reconstructed, and checked. In Sect. 7.1 we exem-
plify proof reconstruction by showing how CDSAT proof terms can be turned
into resolution-style proof trees. In Sect. 7.2 we discuss yet another alternative
consisting of applying to CDSAT the LCF approach to proofs.

7.1 Proof Format Based on Resolution

A resolution proof is usually represented as a resolution proof tree with nodes
labeled by clauses. However, CDSAT views logical connectives as interpreted
symbols of theory Bool, treats formulæ as terms of sort prop, allows assign-
ments such as (l1∨l2)←false, and does not assume that the input is a set
of clauses. Therefore, we distinguish between object-level clauses of the form
l1∨ · · · ∨lm, where the li’s are terms of sort prop, and CDSAT clauses of the
form L1 || · · · ||Lm, where the Li’s are singleton Boolean assignments. Re-
constructed proofs will use object-level clauses for input clauses and CDSAT
clauses for generated clauses. Since in CDSAT there are first-order assign-
ments, we introduce guarded CDSAT clauses of the form H → C, where H
is a set of first-order assignments, which can be empty, and C is a CDSAT
clause. When there is no ambiguity, we use clause for CDSAT clause and
guarded clause for guarded CDSAT clause. The reconstruction of a resolution
proof from a CDSAT proof term yields a CDSAT resolution proof.

Definition 9 (CDSAT Resolution Proof) A CDSAT resolution proof is
represented as a binary tree such that:
– A leaf is labeled with either an input singleton assignment, or a guarded

clause that is a theory lemma;
– An internal node is labeled with a guarded clause;
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– An internal node n has children n1 and n2 if the label of n can be inferred
from the labels of n1 and n2 by one of the following inference rules:

Binary Resolution:
H1 → C1 ||L H2 → C1 ||L

H1 ∪H2 → C1 ||C2

Unit Resolution: L H → C ||L

H → C

First-order Assignment Elimination: A H,A→ C

H → C
where L and A are input singleton assignments labeling leaves.

Theory lemmas are treated as leaves, because theory proofs involve infer-
ence rules other than resolution. Since CDSAT treats propositional logic as a
theory, there are also theory lemmas for Bool or Bool-lemmas. If L0 is a clausal
form of {L1, . . . , Lm} (see Def. 1), the following clauses are Bool-lemmas:

∅ → L0 ||L1 || · · · ||Lm ∅ → L0 ||Li (1≤i≤m). (9)

Indeed, L0 ||L1 || · · · ||Lm and L0 ||Li, 1≤i≤m, are tautologies, since L0 is
a clausal form of {L1, . . . , Lm}, hence they can label leaves. The first Bool-
lemma allows one to transform the object-level clause to which L0 assigns true
into a CDSAT clause:

. . .

H → C ||L0 ∅ → L0 ||L1 || · · · ||Lm
H → C ||L1 || · · · ||Lm

Conversely, the other lemmas allow one to turn a CDSAT clause L1 || · · · ||Lm
into an object-level clause:

. . .

H → C ||L1 || · · · ||Lm ∅ → L0 ||L1

· · · ∅ → L0 ||Lm
H → C ||L0

These transformations can be synthesized into derivable inference rules:
H → C ||L0

H → C ||L1 || · · · ||Lm

H → C ||L1 || · · · ||Lm
H → C ||L0

that involve Bool-lemmas only if m ≥ 2, because if m = 1, L0 is simply L1.
For all assignments H, let HFO be the greatest subset of H made of first-order
assignments, and Hclause be the clause L1 || · · · ||Ln, where L1, . . . , Ln are the
singleton Boolean assignments in H. In other words, Hclause is a clausal form
of H (see Def. 1) written as a CDSAT clause. Then CDSAT proof terms are
transformed into CDSAT resolution proofs by turning:
– A deduction proof term ∅ `̀̀ in(A) :A into a leaf labeled A;
– A deduction proof term H `̀̀ j :L of any other form into a proof of HFO →
Hclause ||L; and
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J∅ `̀̀ in(A) :AK := A

JJ `̀̀ jk :LK := JFO → Jclause ||L

JE `̀̀ lem(H.c) :LK :=

JE ]H `̀̀ c :⊥K

EFO → Eclause ||Hclause

EFO → Eclause ||L

JJ ] {aL} `̀̀ cfl(jk, a) :⊥K := JFO → Jclause ||L

JE `̀̀ res(in(L), aL.c) :⊥K := L

JE ] {aL} `̀̀ c :⊥K

EFO → Eclause ||L

EFO → Eclause

JE `̀̀ res(in(A), aA.c) :⊥K
if A is first-order := A

JE ] {aA} `̀̀ c :⊥K

EFO ] {A} → Eclause

EFO → Eclause

JE ∪H `̀̀ res(j, aL.c) :⊥K
if j is not of the form in(A) :=

JH `̀̀ j :LK

HFO → Hclause ||L

JE ] {aL} `̀̀ c :⊥K

EFO → Eclause ||L

HFO∪EFO → Hclause ||Eclause

Fig. 9 Transformation of CDSAT proof terms into CDSAT resolution proofs

– A conflict proof term H `̀̀ c :⊥ into a proof of HFO → Hclause.
The inductive definition of the transformation is given in Fig. 9, which should
be read together with Fig. 6. The one rule for res in Fig. 6 is articulated
into three rules in Fig. 9 distinguishing among Unit Resolution, First-order
Assignment Elimination, and Binary Resolution as in Definition 9.

For instance, consider the transformation of a deduction proof term and a
conflict proof term that encapsulate a unit propagation, where K is a clausal
form of H = H ′ ] {L} as in inference (1) from Sect. 3.2:

J{aK} ]H ′ `̀̀ UP(a, {a1, . . . , an}) :LK
J{aK} ]H ′ ] {a0L} `̀̀ cfl(UP(a, {a1, . . . , an}), a0) :⊥K

where a1, . . . , an are the identifiers of the elements of H ′. Both are transformed
into the Bool-lemma:

∅ → K ||H ′clause ||L
by applying the second and the fourth rules in Fig. 9, respectively.

Since a CDSAT answer of the form unsat(c) means ∅ `̀̀ c :⊥, the resolution
proof reconstructed from c is a refutation, as its conclusion is the empty clause
∅ → ∅. Since first-order decisions do not appear in proofs, first-order assign-
ments may appear in proofs only if they are initial assignments. If the input
problem contains no first-order assignments (SMT problem), the reconstructed
proof involves only singleton Boolean assignments labeling leaves and guarded
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clauses of the form ∅ → C labeling leaves or internal nodes. In other words,
the reconstructed proof is a resolution refutation in the standard sense, with
leaves labeled by input assignments or theory lemmas. On the other hand,
Bool-lemmas are a non-standard feature that also enables the sharing of res-
olution proofs. For instance, in the refutation of Ex. 10, the conflict proof
term c19 = res(j1, ¬l2∨¬l4.c18) (see Fig. 8), with j1 = lem({l2, l4}.c2), yields
L1, L2 `̀̀ c19 :⊥, where L1 is ¬l4∨l5 and L2 is ¬l2∨¬l4∨¬l5. The resolution
proof reconstructed from c19 is:

JL1, L2, l2, l4 `̀̀ c2 :⊥K

∅ → L1 ||L2 || l2 || l4
∅ → L1 ||L2 || (¬l2∨¬l4)

J¬l2∨¬l4 `̀̀ c18 :⊥K

∅ → (¬l2∨¬l4)
∅ → L1 ||L2

In the proof reconstructed from c21, CDSAT clause ∅ → L1 ||L2 resolves with
initial assignments L1 and L2 to yield ∅ → ∅. The double occurrence of ¬l2∨¬l4
in c18 (see Ex. 10), means that the resolution proof J¬l2∨¬l4 `̀̀ c18 :⊥K has
two leaves labeled by the same Bool-lemma

∅ → (¬l2∨¬l4) || l2 || l4.
An alternative refutation can be obtained by replacing those two leaves with
the subproof translating c2, and replacing (¬l2∨¬l4) by L1 ||L2 in all nodes un-
derneath. This avoids the explicit conversions between the object-level clause
¬l2∨¬l4 and the CDSAT clause l2 || l4. However, in this alternative proof, the
subtree for c2 is duplicated. Such duplications are customary in resolution
proof trees where there is only one kind of clauses. By distinguishing between
object-level clauses and CDSAT clauses, and using the former for input clauses
and the latter for generated clauses, CDSAT natively supports the sharing of
subproofs that one obtains by replacing trees with directed acyclic graphs.

7.2 An LCF Architecture for CDSAT

Another example of proof format is the “dummy” one, where proofs do not
contain any information other than what they are supposed to be the proofs of :
1. A deduction proof for proof term j with H `̀̀ j :L is the pair 〈H,L〉, and
2. A conflict proof for proof term c with H `̀̀ c :⊥ is H.
Although this proof format does not allow any proof checking, the trustwor-
thiness of a reasoner producing such proofs can still be established by the LCF
programming abstraction [37,23]. This approach uses a type theorem , whose
constructed inhabitants are provable formulæ. Actually, this type is defined as
an alias for the type formula of formulæ, but this is known only to a fixed
and well-identified piece of code, called the LCF kernel. This kernel hides the
definition of theorem to the outside world and exports a range of kernel primi-
tives to manipulate inhabitants of type theorem in a safe and provably correct
way. For instance, assuming that ⇒ denotes implication, a primitive
modus_ponens : theorem -> theorem -> theorem
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type deduction
type conflict
in : single_assign -> deduction
coerc : ’k theory_handler -> ’k theory_proof -> deduction
lem : conflict -> assign -> deduction
cfl : ’k theory_handler -> ’k theory_proof -> conflict
res : deduction -> conflict -> conflict
reveal : conflict -> assign

Fig. 10 API (Application Programming Interface) exported by a CDSAT kernel

takes as arguments two inhabitants F and G of type theorem, checks that
F is of the form G ⇒ R, and returns R as an inhabitant of theorem. The
kernel can export a primitive that reveals that an inhabitant of theorem is a
formula, but not one that casts any inhabitant of formula into type theorem.
Thus, the existence of an inhabitant F of theorem witnesses the fact that F is
provable, as an inhabitant only results from a series of correct manipulations
by the kernel primitives: if the kernel code is trusted, then F can be trusted to
be a theorem, while no proof has ever been constructed in memory. CDSAT
is well-suited for the LCF approach: given a type assign for assignments and
single_assign for singleton assignments, a trusted kernel defines types

type deduction = assign * single_assign
type conflict = assign

hides their definitions to the outside world, and exports a range of primitives
corresponding to the proof term constructs.

The signature in Fig. 10 lists hidden type definitions and exported primi-
tives. The primitives check that the conditions of the rules in Fig. 6 are met:
in checks that its argument is one of the initial assignments; lem takes as
arguments a conflict E and an assignment H, checks that H is Boolean and
included in E, computes a clausal form L of H, and produces the deduction
〈E\H,L〉, where \ is set subtraction. Primitive res takes a deduction 〈H,A〉
and a conflict, checks that A occurs in the conflict, and returns the conflict
where A is replaced by H. Primitives coerc and cfl take as arguments a
Tk-proof, 1≤ k≤n, given as an inhabitant of ’k theory_proof, a type pa-
rameterized by k. Their first argument is a handler for theory Tk, whose type
’k theory_handler is parameterized by a matching k, as implemented for
example by a generalized algebraic datatype [16,44]. The handler allows the
primitives to check that Tk is one of the combined theories before coercing the
Tk-proof, trusted to be correct, into a deduction or a conflict. Proof-carrying
CDSAT can be programmed on top of this kernel, so that, when it halts with
answer unsat(c), the proof term c is an inhabitant of type conflict. The
reveal primitive applied to c will return the empty assignment. Although no
proof has been constructed in memory, the answer is correct by construction.
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8 Discussion

Conflict-driven satisfiability procedures work by building partial assignments,
detecting conflicts when the assignment falsifies the input formula, and per-
forming conflict-driven inferences to explain conflicts and reorient the search.
In prior work, we presented CDSAT as a conflict-driven combination frame-
work for mutually disjoint theories, and proved its soundness, termination,
and completeness [9]. In this article, we extended the theoretical foundations
of CDSAT in three main directions, about lemmas, modules (the theory infer-
ence systems that CDSAT orchestrates), and proofs. For lemmas, we endowed
the CDSAT transition system with lemmaizing, so that new clauses can be
formed and learned during backjumping from a conflict; and we showed that
this enrichment preserves soundness, termination, and completeness.

For modules, we proved that theory modules for the Boolean theory, equal-
ity, arrays with extensionality, and linear rational arithmetic, as well as generic
black-box modules for stably infinite and non-stably-infinite theories, satisfy
the assumptions for termination and completeness, complementing our pre-
vious general results. We also showed how to get a finite global basis from
finite local bases for the individual theories, in order to ensure termination of
CDSAT. By including black-box modules for stably infinite theories CDSAT
subsumes the equality-sharing method, also known as Nelson-Oppen scheme,
for theory combination. By handling also non-stably-infinite theories, CDSAT
goes beyond equality sharing, complementing other approaches to lifting this
requirement (see [7] for a survey with references). For proofs, we presented
a proof-carrying CDSAT transition system that constructs and carries proof
terms, so that a proof can be reconstructed when CDSAT discovers that the
input problem is unsatisfiable. CDSAT proof terms can be rendered in a num-
ber of proof formats, and the resulting proofs checked by a trusted checker, or
shown to be correct by construction in LCF style. We illustrated the transla-
tion to resolution-style proofs.

Directions for future work include the implementation of a CDSAT-based
solver (e.g., [11]) that may be used for exploring and evaluating different search
plans and proof formats. The design of a CDSAT search plan involves both
global issues about reasoning in the theory union and local issues about rea-
soning in each theory. At the local level, each theory search plan is in charge
of detecting the applicability of inferences and the acceptability of decisions. At
the global level, the search plan decides which CDSAT transition rule to apply
next, coordinates the theory modules, prioritizing them with respect to both
decisions and deductions, and controls lemmatization. CDSAT proofs may be
extended to account for preprocessing techniques, evaluating the cost of proof
generation and proof checking, and studying proof formats to reduce it (e.g.,
[19]). At the foundational level, we may investigate empowering CDSAT to
handle unions of non-disjoint theories (e.g., [22,17]), or formulæ with quan-
tifiers, considering model-based conflict-driven instantiation (e.g., [41,2]), or
integrations with first-order logic modules (e.g., [10,12]).
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20. Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability calculus.
In Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni, editors, Proceedings of
the Fourteenth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI), volume 7737 of Lecture Notes in Computer Science, pages
1–12. Springer, 2013. 2

21. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T).
In Tom Ball and R. B. Jones, editors, Proceedings of the Eighteenth International Con-
ference on Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Com-
puter Science, pages 81–94. Springer, 2006. 22

22. Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A comprehensive combination
framework. ACM Transactions on Computational Logic, 9(2):1–54, 2008. 46

23. Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: a mecha-
nized logic of computation, volume 78 of Lecture Notes in Computer Science. Springer,
1979. 3, 44
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