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Multi types—aka non-idempotent intersection types—have been used to obtain quantitative bounds on higher-

order programs, as pioneered by de Carvalho. Notably, they bound at the same time the number of evaluation

steps and the size of the result. Recent results show that the number of steps can be taken as a reasonable

time complexity measure. At the same time, however, these results suggest that multi types provide quite lax

complexity bounds, because the size of the result can be exponentially bigger than the number of steps.

Starting from this observation, we refine and generalise a technique introduced by Bernadet & Graham-

Lengrand to provide exact bounds. Our typing judgements carry counters, one measuring evaluation lengths

and the other measuring result sizes. In order to emphasise the modularity of the approach, we provide

exact bounds for four evaluation strategies, both in the λ-calculus (head, leftmost-outermost, and maximal

evaluation) and in the linear substitution calculus (linear head evaluation).

Our work aims at both capturing the results in the literature and extending them with new outcomes.

Concerning the literature, it unifies de Carvalho and Bernadet & Graham-Lengrand via a uniform technique

and a complexity-based perspective. The two main novelties are exact split bounds for the leftmost strategy—

the only known strategy that evaluates terms to full normal forms and provides a reasonable complexity

measure—and the observation that the computing device hidden behindmulti types is the notion of substitution

at a distance, as implemented by the linear substitution calculus.
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1 INTRODUCTION
Type systems enforce properties of programs, such as termination, deadlock-freedom, or produc-

tivity. This paper studies a class of type systems for the λ-calculus that refines termination by

providing exact bounds for evaluation lengths and normal forms.

Intersection types and multi types. One of the cornerstones of the theory of λ-calculus is that
intersection types characterise termination: not only typed programs terminate, but all terminating

programs are typable as well [Coppo and Dezani-Ciancaglini 1978, 1980; Krivine 1993; Pottinger

1980]. In fact, the λ-calculus comes with different notions of evaluation (e.g. call-by-name, call-by-

value, call-by-need, etc) to different notions of normal forms (head/weak/full, etc) and, accordingly,

with different systems of intersection types.

Intersection types are a flexible tool and, even when one fixes a particular notion of evaluation

and normal form, the type system can be formulated in various ways. A flavour that became quite

convenient in the last 10 years is that of non-idempotent intersection types, where the intersection

A ∩A is not equivalent to A. They first appeared in [Gardner 1994; Kfoury 2000; Neergaard and

Mairson 2004] but it is the seminal work of de Carvalho [2007, 2018]
1
, who found fundamental uses

of non-idempotency to characterise quantitative properties of λ-calculus, stressing their importance.

Roughly, distinguishing A ∩ A from A allows counting resource consumption. A survey can be

found in [Bucciarelli et al. 2017].

1
de Carvalho’s work published in 2018 is based on the well diffused technical report [de Carvalho 2009].
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Non-idempotent intersections can be seen as multi-sets, which is why, to ease the language, we

prefer to call them multi types rather than non-idempotent intersection types. Multi types have two

main features:

(1) Bounds on evaluation lengths: they go beyond simply qualitative characterisations of termina-

tion, as typing derivations provide quantitative bounds on the length of evaluation (i.e. on the

number of β-steps) and on the size of normal forms. Therefore, they give intensional insights
on programs, and seem to provide a tool to reason about the complexity of programs.

(2) Linear logic interpretation: multi types are deeply linked to linear logic. The relational

model [Bucciarelli and Ehrhard 2001; Girard 1988] of linear logic (often considered as a

sort of canonical model of linear logic) is based on multi-sets, and multi types can be seen as a

syntactic presentation of the relational model of the λ-calculus induced by the interpretation

into linear logic.

These two facts together have a potential, fascinating consequence: they suggest that denotational

semantics may provide abstract tools for complexity analyses, that are theoretically solid, being

grounded on linear logic.

Various works in the literature explore the bounding power of multi types. Often, the bounding

power is used qualitatively, i.e. without explicitly counting the number of steps to characterise

termination and / or the properties of the induced relational model. Indeed, multi types provide

combinatorial proofs of termination that are simpler than those developed for (idempotent) intersec-

tion types (e.g. reducibility technique). Several papers explore this approach under the call-by-name

[Bucciarelli et al. 2012; Kesner and Ventura 2015; Kesner and Vial 2017; Ong 2017; Paolini et al.

2017] or the call-by-value [Carraro and Guerrieri 2014; Díaz-Caro et al. 2013; Ehrhard 2012] opera-

tional semantics, or both [Ehrhard and Guerrieri 2016]. Sometimes, precise quantitative bounds are
provided instead, as in [Bernadet and Graham-Lengrand 2013b; de Carvalho 2018]. Multi types can

also be used to provide characterisation of complexity classes [Benedetti and Ronchi Della Rocca

2016]. Other qualitative [de Carvalho 2016; Guerrieri et al. 2016] and quantitative [de Carvalho

et al. 2011; de Carvalho and Tortora de Falco 2016] studies are also sometimes done in the more

general context of linear logic, rather than in the λ-calculus.

Reasonable cost models. Usually, the quantitative studies define a measure for typing derivations

and show that the measure provides a bound on the length of evaluation sequences for typed terms.

A criticism that could be raised against these results is, or rather was, that the number of β-steps
of the bounded evaluation strategies might not be a reasonable cost model, that is, it might not

be a reliable complexity measure. This is because no reasonable cost models for the λ-calculus
were known at the time. But the understanding of cost models for the λ-calculus made significant

progress in the last few years. Since the nineties, it is known that the number of steps for weak
strategies (i.e. not reducing under abstraction) is a reasonable cost model [Blelloch and Greiner

1995], where reasonable means polynomially related to the cost model of Turing machines. It is only

in 2014, that a solution for the general case has been obtained: the length of leftmost-outermost

evaluation to normal form was shown to be a reasonable cost model in [Accattoli and Dal Lago

2016]. In this work we essentially update the study of the bounding power of multi types with the

insights coming from the study of reasonable cost models. In particular, we provide new answers to

the question of whether denotational semantics can really be used as an accurate tool for complexity

analyses.

Size explosion and lax bounds. The study of cost models made clear that evaluation lengths are

independent from the size of their results. The skepticism about taking the number of β-steps as a
reliable complexity measure comes from the size explosion problem, that is, the fact that the size of

terms can grow exponentially with respect to the number of β-steps. When λ-terms are used to
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encode decision procedures, the normal forms (encoding true or false) are of constant size, and

therefore there is no size explosion issue
2
. But when λ-terms are used to compute other normal

forms than Boolean values, there are families of terms {tn}n∈N where tn has size linear in n, it
evaluates to normal form in n β-steps, and produces a result pn of size Ω(2n), i.e. exponential in n.
Moreover, the size explosion problem is extremely robust, as there are families for which the size

explosion is independent of the evaluation strategy. The difficulty in proving that the length of a

given strategy provides a reasonable cost model lies precisely in the fact that one needs a compact

representation of normal forms, to avoid to fully compute them (because they can be huge and

it would be too expensive). A gentle introduction to reasonable cost models and size explosion is

[Accattoli 2018a].

Now, multi typings do bound the number of β-steps of reasonable strategies, but these bounds
are sometimes too generous since they bound at the same time the length of evaluations and the

size of the normal forms. Therefore, even a notion of minimal typing (in the sense of being the

smallest derivation) provides a bound that in some cases is exponentially worse than the number

of β-steps.
Our observation is that the typings themselves are in fact much bigger than evaluation lengths,

and so the widespread point of view for which multi types—and so the relational model of linear

logic—faithfully capture evaluation lengths, or even the complexity, is misleading.

More precisely, multi typings do measure part of the size of the normal form, namely, the part

concerned by the notion of evaluation that the typings are meant to measure. In the case of head

evaluation, for instance, they measure the size of the spine, that is, the left branch of the term syntax

tree, because head evaluation never enters arguments and so their size is not taken into account.

Notably, the size of the spine never explodes, even on families of terms whose size explodes via

head evaluation. In the case of leftmost evaluation, however, multi typings measure the whole size

of the term, which does explode. Therefore, the inaccuracy of the measurement depends on the

notion of evaluation under study.

Contributions
The tightening technique. Our starting point is a technique introduced in a technical report

by Bernadet and Graham-Lengrand [2013a]. They study the case of maximal evaluation, and

present a multi type system where typing derivations of terms provide an upper bound on the

number of β-steps to normal form. More interestingly, they show that every strongly normalising

term admits a typing derivation that is sufficiently tight, where the obtained bound is exactly
the length of the longest β-reduction path. This improved on previous results, e.g. [Bernadet and
Graham-Lengrand 2013b; Bernadet and Lengrand 2011] where multi types provided the exact

measure of longest evaluation paths plus the size of the normal forms which, as discussed above,

can be exponentially bigger. Finally, they enrich the structure of base types so that, for those typing

derivations providing the exact lengths, the type of a term gives the structure (and hence the size)

of its normal form. This paper embraces this tightening technique, simplifying it with the use of

tight constants for base types, and generalising it to a range of other evaluation strategies, described

below.

Modular approach. We develop all our results by using a unique schema that modularly applies

to different evaluation strategies. Our approach isolates the key concepts for the correctness and

completeness of multi types, providing a powerful and modular technique, having at least two

2
To be precise, size explosion may happen also when the normal form is a boolean: a term may make arguments grow

exponentially in size and then erase them. Such a form of size explosion is an issue for implementations, but not for the

topic of this paper.
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by-products. First, it reveals the relevance of neutral terms and of their properties with respect to

types. Second, the concrete instantiations of the schema on four different cases always require

subtle definitions, stressing the key conceptual properties of each case study.

Head and leftmost-outermost evaluation. The first application of the tightening technique is

to the head and leftmost evaluation strategies (we often say simply leftmost instead of leftmost-
outermost). The head case is the simplest possible one. The leftmost case is the natural iteration of

the head one, and the only known strong strategy whose number of steps provides a reasonable cost

model [Accattoli and Dal Lago 2016]. Multi types bounding the lengths of leftmost normalising terms

have been also studied in [Bucciarelli et al. 2017; Kesner and Ventura 2014], but the exact number

of steps taken by the leftmost strategy has not been measured via multi types before—therefore,

this is a new result, as we now explain.

The study of the head and the leftmost strategies, at first sight, seems to be a minor reformulation

of de Carvalho’s results about measuring via multi types the length of executions of the Krivine

abstract machine (shortened KAM)—implementing weak head evaluation—and of the iterated

KAM—that implements leftmost evaluation [de Carvalho 2018]. The study of cost models is here

enlightening: de Carvalho’s iterated KAM does implement leftmost evaluation, but the overhead of

the machine (that is counted by de Carvalho’s measure) is exponential in the number of β-steps,
while here we only measure the number of β-steps, thus providing a much more parsimonious

—and yet reasonable— measure. The machine overhead is actually reflected by the size of the normal

form, that can be exponential, but it is measured separately.

Another work that is closely related to ours is de Carvalho et al. [2011], where the relational

model of linear logic is used to measure evaluation lengths in proof nets. They do not however

split the bounds, that is, they do not have a way to measure separately the number of steps and the

size of the normal form. Moreover, their notion of cut-elimination by levels does not correspond to

leftmost evaluation.

Shrinking. The study of leftmost evaluation via tight typings is then compared with traditional

multi types for leftmost evaluation without tight constants. Traditional type systems characterise

leftmost termination using a shrinking constraint: no negative occurrences of the empty multi-set

in the final judgement of the type derivation [Bucciarelli et al. 2017; de Carvalho 2018; Kesner and

Ventura 2014; Krivine 1993]. The comparison is instructive. First, it shows that tightness and being

shrinking are predicates formulated following similar principles. Second, it allows us to provide

a new proof technique for the shrinking case, by adapting the one for the tight case. Third, we

provide a detailed study producing exact bounds starting from traditional derivations, revisiting

the study in [de Carvalho 2018].

Maximal evaluation. We also apply the technique to the maximal strategy, which takes the

maximum number of steps to normal form, if any, and diverges otherwise. The maximal strategy

has been bounded in [Bernadet and Lengrand 2011], and exactly measured in [Bernadet and

Graham-Lengrand 2013a] via the idea of tightening, as described above. The differences with

respect to [Bernadet and Graham-Lengrand 2013a] are:

(1) Uniformity with other strategies: The typing system in [Bernadet and Graham-Lengrand

2013a] uses a form of sub-typing to deal with erasing λ-abstractions. Here, we align the

type grammar with the one used for all the other evaluation strategies, which in turn allows

the typing rules for λ-abstractions to be the same as for head and leftmost evaluation. This

makes the whole approach more uniform across the different strategies that we treat in the

paper. Moreover, our completeness theorem for the maximal strategy bears quantitative
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information (about evaluation lengths and size of normal forms), in contrast with [Bernadet

and Graham-Lengrand 2013a].

(2) Quantitative aspects of normal forms: while Bernadet and Graham-Lengrand encode the shape

of normal forms into base types, we only use two (tight) constant base types. We measure

typing derivations with two indices: the first one matches the maximal evaluation length of

the typed term, and the second one matches the size of its normal form together with the

size of all terms that are erased by the evaluation process.

(3) Neutral terms: we emphasise the key role of neutral terms in the technical development by

describing their specificities with respect to typing. This is not explicitly broached in [Bernadet

and Graham-Lengrand 2013a].

Linear head evaluation. Last, we apply the tightening technique to linear head evaluation [Danos

and Regnier 2004; Mascari and Pedicini 1994] (lhd for short), formulated in the linear substitution

calculus (LSC), a λ-calculus with explicit substitutions introduced by Accattoli and Kesner [Accattoli
2012; Accattoli et al. 2014] that is strongly related to linear logic proof nets [Accattoli 2018b], and

can also be seen as a minor variation over a calculus by Milner [Milner 2007]. The literature contains

a characterisation of lhd-normalisable terms [Kesner and Ventura 2014]. Moreover, [de Carvalho

2018] measures the executions of the KAM, a result that can also be interpreted as a measure of

lhd-evaluation. What we show however is stronger, and somewhat unexpected.

To bound lhd-evaluation, in fact, we can strongly stand on the bounds obtained for head evalua-

tion. More precisely, the result for the exact bounds for head evaluation takes only into account the

number of abstraction and application typing rules. For linear head evaluation, instead, we simply

need to count also the axioms, i.e. the rules typing variable occurrences, nothing else. It turns out

that the length of a linear head evaluation plus the size of the linear head normal form is exactly
the size of the tight typing.

Said differently, multi typings simply encode evaluations in the LSC. In particular, we do not

have to adapt multi types to the LSC, as for instance de Carvalho does to deal with the KAM. It

actually is the other way around. As they are, multi typings naturally measure evaluations in the

LSC. To measure evaluations in the λ-calculus, instead, one has to forget the role of the axioms.

The best way to stress it, probably, is that the LSC is the computing device behind multi types.

Journal vs conference version. This paper is the journal version of [Accattoli et al. 2018]. In

the conference paper the head and leftmost cases were presented at the same time, while here

we present them sequentially: first the simple head case, to introduce the main concepts in an

easy setting, and then the leftmost case, stressing its subtleties. Moreover, the study of shrinking

derivations has been considerably extended, adding in particular exact bounds via the study of

unitary shrinking derivations.

In this paper we include the key cases of the proofs of the important properties, which were

not included in the conference version proofs. We also revisited the whole technical development,

correcting a number of minor bugs in some statements and proofs. Some key notions have slightly

changed, without any technical impact but only for a presentation purposes: the index counting

the number of β-steps (in the conference version the index was twice the number, while we now

make them equal, as suggested by Pierre Vial), for instance, or the definition of size of a derivation

(before it was parametric, now it is unique for all the systems).

Proofs. For the sake of readability, the details of many proofs are in the Appendices.
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Other Related Works
Apart from the papers already cited, let us mention some other related works. A recent, general

categorical framework to define intersection and multi type systems appears in [Mazza et al. 2018].

While the inhabitation problem is undecidable for idempotent intersection types [Urzyczyn

1999], the quantitative aspects provided by multi types make it decidable [Bucciarelli et al. 2014].

Intersection type are also used in [Dudenhefner and Rehof 2017] to give a bounded dimensional

description of λ-terms via a notion of norm, which is resource-aware and orthogonal to that of

rank. It is proved that inhabitation in bounded dimension is decidable (EXPSPACE-complete) and

subsumes decidability in rank 2 [Urzyczyn 2009].

The quantitative approach yielding upper bounds for evaluation lengths has also been extended

to classical logic [Kesner and Vial 2019], which does not only capture pure functional programming,

but also control operators.

Bounds for evaluation lengths are also studied by Dal Lago and Gaboardi [Lago and Gaboardi

2011] and Dal Lago and Petit [Lago and Petit 2013, 2014] using linear dependent types rather than

intersection types.

Other works propose a more practical perspective on resource-aware analyses for functional

programs. In particular, type-based techniques for automatically inferring bounds on higher-order

functions have been developed, based on sized types [Avanzini and Lago 2017; Hughes et al.

1996; Portillo et al. 2002; Vasconcelos and Hammond 2004] or amortised analysis [Hoffmann and

Hofmann 2010; Hofmann and Jost 2003; Jost et al. 2017]. This led to practical cost analysis tools like

Resource-Aware ML [Hoffmann et al. 2012] (see raml.co). Intersection types have been used [Simões

et al. 2007] to address the size aliasing problem of sized types, whereby cost analysis sometimes

over-approximates cost to the point of losing all cost information [Portillo et al. 2002]. How our

multi types could further refine the integration of intersection types with sized types is a direction

for future work

Finally, in between the publication of the conference paper and the submission of this journal

extension, the main ideas of our work were adapted to obtain exact bounds for open call-by-

value [Accattoli and Guerrieri 2018], call-by-need [Accattoli et al. 2019], and pattern-matching

calculi [Alves et al. 2019].

2 A BIRD’S EYE VIEW
Our study is based on a schema that is repeated for different evaluation strategies, making most

notions parametric in the strategy −→S under study. The following concepts constitute the main

ingredients of our technique:

(1) Strategy, together with the normal, neutral, and abs predicates: there is a deterministic eval-

uation strategy −→S whose normal forms are characterised via two related predicates,

normalS (t) and neutralS (t), the intended meaning of the second one is that t is S-normal

and can never behave as an abstraction (that is, it does not create a redex when applied

to an argument). We further parametrise also this last notion by using a predicate absS (t)
identifying abstractions, because the definition of deterministic strategies requires some

subterms to not be abstractions
3
.

(2) Typing derivations: derivations, denoted by Φ, are trees constructed by means of different

typing rules. The following features deserve to be highlighted.

3
For the head, leftmost, and maximal systems, the absS (t ) predicate is trivial, it simply hold when t is an abstraction. In

the linear head system of Sect. 8, however, we use another predicate, which is why, for the sake of uniformity, we prefer to

also make our approach parametric with respect to a absS (t ) predicate.

raml.co
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• Tight constants: there are two new type constants, neutral and abs, and new rules in-

troducing them. As their name suggests, the constants neutral and abs are used to type

terms whose normal form is a neutral term or an abstraction, respectively.

• Tight derivations: there is a notion of tight derivation that requires a special use of the

constants.

• Indices: typing judgements have the shape Γ ⊢⊢⊢(b ,r )t : A, where b and r are indices meant to

count, when the derivation is tight, the number of steps to normal form and the size of the

normal form, respectively.

(3) Sizes of normal forms: the notion of normal forms depends on the strategy, and so do their

notions of size, noted |t |S . A fact that may seem counter-intuitive is that these sizes do not

count all the constructors in a term, but only some of them—often variables are ignored—and

only those appearing in some specific positions, typically the head sizes do not count the size

of arguments but only their presence. The reasons are explained precisely where the sizes

are defined. Different type system inspect different aspects of (different notions of) normal

forms and thus account for different quantitative aspects. The basic idea is that our notions

of size measure the cost of checking that a term is normal, with respect to the given strategy.

Additionally, there is a notion of size of typing derivations |Φ| that gives an upper bound to

the sum of the indices associated to the last judgement of Φ.
(4) Characterisation: we prove that Γ ⊢⊢⊢(b ,r )t : A is a tight typing relatively to −→S if and only if

there exists an S normal term p such that t →b
S p and |p |S = r .

(5) Proof technique: the characterisation is obtained always through the same sequence of in-

termediate results. Correctness follows from the fact that all tight typings of normal forms

precisely measure their size, a substitution lemma for typing derivations and subject reduc-
tion. Completeness follows from the fact that every normal form admits a tight typing, an

anti-substitution lemma for typing derivations, and subject expansion.
(6) Neutral terms: we stress the relevance of neutral terms in normalisation proofs from a typing

perspective. In particular, correctness theorems always rely on a lemma about them. Neutral

terms are a common concept in the study of λ-calculus, playing a key role in, for instance,

the reducibility candidate technique [Girard et al. 1989].

The proof schema is illustrated in the next sections on two standard reduction strategies, namely

head and leftmost(-outermost) evaluation. It is then slightly adapted to deal withmaximal evaluation
in Sect. 7 and linear head evaluation in Sect. 8. A similar schema is also followed in Sect. 5, where we

study leftmost evaluation once again, this time with respect to multi types that are not necessarily

tight.

Evaluation systems. Each case study treated in the paper relies on the same properties of the

strategy −→S and the related predicates normalS (t), neutralS (t), and absS (t), that we collect

under the notion of evaluation system.

Definition 2.1 (Evaluation system). Let TS be a set of terms, −→S be an evaluation strategy and

normalS , neutralS , and absS be predicates on TS . All together they form an evaluation system S if

for all t,p,p1,p2 ∈ TS :

(1) Determinism of −→S : if t −→S p1 and t −→S p2 then p1 = p2.
(2) Characterisation of S-normal terms: t is −→S -normal if and only if normalS (t).
(3) Characterisation of S-neutral terms: neutralS (t) if and only if normalS (t) and ¬absS (t).

Given a strategy −→S we use −→k
S for its kth iteration and −→∗

S for its reflexive-transitive closure.
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�
neutralhd (x)

neutralhd (t)

neutralhd (tp)

neutralhd (t)

normalhd (t)

normalhd (t)

normalhd (λy.t)

Fig. 1. Head neutral and head normal terms�
�

�
(λx .u)q −→hd u{x�q}

t −→hd p

λx .t −→hd λx .p

¬abshd (t) t −→hd p

tu −→hd pu

Fig. 2. Head strategy�� ��|x |hd := 0 |λx .p |hd := |p |hd + 1 |pu |hd := |p |hd + 1

Fig. 3. Head size of terms

Summary. The following table clearly indicates the figures defining the key concepts needed to

capture the essence of the evaluation strategies and the typing systems. Correctness and complete-

ness theorems for each evaluation strategy with respect to the corresponding typing system is also

indicated.

Head Leftmost Shrinking Maximal Linear Head

Neutral/Normal Terms Fig. 1 Fig. 6 Fig. 6 Fig. 6 Fig. 11

Size of Terms Fig. 3 Fig. 5 Fig. 5 Fig. 5 Fig. 13

Evaluation Rules Fig. 2 Fig. 7 Fig. 7 Fig. 9 Fig. 12

Typing Rules Fig. 4 Fig. 8 Fig. 8 Fig. 10 Fig. 14

Correctness Thm. 3.7 Thm. 4.7 Thm. 5.10 Thm. 7.8 Thm. 8.7

Completeness Thm. 3.11 Thm. 4.11 Thm. 5.13 Thm. 7.12 Thm. 8.11

3 HEAD EVALUATION
In this section we consider the head evaluation system, which is the simplest one, and gradually

introduce the main concepts for multi types and for the tight technique.

The set of λ-terms Λ is given by ordinary λ-terms:

λ-Terms t,p F x | λx .t | tp

Normal, neutral, and abs predicates. The predicate normalhd defining head normal terms is

in Fig. 1, and it is based on an auxiliary predicate neutralhd defining neutral terms, that are

simply terms of the form xt1 . . . tk with k ≥ 0. The predicate abshd (t) is true simply when t is an
abstraction.

Small-step semantics. The head strategies −→hd is defined in Fig. 2.

Proposition 3.1 (Head evaluation systems). (Λ, −→S , neutralhd , normalhd , abshd ) is an
evaluation system.

The proof is routine, and it is then omitted also from the Appendix.

Size of normal forms. The notions of head size |t |hd of a (head normal) term t is defined in Fig. 3

(for simplicity we define it over the structure of terms and not of head normal forms).

There are two unusual points:
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(1) Arguments: in the application case the argument u does not contribute (1 accounts for the

application constructor itself, that is, just the existence of an argument). Head evaluation

does not enter arguments and so it is natural to not account for them. Another point of view

is considering |t |hd as measuring the part of t that an algorithm has to explore in order to

check that it is head normal.

Note that head evaluation does suffer of size explosion, but only if the size of arguments is

also taken into account—see Grabmayer [2018] for details.

(2) Variables: variables may be counted for the size of normal forms, but we do not count them

for uniformity. In general, the first counter on typing judgements shall measure the dynamic

aspect (the number of steps) of the computation, while the second counter is devoted to the

static aspect (the size of normal forms). Counting variables for normal forms corresponds

to counting axioms in the typing system, which in turn accounts for the number of single
(linear) variable replacements done by the strategy—this shall be done in Sect. 8, where we

deal with linear head evaluation. But head evaluation is based on meta-level (non-linear)

substitution and thus does not account for single variable replacements—thus variables must

not be counted at the dynamic level. To be uniform, we do not count variables for the static

aspect either, thus excluding them from the size of normal forms. Note that the same point

applies for the leftmost and maximal strategies of the next sections, whose size of normal

forms shall not count variables either.

Multi types. We define the following notions about types.

• Multi types are defined by the following grammar:

Tight constants tight ::= neutral | abs
Types A,B ::= tight | X | M → A

Multi-sets M ::= [Ai ]i ∈I (I a finite set)

where X ranges over a non-empty set of atomic types and [. . .] denotes the multi-set con-

structor.

• Multi-sets: We use [ ] to denote the empty multi-set, ⊎ for multi-set union, ⊑ for multi-set

inclusion, and \ for multi-set difference. An example of multi-set is M = [A,A,B], which
contains two occurrences of A and one occurrence of B. Then for example M ⊎ [A] =
[A,A,A,B] andM \ [A] = [A,B].

• A typing context Γ is a map from variables to finite multi-sets M of types such that only

finitely many variables are not mapped to the empty multi-set [ ]. The empty typing context

is written ϵ . We write dom(Γ) for the domain of Γ, i.e. the set {x | Γ(x) , [ ]}.

• Tightness: we use the notation Tight for a multi-set containing only tight constants. Moreover,

we write tight(A) ifA is of the form tight, tight(M) ifM is of the form Tight, and tight(Γ)
if tight(Γ(x)) for all x , in which case we also say that Γ is tight.

• The multi-set union ⊎ is extended to typing contexts point-wise, i.e. Γ ⊎∆ maps each variable

x to Γ(x)⊎∆(x). This notion is extended to several contexts as expected so that ⊎i ∈I Γi denotes
a finite union of contexts (when I = ∅ the notation is to be understood as the empty context).

When dom(Γ) ∩ dom(∆), then Γ ⊎ Γ′ may also be written Γ; Γ′. We write x : M for the typing

context assigningM to x and [ ] to all the other variables. Then the notation Γ;x : M combines

the two previous ones.

• The restricted context Γwith respect to the variablex , written Γ\\x is defined by (Γ\\x)(x) := [ ]

and (Γ \\ x)(y) := Γ(y) if y , x .

Head typing system. The typing rules of the head system hd are presented in Fig. 4. Roughly, the

intuitions behind the typing rules are (please ignore the indices b and r for the time being):
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ax
x : [A] ⊢⊢⊢(0,0)x : A

(∆i ⊢⊢⊢
(bi ,ri )t : Ai )i ∈I

many
⊎i ∈I∆i ⊢⊢⊢

(+i∈Ibi ,+i∈I ri )t : [Ai ]i ∈I

Γ ⊢⊢⊢(b ,r )t : A
funb

Γ \\ x ⊢⊢⊢(b+1,r )λx .t : Γ(x) → A

tight(Γ(x)) Γ ⊢⊢⊢(b ,r )t : tight
funr

Γ \\ x ⊢⊢⊢(b ,r+1)λx .t : abs

Γ ⊢⊢⊢(b ,r )t :M → A ∆ ⊢⊢⊢(b
′,r ′)p :M

appb
Γ ⊎ ∆ ⊢⊢⊢(b+b

′,r+r ′)tp : A

Γ ⊢⊢⊢(b ,r )t : neutral
apphdr

Γ ⊢⊢⊢(b ,r+1)tp : neutral

Fig. 4. Type system for head evaluation

• Rules ax, funb , and appb : this rules are essentially the traditional rules for multi types for

head and LO evaluation (see e.g. [Bucciarelli et al. 2017]), modulo the presence of the indices.

• Rule many: this is a structural rule allowing typing terms with a multi-set of types. In some

presentations of multi types many is hardcoded in the right premiss of the appb rule (that

requires a multi-set). For technical reasons, it is preferable to separate it from appb . Morally,

it corresponds to the !-promotion rule in linear logic.

• Rule funr : t has already been tightly typed, and all the types associated to x are also tight

constants. Then λx .t receives the tight constant abs for abstractions. The consequence is

that this abstraction can no longer be applied, because there are no rules to apply terms of

type abs. Therefore, the abstraction constructor cannot be consumed by evaluation and it

ends up in the (head) normal form of the term, that has the form λx .t ′, where t ′ is the (head)
normal form of t .

• Rule apphdr : t has already been tightly typed with neutral and so morally it head normalises

to a term t ′ having neutral form xu1 . . .uk . The rule adds a further argument p that cannot

be consumed by evaluation, because t shall never become an abstraction. Therefore, p ends

up in the head normal form t ′p of tp, that is still neutral—correctly, so that tp is also typed

with neutral. Note that there is no need to type p because head evaluation never enters into

arguments.

• Tight constants and predicates: there is of course a correlation between the tight constants

neutral and abs and the predicates neutralhd and abshd . Namely, a term t is hd-typable
with neutral if and only if the hd-normal form of t verifies the predicate neutralhd , as we
shall prove. For the tight constant abs and the predicate abshd the situation is similar but

weaker: if the hd-normal form of t verifies abshd then t is typable with abs, but not the other
way around—variables are typable with abs without being abstractions.

• Presentation of abstraction rules: the presentation of the abstraction rules may seem unusual.

We explain the relationship with the usual presentation in the vacuous abstractions paragraph
below.

• The type systems is not syntax-directed, e.g. given an abstraction (resp. an application), it can

be typed with rule funr or funb (resp. apphdr or appb ), depending on whether the constructor

typed by the rule ends up in the normal form or not. Thus for example, given the term II,
where I is the identity function λz.z, the second occurrence of I can be typed with abs using
rule funr , while the first one can be typed with [abs] → abs using rule funb .
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We write Φ ▷hd Γ ⊢⊢⊢(b ,r )t : A, to stress that Φ is a head typing derivation ending in the judgement

Γ ⊢⊢⊢(b ,r )t : A when, in the next sections, we discuss also other type systems. .

Indices. The roles of b and r can be described as follows:

• b and β-steps: b counts the abstraction rules of the derivation that may be used to form

(head) β-redexes, i.e. the number of funb rules, because it is the only rule introducing an

arrow type. The index b is at least the number of β-steps to normal form because typing a

β-redex requires a funb rule. It may be greater than such a number if some of the abstractions

typed with funb are never applied, and therefore end up in the normal form. For tight typing

derivations (introduced below), we are going to prove that b is exactly the length of the head

evaluation of the typed term to normal form. Essentially, tightness shall force abstractions

typed with funb to be applied.

• r and size of the result: r counts the rules typing constructors that cannot be consumed by

β-reduction according to the head evaluation strategy, and that therefore shall end up in

contributing to the normal form. It counts the number of funr and apphdr . These rules type

the result of the evaluation, according to the head strategy, and measure the size of the result.

Note that the type abs given by rule funr is not an arrow type and cannot therefore be

composed. Essentially, tightness shall force all abstractions ending in the normal form to be

typed with funr .
For system hd , the indices on typing judgements are not really needed, as b can be recovered as

the number of funb rules, and r as the number of funr and apphdr rules. We prefer to make them

explicit because 1) we want to stress the separate counting, and 2) for linear head evaluation in

Sect. 8 the counting shall be more involved, and the indices shall not be recoverable.

Note that only some rules contribute to the indices b and r . The fact that ax is not counted shall

change in Sect. 8, where we show that counting ax rules corresponds to measure evaluations in the

linear substitution calculus. The fact thatmany is not counted, instead, is due to the fact that it does
not correspond to any constructor on terms. A further reason is that the rule may be eliminated by

absorbing it in the appb rule, that is the only rule that uses multi-sets—it is however technically

convenient to separate the two. The fact that appb is not counted is because we already count funb
for β-redexes, and counting appb would provide a number twice the measure we are interested in

4
.

Typing size. We define the size |Φ| of a typing derivation Φ as the number of rules in Φ, not
counting the occurrences of rule many. The size of a derivation gives an upper bound to the sum

of the indices (b, r ) on its final judgement: whenever Φ ▷hd Γ ⊢⊢⊢(b ,r )t : A, we have b + r ≤ |Φ|.

Subtleties and easy facts. Let us overview some peculiarities and consequences of the definition

of our type systems.

(1) Relevance: no weakening is allowed in axioms. An easy induction on typing derivations shows

that a variable declaration x : M , [ ] appears explicitly in the typing context Γ of a type

derivation for t only if x occurs free and typed in t . In system hd , arguments of applications

might not be typed (because of rule apphdr ), and so there may be x ∈ fv(t) but not appearing
in Γ.

(2) Vacuous abstractions: our presentation of abstraction rules in Fig. 1 precisely accounts for the

case in which the abstraction binds a variable x not appearing in the type context Γ. Indeed,
in the funb rule, if x < dom(Γ), then Γ \\ x is equal to Γ and Γ(x) is [ ], while in the funr
rule, if x < dom(Γ), then Γ(x) is [ ] and thus tight([ ]) holds. The alternative and equivalent

presentation of these rules is

4
In the conference version of this paper we actually counted appb rules and then obtained that b counted twice the number

of β -steps. We believe that it is cleaner to not count appb rules, as suggested by P. Vial.
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Γ;x : M ⊢⊢⊢(b ,r )t : A
funb

Γ ⊢⊢⊢(b+1,r )λx .t :M → A

Γ;x : Tight ⊢⊢⊢(b ,r )t : tight
funr

Γ ⊢⊢⊢(b ,r+1)λx .t : abs

In the proofs we rather use this alternative formulation (that requires that x does appear in

the type context, and implicitly assumes that Γ;x : [ ] = Γ) but we prefer to adopt the precise

presentation in the formal definition, to avoid ambiguities.

(3) Head typings and applications: note the apphdr rule types an application tp without typing the

right subterm p. This matches the fact that tp is a head normal form when t is, independently
of the status of p.

Tight derivations. A given term t may havemany different typing derivations, indexed by different

pairs (b, r ). They always provide upper bounds on head evaluation lengths and lower bounds on

the size of head normal forms. The interesting aspect of our type systems, however, is that there is

a simple description of a class of typing derivations that provide exact bounds for these quantities,
as we shall show. Their definition relies on tight constants.

Definition 3.2 (Tight head derivations).
A derivation Φ ▷hd Γ ⊢⊢⊢(b ,r )t : B is tight if tight(B) and tight(Γ).

Remarkably, tightness is expressed as a property of the last judgement only. This is however not

unusual: characterisations of weakly normalising terms via intersection/multi types also rely on

properties of the last judgement only, as discussed in Sect. 5.

In Sect. 5, in particular, we show the size of a tight derivation for a normal term t is minimal
among derivations for t . Moreover, it is also of the same size of the minimal derivations making

no use of tight constants nor rules using them. Therefore, tight derivations may be thought as a

characterisation of minimal derivations for normal terms—for non-normal terms the question is

subtle and it is discussed at the end of Sect. 5.

Let us also refine the intuitions about tightness of the paragraph indices above, where we explain
in particular how tightness forces the partitioning of abstractions. Dually, tightness also forces

a partitioning of application rules. At some point of the evaluation, the left sub-term of every

application typed with appb shall turn into an abstraction, forming a redex whose firing shall

consume the appb rule. Therefore, all applications in the normal form are typed with apphdr .

Example. Let t0 = (λx1.(λx0.x0x1)x1)I, where I is the identity function λz.z. The head evaluation
of t0 to hd normal-form is:

(λx1.(λx0.x0x1)x1)I −→hd (λx0.x0I)I −→hd II −→hd I

The evaluation sequence has length 3. The head normal form has size 1. To give a tight typing for

the term t0 let us write abs
abs

for [abs] → abs. Then,

x0 : [absabs] ⊢⊢⊢(0,0)x0 : absabs

x1 : [abs] ⊢⊢⊢(0,0)x1 : abs

x1 : [abs] ⊢⊢⊢(0,0)x1 : [abs]

x0 : [absabs], x1 : [abs] ⊢⊢⊢(0,0)x0x1 : abs

x1 : [abs] ⊢⊢⊢(1,0)λx0 .x0x1 : [absabs] → abs

x1 : [absabs] ⊢⊢⊢(0,0)x1 : absabs

x1 : [absabs] ⊢⊢⊢(0,0)x1 : [absabs]

x1 : [abs, absabs] ⊢⊢⊢(1,0)(λx0 .x0x1)x1 : abs

⊢⊢⊢(2,0)λx1 .(λx0 .x0x1)x1 : [abs, absabs] → abs

.

.

.

⊢⊢⊢(1,1)I : [abs, absabs]

⊢⊢⊢(3,1)(λx1 .(λx0 .x0x1)x1)I : abs

Indeed, the pair (3, 1) represents 3 evaluation steps to hd normal-form and a head normal form of

size 1.



Tight Typings and Split Bounds, Fully Developed 1:13

3.1 Tight Head Correctness
Correctness of tight typings for head evaluation is the fact that whenever a term is tightly typable

with indices (b, r ), then b is exactly the number of head evaluation steps to head normal form while

r is exactly the head size of the head normal form. The correctness theorem is always obtained via

three intermediate steps.

First step: tight typings of normal forms. The first step is to show that, when a tightly typed term

is a head normal form, then the first index b of its type derivation is 0, so that it correctly captures

the number of steps, and the second index r coincides exactly with its head size. An interesting

auxiliary lemma relating hd-neutral terms and tight typings is required.

Lemma 3.3 (Tight spreading on neutral terms). Let t be such that neutralhd (t) and Φ ▷hd
Γ ⊢⊢⊢(b ,r )t : A be a typing derivation such that tight(Γ). Then tight(A) and the last rule of Φ is not
appb .

Proof. By induction on neutralhd (t). Cases:
• Variable, i.e. t = x . Then Γ = x : [A], and A is tight because Γ is tight by hypothesis.

• Application, i.e. t = pu and neutralhd (t) because neutralhd (p). The last rule of Φ can only be

appb or app
hd
r . In both cases the left subterm p is typed by a sub-derivation Φ′ ▷ Γp ⊢⊢⊢

(b′,r ′)p : B
such that all types in Γp appear in Γ, and so they are all tight by hypothesis. Since neutralhd (p),
we can apply the i.h. and obtain that B is tight. The only possible case is then B = neutral
and the last rule of Φ is then apphdr . Then A = B = neutral.

□

The lemma expresses the fact that tightness of neutral terms only depends on their contexts.

Morally, this fact is what makes tightness expressible as a property of the final judgement only.

We shall see in Sect. 5 that a similar property is hidden in more traditional approaches to weak

normalisation (see Lemma 5.6). Such a spreading property appears repeatedly in our study, and

we believe that its isolation is one of the contributions of our work, induced by the modular and

comparative study of various strategies.

Proposition 3.4 (Properties of hd typings for normal forms). Let t be such that normalhd (t),
and Φ ▷hd Γ ⊢⊢⊢(b ,r )t : A be a typing derivation.
(1) Size bound: |t |hd ≤ |Φ|,
(2) Tight indices: if Φ is tight then b = 0 and r = |t |hd ,
(3) Neutrality: if A = neutral then neutralhd (t).

‘

Proof. By induction on t . Note that neutralhd implies normalhd and so we can apply the i.h.
when neutralhd holds on some subterm of t . The proof is mostly straightforward, there is only

one interesting case, the one using the tight spreading on neutral terms (Lemma 3.3). The case is

when normalhd (t) because neutralhd (t) and t = pu, that in turn implies neutralhd (p). If the last
rule of Φ is appb then Φ has the form

Φp ▷hd Γp ⊢⊢⊢
(bp ,rp )p :M → A Φu ▷hd Γu ⊢⊢⊢(bu ,ru )u :M

appb
Γp ⊎ Γu ⊢⊢⊢(bp+bu ,rp+ru )pu : A

with b = bp + bu , r = rp + ru , and Γ = Γp ⊎ Γu .
(1) Size bound: by i.h., |p |hd ≤ |Φp |, from which it follows |t |hd = |p |hd + 1 ≤i.h. |Φp | + 1 ≤ |Φ|.
(2) Tight size bound: we show that the pre-condition for this case is impossible. If Φ is tight then

Γ = Γp ⊎ Γu is a tight typing context, and so is Γp . Since neutralhd (t), the tight spreading



1:14 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner

on neutral terms (Lemma 3.3) implies that the type of p in Φp has to be tight, while it is

M → A—absurd.
(3) Neutrality: neutralhd (t) holds by hypothesis.

If the last rule of Φ is apphdr the statement follows easily from the i.h. □

Note that Proposition 3.4.2 indirectly shows that all tight derivations of a same term carry the

same indices, and essentially have the same size (it can be easily shown that they all have the same

number of axioms). The only way in which two tight derivations can differ, in fact, is whether

the variables in the type context are typed with neutral or abs, but the structure of different
derivations is necessarily the same, which is also the structure of the head normal form itself.

Second step: substitution lemma. Then one has to show that types, typings, and indices behave

well with respect to substitution, which is essential, given that β-reduction is based on it.

Lemma 3.5 (Substitution and typings for hd). Let Φt ▷hd ∆;x : M ⊢⊢⊢(b ,r )t : A and Φp ▷hd
Γ ⊢⊢⊢(b

′,r ′)p : M . Then there exists a derivation Φt {x�p } ▷hd Γ ⊎ ∆ ⊢⊢⊢(b+b
′,r+r ′)t{x�p} : A where

|Φt {x�p } | = |Φt | + |Φp | − |M |.

Note that the lemma also holds for M = [ ], in which case Γ is necessarily empty. As already

pointed out, in system hd it can be thatM = [ ] and yet x ∈ fv(t) and t{x�p} , t .

Proof. Easy induction on the derivation of ∆;x : M ⊢⊢⊢(b ,r )t : A, see Appendix A.1. □

Third step: quantitative subject reduction. Finally, one needs to shows a quantitative form of type

preservation along evaluation. When the typing is tight, every evaluation step decreases the first

index b by exactly 1, accounting for the abstraction constructor consumed by the firing of the redex.

Proposition 3.6 (Quantitative subject reduction for hd). If Φ ▷hd Γ ⊢⊢⊢(b ,r )t : A and t −→hd p

then b ≥ 1 and there exists a typing Φ′ such that Φ′ ▷hd Γ ⊢⊢⊢(b−1,r )p : A and |Φ| > |Φ′ |.

Proof. By induction on t −→hd p. The only case not following immediately from the i.h. is
the one of reduction at the root of the term, that is when t = (λx .u)q −→hd u{x�q} = p. Assume

Φ▷hd Γ ⊢⊢⊢(b ,r )(λx .u)q :A. The derivation Φmust end with rule appb , and the derivation of its premiss

for (λx .u) must end with funb . Hence, there are two derivations Φu ▷hd Γu ;x : M ⊢⊢⊢(bu ,ru )u : A and

Φq ▷hd Γq ⊢⊢⊢
(bq ,rq )q :M , with (b, r ) = (bu +bq + 1, ru + rq) and Γ = Γu ⊎ Γq . Applying the substitution

lemma (Lemma 3.5), we obtain Φ′▷hd Γ ⊢⊢⊢(bu+bq ,ru+rq )u{x�q} :A such that |Φ′ | = |Φu |+ |Φq |− |M | <
|Φu | + |Φq | + 2 = |Φ|. □

Summing up. The tight correctness theorem is proved by a straightforward induction on the

evaluation length relying on quantitative subject reduction (Proposition 3.6) for the inductive case,

and the properties of tight typings for normal forms (Proposition 3.4) for the base case.

Theorem 3.7 (Tight correctness for hd). Let Φ ▷hd Γ ⊢⊢⊢(b ,r )t : A be a derivation. Then there
exists p and k such that t −→k

hd p, k ≤ b, normalhd (p), and |p |hd + k ≤ |Φ|. Moreover, if Φ is tight,
then b = k , |p |hd = r and (A = neutral implies neutralhd (p)).

Proof. By induction on |Φ|. If t is a −→hd normal form—that covers the base case |Φ| = 1, for

which t is necessarily a variable—then by taking p := t and k := 0 the first statement follows from

Proposition 3.4.1, the tight statement follows from the tight indices and neutrality properties of

tight typings of normal forms (Proposition 3.4:2-3).

Otherwise, t −→hd u and by quantitative subject reduction (Proposition 3.6) there is a derivation

Φ′ ▷hd Γ ⊢⊢⊢(b−1,r )u : A such that |Φ′ | < |Φ|. By i.h., there exists p and k ′
such that normalhd (p) and
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u −→k ′
hd p and k ′ ≤ b − 1 and |p |hd + k

′ ≤ |Φ′ |hd . Just note that t −→hd u −→k ′
hd p, that is, t −→k ′+1

hd p,
where k ′ + 1 ≤ (b − 1) + 1 = b. Therefore |p |hd + k

′ + 1 ≤ |Φ′ | + 1 ≤ |Φ|.
For the tight statement we know by the i.h. that k ′ = b − 1 so that k := k ′ + 1 verifies k = b. The

i.h. also gives |p |hd = r and (A = neutral implies neutralhd (p)), which concludes the proof. □

3.2 Tight Head Completeness
Completeness of tight head typings expresses the fact that every head normalising term has a

tight derivation in system hd . As for correctness, the completeness theorem is always obtained

via three intermediate steps, dual to those for correctness. Essentially, one shows that every head

normal form has a tight derivation and then extends the result to head normalising terms by pulling

typability back through evaluation, using a subject expansion property.

First step: normal forms are tightly typable. A simple induction on the structure of normal forms

proves the following proposition.

Proposition 3.8 (Normal forms are tightly typable for hd). Let t be such that normalhd (t).
Then
(1) Existence: there exists a tight derivation Φ ▷hd Γ ⊢⊢⊢(0, |t |hd )t : A.
(2) Structure: moreover, if neutralhd (t) then A = neutral, and if abshd (t) then A = abs.

In contrast to the proposition for normal forms of the correctness part (Proposition 3.4), here

there are no auxiliary lemmas, so the property is simpler.

Proof. Easy induction on normalhd (t), see Appendix A.2. □

Second step: anti-substitution lemma. In order to pull typability back along evaluation sequences,

we have to first show that typability can also be pulled back along substitutions.

Lemma 3.9 (Anti-substitution and typings for hd). Let Φ ▷hd Γ ⊢⊢⊢(b ,r )t{x�p} : A. Then there
exist:

• a multi-setM ;
• a typing derivation Φt ▷hd Γt ;x : M ⊢⊢⊢(bt ,rt )t : A; and
• a typing derivation Φp ▷hd Γp ⊢⊢⊢

(bp ,rp )p :M
such that:

• Typing context: Γ = Γt ⊎ Γp ;
• Indices: (b, r ) = (bt + bp, rt + rp ).
• Size: |Φ| = |Φt | + |Φp | − |M |.

Proof. Easy induction on Φ, see Appendix A.2. □

Let us point out that the anti-substitution lemma holds also in the degenerated case in which x
does not occur in t and p is not hd-normalising: rule many can indeed be used to type any term p
with ⊢⊢⊢(0,0)p : [ ] by taking an empty set I of indices for the premisses. Note also that this is forced
by the fact that x < fv(t), and so Γt (x) = [ ]. Finally, this fact does not contradict the correctness

theorem, because here p is typed with a multi-set, while the theorem requires a type.

Third step: quantitative subject expansion. This property guarantees that typability can be pulled

back along evaluation sequences.

Proposition 3.10 (Quantitative subject expansion for hd). Let Φ ▷hd Γ ⊢⊢⊢(b ,r )p : A be a
derivation. If t −→hd p then there exists a typing Ψ such that Ψ ▷hd Γ ⊢⊢⊢(b+1,r )t : A and |Ψ| > |Φ|.
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Proof. By induction on t −→hd p. The only case not following immediately from the i.h. is the
one of reduction at the root of the term, that is when t = (λx .u)q −→hd u{x�q} = p. Assume

Φ ▷hd Γ ⊢⊢⊢(b ,r )u{x�q} : A. By applying the anti-substitution lemma (Lemma 3.9) we obtain the

premisses of the following derivation Ψ:

Φu ▷hd Γu , x : M ⊢⊢⊢(bu ,ru )u : A

Γu ⊢⊢⊢(bu+1,ru )λx .u :M → A Φq ▷hd Γq ⊢⊢⊢
(bq ,rq )q :M

Γu ⊎ Γq ⊢⊢⊢
(bu+bq+1,ru+rq )(λx .u)q : A

with (b, r ) = (bu+bq, ru+rq) and Γ = Γu⊎Γq . By the same Lemma 3.9 we have |Φu |+ |Φq |− |M | = |Φ|.
Then |Ψ| = |Φu | + |Φq | + 2 > |Φu | + |Φq | − |M | = |Φ|. Note that the difference between the sizes of

Ψ and Φ is indeed between 2 and 2 + |M |. □

Summing up. The tight completeness theorem is proved by a straightforward induction on the

evaluation length relying on quantitative subject expansion (Proposition 3.10) for the inductive

case, and the existence of tight typings for normal forms (Proposition 3.8) for the base case.

Theorem 3.11 (Tight completeness for hd). Let t −→k
hd p with normalhd (p). Then there exists

a tight typing Φ ▷hd Γ ⊢⊢⊢(k , |p |hd )t : A. Moreover, if neutralhd (p) then A = neutral, and if abshd (p)
then A = abs.

Proof. By induction on t −→k
hd p. If k = 0 the statement is given by the existence of tight

typings for normalhd terms (Proposition 3.8), that also provides the moreover part. Let k > 0

and t −→hd u −→k−1
hd p. By i.h., there exists a tight typing derivation Ψ▷ ⊢

(k−1, |p |hd )
tight u. By subject

expansion (Proposition 3.10) there exists a typing derivation Φ of u with the same types in the

ending judgement of Ψ—then Φ is tight—and with indices (k, |p |hd ). □

4 LEFTMOST-OUTERMOST EVALUATION
In this section we slightly modify the system for head evaluation to provide tight bounds for

leftmost-outermost (shortened leftmost in the text and lo in mathematical symbols) evaluation,

the iteration of head evaluation into arguments. Lo evaluation is an important strategy for two

main reasons. First, it is a normalising strategy, that is, it reaches a normal form, whenever it exists.

Second, its number of steps can be taken as a reasonable time cost model.

The development follows the same lines of the head case. There are however subtle and important

differences. Essentially, the typing system is tweaked, as discussed below, so that arguments of

typed applications are always typed, and the tight hypothesis has to be added to various properties,

that would otherwise not hold. In particular, it has to be added to subject reduction (and, of course,

subject expansion) whose proof then becomes subtler, because tightness has to somehow spread to

sub-derivations, while it is defined as a property of the final judgement only.

Basic definitions. The predicates normallo and neutrallo defining normal and neutral terms are

in Fig. 6—note the case neutrallo(tp) which is the one distinguishing the leftmost case from the

head one. As in the head case, the predicates abslo(t) is true simply when t is an abstraction. The

leftmost-outermost strategy −→lo is defined in Fig. 7—note the case ut −→lo up.

Proposition 4.1 (Leftmost evaluation system). (Λ, −→lo , neutrallo, normallo, abslo) is an
evaluation system.

The proof is routine, and it is then omitted also from the Appendix.
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Fig. 6. Leftmost-outermost neutral and normal terms�
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(λx .u)q −→lo u{x�q}

t −→lo p

λx .t −→lo λx .p

¬abslo (t) t −→lo p

tu −→lo pu

neutrallo (u) t −→lo p

ut −→lo up

Fig. 7. Leftmost-outermost strategy

Size of normal forms. The notion of leftmost(-outermost) size |t |lo of a term t is defined in Fig. 5—

the difference with the head size is on applications. Note that |t |lo counts the number of internal

nodes of the syntax tree of t . Variable occurrences—that are ignored—are the leaves of the syntax
tree and thus are at most |t |lo + 1, that is, the size of the syntax tree of t is bound by 2|t |lo + 1.

Therefore, the considerations about size explosion in the introduction are unaffected by considering

|t |lo rather than the size of its syntax tree.

The leftmost type system. The typing rules are in Fig. 8, where the only difference with the head

case is in rule applor , that replaces rule apphdr : leftmost evaluation enters into arguments and so the

added argument p now also has to be typed, and with a tight constant. Note also a key difference

between applor and appb : in the former the argument p is typed exactly once (that is, the type is

not a multi-set), because its leftmost normal form p ′ appears exactly once in the leftmost normal

form t ′p ′ of tp (where t ′ is the leftmost normal form of t ), while in the latter it can be typed any

number of times, depending on the cardinality ofM .

We write Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A, to stress that the type derivation is built out of the rules of the

leftmost type system.

As in the head case, the size of a typing derivation |Φ| is the number of rules in Φ, not counting
the occurrences of rule many. Here again, |Φ| gives an upper bound to the sum of the indices (b, r )
on its final judgement: whenever Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A, we have b + r ≤ |Φ|.

Definition 4.2 (Tight and traditional derivations). A derivation Φ▷lo Γ ⊢⊢⊢(b ,r )t : B is tight if tight(B)
and tight(Γ). A derivation Ψ is traditional if it is tight-free, i.e. no tight type occurs in Φ (and

therefore it does not use rules funr nor app
lo
r ).

Traditional derivations do not really play a role in this section, only in the next one. We introduce

them here because the two sections share the same anti-substitution lemma.

4.1 Tight Leftmost Correctness
The proof of tight correctness of the type system follows exactly the same structure in sub-properties

than for head evaluation. There are however two relevant differences. The first one is that without

the tight hypothesis there is no bound on the leftmost size of normal forms—this shall be refined in

Sect. 5. The second one is that quantitative subject reduction also holds only for tight derivations.

Moreover, its proof is subtler and more involved.
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(bi ,ri )t : Ai )i ∈I

many
⊎i ∈I∆i ⊢⊢⊢

(+i∈Ibi ,+i∈I ri )t : [Ai ]i ∈I

Γ ⊢⊢⊢(b ,r )t : A
funb

Γ \\ x ⊢⊢⊢(b+1,r )λx .t : Γ(x) → A

tight(Γ(x)) Γ ⊢⊢⊢(b ,r )t : tight
funr

Γ \\ x ⊢⊢⊢(b ,r+1)λx .t : abs

Γ ⊢⊢⊢(b ,r )t :M → A ∆ ⊢⊢⊢(b
′,r ′)p :M

appb
Γ ⊎ ∆ ⊢⊢⊢(b+b

′,r+r ′)tp : A

Γ ⊢⊢⊢(b ,r )t : neutral ∆ ⊢⊢⊢(b
′,r ′)p : tight

applor
Γ ⊎ ∆ ⊢⊢⊢(b+b

′,r+r ′+1)tp : neutral

Fig. 8. Type system for leftmost evaluation

Lemma 4.3 (Tight spreading on neutral terms). Let t be such that neutralhd (t) and Φ ▷lo
Γ ⊢⊢⊢(b ,r )t : A be a typing derivation such that tight(Γ). Then tight(A) and the last rule of Φ is not
appb .

Note that the lemma assumes neutralhd (t) and not neutrallo(t), and this is not a typo: as

neutrallo(t) implies neutralhd (t), the lemma is stronger than if stated with neutrallo(t). The
proof of this lemma is the same of that of Lemma 3.3, but for the fact that applor replaces apphdr .

Proposition 4.4 (Properties of lo typings for normal forms). Let t be such that normallo(t),
and Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a tight type derivation. Then
(1) Tight indices: b = 0 and r = |t |lo . As a consequence |t |lo ≤ |Φ|.
(2) Neutrality: if A = neutral then neutrallo(t).

Proof. The proof follows the same lines of the one for the head case. In particular, it uses the

tight spreading on neutral terms exactly in the same way. See Appendix B.1. □

The substitution lemma also follows the same pattern of the head case.

Lemma 4.5 (Substitution and typings for lo). Let Φt ▷lo ∆;x : M ⊢⊢⊢(b ,r )t : A and Φp ▷lo
Γ ⊢⊢⊢(b

′,r ′)p :M . Then there exists a derivationΦt {x�p }▷lo Γ ⊎ ∆⊢⊢⊢(b+b
′,r+r ′)t{x�p} :Awhere |Φt {x�p } | =

|Φt | + |Φp | − |M |. Moreover, if Φt and Φp are traditional, then Φt {x�p } is traditional too.

Proof. See Appendix B.1. □

Shrinking Subject Reduction. What is “shrinking doing there? this is not a section about shrinking,

is it? To obtain the quantitative version of subject reduction, for which the b index decreases of

exactly one, we are now forced to add the tight hypothesis. Basically, when reduction takes place

in the argument, tightness ensures that the argument is typed only once. An example of argument

that may go untyped is given by the following non-tight derivation Φ:

y : [[ ] → X ] ⊢⊢⊢(0,0)y : [ ] → X
many

⊢⊢⊢(0,0)Ω : [ ]
appb

y : [[ ] → X ] ⊢⊢⊢(0,0)yΩ : X

Note that yΩ −→lo yΩ and so the reduct is typed again by the derivation Φ and nothing has changed.

Incidentally, this example shows that the type system is not even correct for −→lo termination.

We then need a predicate restricting the set of derivations. Tightness is one such predicate, but in

Sect. 5 we shall see another possible predicate.
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Arguments may also be typed more than once. Consider the following non-tight derivation.

y : [[X ,X ] → X ] ⊢⊢⊢(0,0)y : [X ,X ] → X

(z : [X ] ⊢⊢⊢(0,0)Iz : X )i=1,2
many

z : [X ,X ] ⊢⊢⊢(2,0)Iz : [X ,X ]
appb

y : [[X ,X ] → X ], z : [X ,X ] ⊢⊢⊢(2,0)y(Iz) : X

Now, y(Iz) −→lo yz and the corresponding derivation for yz is:

y : [[X ,X ] → X ] ⊢⊢⊢(0,0)y : [X ,X ] → X

(z : [X ] ⊢⊢⊢(0,0)z : X )i=1,2
many

z : [X ,X ] ⊢⊢⊢(0,0)z : [X ,X ]
appb

y : [X ,X ] → X , z : [X ,X ] ⊢⊢⊢(0,0)yz : X

Both sub-derivations inside the many rule have been reduced, and so the first counter on the final

judgement decreases by 2 and not by 1.

In both examples, if the derivation were tight then y would be typed with neutral and the last

application rule would be applor , which requires the argument to be typed only once, avoiding both

examples of inaccurate counting.

Adding the tight hypothesis impacts on the proof of subject reduction. The inductive cases of

the proof change, because to apply the i.h. on a sub-derivation Φ one now needs to show that Φ is

tight. In fact, since tightness is a global property not necessarily true for all sub-derivations, the

proof actually proves a strengthened statement. Moreover, the last case relies crucially on the tight

spreading on neutral terms (Lemma 4.3).

Proposition 4.6 (Quantitative tight subject reduction for lo). If Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A is tight
and t −→lo p then b ≥ 1 and there exists a typing Φ′ such that Φ′ ▷lo Γ ⊢⊢⊢(b−1,r )p : A and |Φ| > |Φ′ |.

Proof. We prove the following stronger statement (tightness is decomposed in two predicates

tight(Γ) and tight(A), and the second is paired together with a further assumption):

Let t −→lo p, Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A, tight(Γ), and (tight(A) or ¬abslo(t)). Then b ≥ 1 and there

exists a typing Φ′ ▷lo Γ ⊢⊢⊢(b−1,r )p : A and |Φ| > |Φ′ |.

By induction on t −→lo p. Cases:
• Rule

(λx .u)q −→lo u{x�q}

Assume Φ▷lo Γ ⊢⊢⊢(b ,r )(λx .u)q :A and tight(Γ). The derivation Φmust end with rule appb , and
the derivation of its premiss for λx .u must end with funb . Hence, there are two derivations

Φu ▷lo Γu ;x : M ⊢⊢⊢(bu ,ru )u :A and Φq ▷lo Γq ⊢⊢⊢
(bq ,rq )q :M , with (b, r ) = (bu +bq + 1, ru + rq) and

Γ = Γu ⊎Γq . Applying the substitution Lemma 4.5, we obtain Φ′ ▷lo Γ ⊢⊢⊢(bu+bq ,ru+rq )u{x�q} :A
and |Φ′ | = |Φu | + |Φq | − |M | < |Φu | + |Φq | + 2 = |Φ|.

• Rule

u −→lo q

λx .u −→lo λx .q

Assume Φ ▷lo Γ ⊢⊢⊢(b ,r )λx .u : A and tight(Γ). Since abslo(λx .u) we must have hypothesis

tight(A). Then, the last rule of Φ has to be with funr , and we must have a subderivation

Φu ▷lo Γ, x : Tight ⊢⊢⊢(b ,r−1)u : tight. As tight(Γ, x : Tight) we can apply the i.h. and get the
premiss of the derivation Φ′

below:
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Φq ▷lo Γ, x : Tight ⊢⊢⊢(b−1,r−1)q : tight

Γ ⊢⊢⊢(b−1,r )λx .q : abs

We conclude |Φ| = |Φu | + 1 > |Φq | + 1 = |Φ′ | thanks to the i.h. |Φu | > |Φq |.

• Rule

¬abslo(u) u −→lo q

t = um −→lo qm = p

Assume Φ ▷lo Γ ⊢⊢⊢(b ,r )um : A and tight(Γ). The derivation Φ must end with rule appb or

applor .

In both cases there are derivations Φu ▷lo Γu ⊢⊢⊢
(bu ,ru )u :Au and Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m :Am (Am

may be a multi-set), with Γ = Γu ⊎Γm . Since tight(Γ)we have tight(Γu ), and since ¬abslo(u)
we can apply the i.h. (even ifAu is not tight) obtaining the derivation Φq ▷lo Γu ⊢⊢⊢

(bu−1,ru )q :Au

such that |Φq | < |Φu |. Now, using the same rule appb or applor at the end of Φ, we build the

following derivation Φ′
:

Φq ▷lo Γu ⊢⊢⊢(bu−1,ru )q : Au Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m : Am

Γ ⊢⊢⊢(b−1,r )qm : A

that satisfies |Φ′ | = |Φq | + |Φm | + 1 < |Φu | + |Φm | + 1 = |Φ|.
• Rule

neutrallo(m) u −→lo q

t =mu −→lo mq = p

Assume Φ▷lo Γ ⊢⊢⊢(b ,r )mu :A and tight(Γ). The derivation Φmust end with rule appb or app
lo
r ,

and therefore there are two derivations Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m :Am and Φu ▷lo Γu ⊢⊢⊢
(bu ,ru )u :Au ,

for some types Am and Au (Au may be a multi-set), with Γ = Γm ⊎ Γu . Since tight(Γ) we
have tight(Γm) and tight(Γu ). By the tight spreading on neutral terms (Lemma 4.3), from

tight(Γm) and neutrallo(m) it follows tight(Am). Therefore, the last rule ofΦmust be applor ,

whence Am = A = neutral and Au = tight. Now, the sub-derivation Φu is tight (tight(Γu )
andAu = tight) and we can apply the i.h., obtaining the derivation Φq ▷lo Γu ⊢⊢⊢

(bu−1,ru )q :Au

such that |Φq | < |Φu |. Now, using the same rule appb or applor at the end of Φ, we build the

following derivation Ψ:

Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m : Am Φq ▷lo Γu ⊢⊢⊢(bu−1,ru )q : Au

Γ ⊢⊢⊢(b−1,r )mq : A

that satisfies |Ψ| = |Φq | + |Φm | + 1 < |Φu | + |Φm | + 1 = |Φ|.
□

Correctness then follows by the same reasoning used for tight head derivations.

Theorem 4.7 (Tight correctness for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a tight derivation. Then there
exists p such that t −→b

lo p, normallo(p), and |p |lo = r . Moreover, if A = neutral then neutrallo(p).

Proof. See Appendix B.1. □

Note that the statement of the correctness theorem is different from the one for head evaluation

(Theorem 3.7), because here nothing is said about derivations that are not tight. The whole of Sect. 5

is devoted to the study of such derivations. Let us just sketch the point. Consider the following

derivation that types the argument exactly once, as the tight derivation would. Consider now the

non-tight type A = [X ] → X and the following (non-tight) derivation:
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y : [[A] → A] ⊢⊢⊢(0,0)y : [A] → A
funb

⊢⊢⊢(1,0)I : [A] → A

z : [[X ] → X ] ⊢⊢⊢(0,0)z : [X ] → X
funb

⊢⊢⊢(1,0)I : [X ] → X
appb

⊢⊢⊢(2,0)II : A

Note that neither 2 is the length of the evaluation to normal form I, nor 0 is the size of this normal

form I. Nonetheless, the derivation has the same structure as the tight one, and it contains the

same basic information. In Sect. 5 we shall work out how to extract it.

4.2 Tight Leftmost Completeness
The proof of completeness of tight derivations for leftmost evaluation follows the same structure

of completeness for the head case. There are some differences, that are exactly the same differences

between the correctness parts of the two systems. In particular, the proof of subject expansion is

refined along the same lines of the proof of subject reduction.

Proposition 4.8 (Normal forms are tightly typable for lo). Let t be such that normallo(t).
Then
(1) Existence: there exists a tight derivation Φ ▷lo Γ ⊢⊢⊢(0, |t |lo )t : A.
(2) Structure: moreover, if neutrallo(t) then A = neutral, and if abslo(t) then A = abs.
(3) Unique size: if Ψ is another tight derivation for t then |Φ| = |Ψ|.

Proof. See Appendix B.2. □

Lemma 4.9 (Anti-substitution and typings for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t{x�p} : A. Then there
exist:

• a multi-setM ;
• a typing derivation Φt ▷lo Γt ;x : M ⊢⊢⊢(bt ,rt )t : A; and
• a typing derivation Φp ▷lo Γp ⊢⊢⊢

(bp ,rp )p :M
such that:

• Typing context: Γ = Γt ⊎ Γp ;
• Indices: (b, r ) = (bt + bp, rt + rp ).
• Sizes: |Φ| = |Φt | + |Φp | − |M |.
• If Φ is traditional, then Φt and Φp are traditional too.

Proof. See Appendix B.2. □

The proof of quantitative subject expansion mimicks the elaborated one for subject reduction: it

uses anti-substitution in the base case, it needs a strengthened hypothesis for the inductive cases,

and it makes use of the tight spreading on neutral terms in the last inductive case. The unsurprising

details are in the Appendix.

Proposition 4.10 (Quantitative tight subject expansion for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )p : A be
a tight derivation. If t −→lo p then there exists a (tight) typing Ψ such that Ψ ▷lo Γ ⊢⊢⊢(b+1,r )t : A and
|Ψ| > |Φ|.

Proof. See Appendix B.2. □

Theorem 4.11 (Tight completeness for lo). Let t −→k
lo p with normallo(p). Then

(1) Existence: there exists a tight typing Φ ▷lo Γ ⊢⊢⊢(k , |p |lo )t : A.
(2) Structure: moreover, if neutrallo(p) then A = neutral, and if abslo(p) then A = abs.

Proof. See Appendix B.2. □
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5 LEFTMOST-OUTERMOST EVALUATION AND SHRINKING TYPINGS
This section focuses on the leftmost(-outermost) evaluation system and on the relationship between

tight and tight-free—deemed traditional in Definition 4.2—typings. Contributions are manyfold:

(1) Leftmost normalisation, revisited: we revisit the characterisation of leftmost normalising terms

as those typable with shrinking typings, that is, those where the empty multi-set has no

negative occurrences [Krivine 1993]. The insight is that the shrinking and tight constraints are

of a very similar nature, showing that our technique is natural rather than ad-hoc. Moreover,

our notion of shrinking derivation can also include the tight constants, thus we provide a

strict generalisation of the characterisation in the literature.

(2) Proof technique: the technical development follows the schema of the previous sections and

differs considerably by others in the literature. The literature always relies, necessarily, on

shrinking typings. Krivine uses the reducibility technique (because he deals with idempotent

intersection types and cannot use the simpler size-decreasing technique allowed by multi

types) [Krivine 1993], de Carvalho also uses the reducibility technique (despite studying multi

types) [de Carvalho 2018], and Kesner and co-authors use the size-decreasing technique and

rely on typed redex occurrences [Bucciarelli et al. 2017; Kesner and Ventura 2014]. We use the

size-decreasing technique and replace typed redex occurrences with a detailed study of how

shrinking typings propagate, based on properties of neutral terms.

(3) Unitary shrinking typings: we study a notion of minimal traditional typings, deemed unitary
shrinking, that is a slight variation over principal types or de Carvalho’s 1-typings [de Carvalho
2018], playing a role akin to that of tight typings in the absence of the tight constants. The

insight here is that tight typings are simply a device to focalise what traditional types can

already observe in a somewhat more technical way.

(4) Type bound: we show that for traditional shrinking derivations, the types in the last judgement

provide a bound on the size of normal forms—with no reference to the type derivation—and

this bound is exact if the typing is unitary shrinking and minimal. This is a reformulation

of a key point of de Carvalho’s work [de Carvalho 2018]. The insight is then the inherent

inadequacy of multi types as a tool for reliable complexity measures for the leftmost strategy,

because of size explosion.

This study is done with respect to leftmost evaluation because among the case studies of the

paper it is the most relevant one for reasonable cost models. It may however be easily adapted,

mutatis mutandis, to the other systems.

Shrinking typings. It is standard to characterise leftmost normalising terms as those typable with

intersection types without negative occurrences of Ω [Krivine 1993], or, those typable with multi

types without occurrence of the empty multi-set [ ] [Bucciarelli et al. 2017]. We call this constraint

shrinking. To explain it, let’s recall the examples we considered before tight subject reduction for

the leftmost strategy (Proposition 4.6). Consider the derivation of end sequent:

y : [[ ] → X ] ⊢⊢⊢(0,0)yΩ : X (1)

Since yΩ is −→lo -diverging, this derivation has to be excluded somehow. The problem here is that

since y has an erasing type—that is an arrow type with [ ] on the left—then the diverging subterm

Ω does not get typed. Excluding the use of [ ] is too drastic, because the paradigmatic erasing term

λx .y is normal and can be typed only with:

y : [X ] ⊢⊢⊢(1,0)λx .y : [ ] → X

The idea is that only some occurrences of [ ] are dangerous. The given examples seem to suggest

that if [ ] occurs on the right side of ⊢ is fine, while if it occurs in the typing context it is not. Things
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in fact are subtler. Extending example (1) with an abstraction, one obtains the −→lo -diverging term

λy.yΩ and the typing

⊢⊢⊢(0,0)λy.yΩ : [[ ] → X ] → X

that show that [ ] can be dangerous also on the right. The correct shrinking constraint takes into

account the polarity of the occurrence [ ], which is the number of arrows for which the occurrence

is in the left branch. The types associated to reducing sub-terms are exactly those of even polarity

on the right of ⊢ and those of odd polarity on the left of ⊢, which then must not be [ ].

Shrinking allows to capture termination [Krivine 1993]. Counting exactly the number of steps,

however, requires a slight refinement. Not only all reducing subterms have to be typed (that is,

they cannot be typed with [ ]), but they have to be typed exactly once—this is the unitary shrinking

constraint. Let’s go back to the example of inaccurate counting of the previous section, for instance.

y : [[X ,X ] → X ], z : [X ,X ] ⊢⊢⊢(2,0)y(Iz) : X

Here the redex Iz is typed twice, which can be seen by [X ,X ] in the type of y, even if it is not

duplicated. A unitary shrinking typing of Iz would rather be:

y : [[X ] → X ] ⊢⊢⊢(0,0)y : [X ] → X

z : [X ] ⊢⊢⊢(0,0)Iz : X
many

z : [X ] ⊢⊢⊢(1,0)Iz : [X ]
appb

y : [[X ] → X ], z : [X ] ⊢⊢⊢(1,0)y(Iz) : X

We need some basic notions. We use the notationT to denote a (multi)-type, that is, either a type
A or a multi-set of typesM .

Definition 5.1 (Positive and negative occurrences). Let T be a (multi)-type. The sets of positive

and negative occurrences of T in a type/multi-set of types/typing context are defined by mutual

induction as follows:

A ∈ Occ+(A)

∃B ∈ M such that T ∈ Occ+(B)

T ∈ Occ+(M)

∃B ∈ M such that T ∈ Occ−(B)

T ∈ Occ−(M)

M ∈ Occ+(M)

T ∈ Occ−(M) or T ∈ Occ+(A)

T ∈ Occ+(M → A)

T ∈ Occ+(M) or T ∈ Occ−(A)

T ∈ Occ−(M → A)

T ∈ Occ+(M) or T ∈ Occ+(Γ)

T ∈ Occ+(x : M, Γ)

T ∈ Occ−(M) or T ∈ Occ−(Γ)

T ∈ Occ−(x : M, Γ)

Shrinking typings are defined by imposing a condition on the final judgement of the derivation,

similarly to tight typings. It is technically convenient to also define its dual predicate, being (unitary)
co-shrinking.

Definition 5.2 ((Unitary) shrinking typing). Let Φ ▷lo Γ ⊢(b ,r ) t :A be a typing derivation.

• A is shrinking if |M | ≥ 1 for allM ∈ Occ+(A), and it is unitary shrinking if |M | = 1;

• A is co-shrinking if |M | ≥ 1 for allM ∈ Occ−(A), and it is unitary co-shrinking if |M | = 1;

• M is shrinking/co-shrinking/unitary shrinking/unitary co-shrinking if every A ∈ M is;

• Γ is co-shrinking (resp. unitary co-shrinking) ifM is co-shrinking (resp. unitary co-shrinking)

for all type declarations x : M in Γ;
• Φ is shrinking (resp. unitary shrinking) if A is shrinking (resp. unitary shrinking) and Γ is

co-shrinking (resp. unitary co-shrinking).
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For example, [ ] ∈ Occ−([ ] → A), [ ] ∈ Occ−([[ ] → A,A]) and [[ ] → A,A] is shrinking but not

unitary, [ ] ∈ Occ−(x : [[ ] → A]), and [ ] ∈ Occ+([[ ] → A] → A) and [[ ] → A] → A is unitary

co-shrinking.

Note that

• Final judgement: being shrinking is a local condition, which depends only on the final judge-

ment of a typing derivation, and that

• Tight implies unitary shrinking: a tight typing derivation is always shrinking, and even unitary
shrinking.

In this section we also have a close look to traditional derivations, that is, derivations without
tight constants, see Definition 4.2 on page 17.

We shall need a natural property of type occurrences (used in Lemma 5.6 below).

Lemma 5.3 (Transitivity of polarities). Let T ,U ,V be (multi)-types and a,b ∈ {+,−}. If
U ∈ Occa(T ) and V ∈ Occb (U ) then V ∈ Occδ (a,b)(T ), where

δ (+,+) := + δ (−,+) := − δ (−,−) := + δ (+,−) := −

Proof. Easy induction onU ∈ Occa(T ). See Appendix C for details. □

Type sizes. One of our results is that the types appearing in the final judgement of a derivation

bound the size of lo normal forms, for traditional typings, according to the a notion of type size

given below, and independently of the derivation itself. To give an idea, consider the easily derivable

(unitary shrinking) typing

⊢⊢⊢(1,0)λy.yy : [[X ] → X ,X ] → X (2)

There are 2 arrows in the type (judgement) and the normal form has leftmost size 2. Of course, one

also has to take into account the arrow symbols appearing in the typing judgement, when present.

Note, however, that types in general only give an upper bound: taking the derivation of (2) and

replacing X with [X ] → X produces the derivable (unitary shrinking) judgement

⊢⊢⊢(1,0)λy.yy : [[[X ] → X ] → [X ] → X , [X ] → X ] → [X ] → X

which has many more arrows than the size of the term.

Definition 5.4 (Type size). The size #(·) of types, multi-sets, and typing contexts is defined as

follows:

#(X ) := 0 #(tight) := 0

#(M) :=
∑

A∈M #(A) #(M → A) := #(M) + #(A) + 1
#(ϵ) := 0 #(x : M ; Γ) := #(M) + #(Γ)

Exact measures via unitary shrinking traditional typings. One of the aims of this section is to

show how to exactly measure the number of steps and the size of normal forms without using tight

constants, that is, using traditional derivations only. Essentially, this is done using unitary shrinking

typings. The measurements however are more involved than in the tight case, as they have to be

extracted from other information that can be found in the typing derivations. In particular, for

traditional derivations, the index r is always 0 (it is only incremented by rules funr and applor ), so

that all the information is collapsed on the b index. The basic ideas are the following:

• The size #(Γ) + #(A) in a unitary shrinking traditional typing Γ ⊢⊢⊢(b ,0)t : A provides the size of

the normal form of t ;
• Being unitary shrinking ensures that b decreases by exactly 1 at every −→lo step (as in the

tight case);

• Then b − #(Γ) − #(A) gives the exact number of −→lo steps to normal form.
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Things are however slightly more complex than as just described, for the following reasons:

(1) Unitary shrinking traditional type sizes are lax in general: the first item above is not really

true, only unitary shrinking traditional derivations giving minimal types do capture exactly

the size of normal forms (otherwise they only provide a bound, as the example above shows).

We build such typings in the completeness subsection (and so in the correctness part there

are no exact measures).

(2) Sizes mismatch: the third item above is also not really true, because, even when #(Γ) + #(A)
does match the size of normal forms, we have that b counts abstractions, so that we should

subtract from it only the number of abstractions in the normal form (and not the applications).

This is done by replacing the size of types with a polarised size extracting from types the

number of abstractions, defined below.

Extracting the Number of Abstractions from Types. Polarity as used for the shrinking predicate is

the key concept to isolate the number of abstractions. Re-consider the following example.

⊢⊢⊢(1,0)λy.yy : [[X ] → X ,X ] → X

Note that arrows of positive polarity (that is, on the left branch of an even number of abstractions)

count abstractions, and arrows of negative polarity count applications. Of course, things are reversed

for types in the typing judgement, as the next example shows.

z : [[[X ] → X ,X ] → X ] → X ⊢⊢⊢(1,0)z (λy.yy) : X

We use |t |λ to denote the number of abstractions in a term. The following refined notion of size

for types shall be used to count the number of abstractions in the normal form.

Definition 5.5 (Polarised type size). The polarised sizes #
P (·) and #

N (·) of types, multi-sets, and

typing contexts is defined as follows:

#
P (X ) := 0 #

P (tight) := 0

#
P (M) :=

∑
A∈M #

P (A) #
P (M → A) := #

N (M) + #P (A) + 1
#
P (ϵ) := 0 #

P (x : M ; Γ) := #
P (M) + #P (Γ)

#
N (X ) := 0 #

N (tight) := 0

#
N (M) :=

∑
A∈M #

N (A) #
N (M → A) := #

P (M) + #N (A)
#
N (ϵ) := 0 #

N (x : M ; Γ) := #
N (M) + #N (Γ)

5.1 Shrinking Correctness
Here we show that shrinking typability is preserved by leftmost evaluation and that the size of

shrinking typings decreases along it—hence the name—so that every shrinkingly typable term is

leftmost normalising. Moreover, the b index of unitary shrinking typings decreases by exactly 1, as

for tight typings (for shrinking derivations it may decrease of an arbitrary positive amount). For

the sake of completeness, we also show that typability is always preserved, but if the typing is not

shrinking then its size may not decrease.

Once more, we follow the abstract schema of the other sections, but replacing tight with (unitary)

shrinking.
We start, as usual, with a spreading property on neutral terms, expressed by the following lemma.

Lemma 5.6 (Occurrences spreading on neutral terms). Let t be such that neutralhd (t) and
Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a typing derivation. Then A is a positive occurrence of Γ. Moreover, if Γ is
co-shrinking (resp unitary co-shrinking) then A is co-shrinking (resp unitary co-shrinking).

Proof. See Appendix C.1. □
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Two observations:

(1) Subsumption of tight spreading: this lemma subsumes the tight spreading on neutral terms
(Lemma 3.3). Indeed, if the typing context Γ is tight, the fact that A is a positive occurrence

of Γ implies that A is tight.

(2) Being co-shrinking spreads: note that in the tight case the corresponding lemma allows to

conclude that the derivation is tight, while here we cannot conclude that the derivation is

shrinking, because it is being co-shrinking that spreads, giving that A is co-shrinking, while

to obtain that Φ is shrinking we would instead need that A is shrinking.

Properties of normal forms. For normal forms we prove two properties. First, the shrinking

hypothesis allows to use type derivations to bound the size of normal forms. Moreover, the index b
provides a bound to the number of abstractions in the normal form.

Similarly to the case of tight subject reduction for system lo (Proposition 4.6), the next three

propositions require a slightly strengthened statement, having as particular case what we are

actually interested in, that is, that the derivation is shrinking.

Proposition 5.7 (Shrinking derivations bound the size of normal forms). Let normallo(t)
and Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a derivation, and let |Φ|ax denote the number of axiom rules in Φ.
(1) If Γ is co-shrinking and (A is shrinking or t is not an abstraction) then |t |lo ≤ |Φ| − |Φ|ax.

Moreover, if Φ is traditional then |t |λ ≤ b.
(2) If Γ is unitary co-shrinking and (A is unitary shrinking or t is not an abstraction) then |t |lo =

|Φ| − |Φ|ax. Moreover, if Φ is traditional then |t |λ = b.

Proof. By induction on t . Note that neutrallo implies normallo and so we can apply the i.h.
when neutrallo holds on some subterm of t . See Appendix C.1. □

The second property of normal forms is relative to traditional derivations, for which (size of) the

types in the final judgement—rather than the type derivation—bound the size of the normal form.

Moreover, the index b is bound by the polarised sizes of such types. As in the previous sections,

neutral terms play a key role, showing that our isolation of the relevance of neutral terms for

characterisation via multi types is not specific to tight types.

Proposition 5.8 (Traditional types bounds the size of neutral and normal terms). Let
Φ ▷lo Γ ⊢(b ,r ) t :A be a traditional derivation such that Γ is co-shrinking. Then:
(1) If neutrallo(t) then #(A) + |t |lo ≤ #(Γ) and #N (A) + b ≤ #

N (Γ).
(2) If normallo(t) and A is shrinking then |t |lo ≤ #(Γ) + #(A) and b ≤ #

N (Γ) + #P (A).

Proof. See Appendix C.1. □

The substitution lemma for the lo system has already been proved in Sect. 3 (Lemma 4.5).

As usual, shrinking correctness is based on a subject reduction property. Note that for unitary

shrinking derivations b decreases by exactly 1.

Proposition 5.9 (Shrinking subject reduction). Let Φ ▷lo Γ ⊢(b ,r ) t :A. If t −→lo p then b ≥ 1

and there exists Ψ such that Ψ ▷lo Γ ⊢(b
′,r ) p:A with b ′ ≤ b and |Ψ| ≤ |Φ|. Moreover, Φ traditional

implies Ψ traditional, and if Φ is shrinking (resp. unitary shrinking) then b ′ < b (resp. b ′ = b − 1) and
|Ψ| < |Φ|.

Proof. See Appendix C.1. □

Note that a leftmost diverging term like x(δδ ) is typable in system lo by assigning to x the

type [ ] → X and typing δδ with [ ], and that its type is preserved by leftmost evaluation, by
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Proposition 5.9. Note however that the resulting judgement is not shrinking—only shrinkingly

typable terms are leftmost normalising, in fact.

Theorem 5.10 (Shrinking correctness). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a shrinking derivation. Then
there exists a −→lo normal form p and k ≤ b such that
(1) Steps: t −→lo -evaluates to p in k steps, i.e. t −→k

lo p;
(2) Size bound: |p |lo + k ≤ |Φ|;

Moreover, if Φ is traditional then |p |lo ≤ #(Γ)+ #(A) and |p |λ ≤ #
N (Γ)+ #P (A), and if Φ is also unitary

shrinking then |p |λ = b − k .

Proof. See Appendix C.1. □

Note that when Φ is unitary shrinking it does not follow that |p |lo = #(Γ) + #(A) and |p |λ =
#
N (Γ) + #P (A). The equalities indeed hold only if additionally the types in the last judgement of Φ
are minimal. Such minimal derivations are built in the proof of Proposition 5.11 below.

5.2 Shrinking Completeness
The proof of completeness for shrinking typings also follows, mutatis mutandis, the usual schema.

Normal forms and anti-substitution have already been treated (Proposition 3.8 and Lemma 3.9).

Again, however, we repeat the study of (the existence of typings for) leftmost normal forms focussing

now on traditional typings and on the bound provided by types. Their study is yet another instance

of spreading on (leftmost) neutral terms, in this case of the size bound provided by types: for neutral

terms the size of the typing context Γ allows bounding both the size of the term and the size of its

type, which is stronger than what happens for general leftmost normal terms.

One of the key point of the following proposition is that its proofs builds typing judgements

having types of minimal size, refining Proposition 5.8.

Proposition 5.11 (Neutral and normal terms have minimal traditional shrinking typ-

ings).

(1) If neutrallo(t) then for every unitary co-shrinking type A there exists a traditional derivation
Φ▷lo Γ ⊢(b ,0) t :A such that Γ is unitary co-shrinking, #(A)+ |t |lo = #(Γ), and #N (A)+b = #

N (Γ).
(2) If normallo(t) then there exists a traditional unitary shrinking derivation Φ ▷lo Γ ⊢(b ,0) t :A such

that |t |lo = #(Γ) + #(A) and b = #
N (Γ) + #P (A).

Proof. By mutual induction on neutrallo(t) and normallo(t). Point 1 is along the lines of the
case of Proposition 5.8. Here we only show the proof of Point 2; see Appendix C.2 for the full proof.

Cases of normallo(t):
(1) neutrallo(t). By i.h. (point 1), for every unitary co-shrinking type A there exists a traditional

typing Φ ▷lo Γ ⊢(b ,0) t :A such that Γ is unitary co-shrinking. It is then enough to pick A := X ,

that is both unitary shrinking and unitary co-shrinking, so that Φ is unitary shrinking, #(A) =
0, and the statement trivially holds, because then |t |lo = #(A) + |t |lo =i.h. #(Γ) = #(Γ) + #(A).
Moreover, #

P (A) = #
N (A) = 0, so that by i.h. #N (A) + b = #

N (Γ), which is equivalent to

b = #
N (Γ) + #P (A), as required.

(2) Abstraction, i.e. t = λy.p and normallo(p). By i.h. (point 2), there exists a unitary shrinking

traditional typing Φp ▷lo Γp ⊢(bp ,0) p:B with |p |lo = #(Γp ) + #(B).
Then let y : M (M possibly [ ]) the declaration of y in Γp and set Γ be Γp without y : M . Then

let Φ be the derivation

Φp ▷lo y : M ; Γ ⊢(bp ,0) p:B
funb

Γ ⊢(bp+1,0) λy.p:M → B
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which is traditional and unitary shrinking because Φp is. We have

|λy.p |lo = |p |lo + 1
=i.h. #(y : M ; Γ) + #(B) + 1
= #(Γ) + #(M) + #(B) + 1
= #(Γ) + #(M → B)

and

bp + 1 =i.h. #
N (y : M ; Γ) + #P (B) + 1

= #
N (Γ) + #N (M) + #P (B) + 1

= #
N (Γ) + #P (M → B)

□

The last bit is a subject expansion property. Note in particular that since β-redexes are typed
using traditional rules, the expansion preserves traditional typings.

Proposition 5.12 (Shrinking subject expansion). If t −→lo p and Φ ▷lo Γ ⊢(b ,r ) p:A then there
exists Ψ such that Ψ ▷lo Γ ⊢(b

′,r ) t :A with b ′ ≥ b. Moreover, if Φ is shrinking (resp. unitary shrinking)
then b ′ ≥ b + 1 (resp. b ′ = b + 1) and |Ψ| > |Φ|, and if Φ is traditional then Ψ is traditional.

Proof. The proof is along the lines of the one for shrinking subject reduction, requiring the

same kind of strengthened statement, see Appendix C.2. □

The completeness theorem then follows. We are finally able to measure exactly and separately

both the number of steps and the size of of leftmost normal form via a traditional unitary shrinking

derivation.

Theorem 5.13 (Shrinking completeness). Let t −→k
lo p with p such that normallo(p). Then there

exists a traditional unitary shrinking typing Φ ▷lo Γ ⊢(b ,0) t :A such that k = b − #
N (Γ) − #

P (A) and
|p |lo = #(Γ) + #(A).

Proof. See Appendix C.2. □

Minimality. The minimality (with respect to size) of both tight and unitary shrinking derivations

is implicitly contained in the statement of Proposition 5.7. For shrinking derivations one has

|t |lo ≤ |Φ| − |Φ|ax and the equality holds exactly when the derivation is tight or unitary shrinking.

The part about axioms is harmless: it is easily seen that for tight and unitary shrinking derivations

the number of axioms is exactly the number of variable occurrences in the term (and so they all

have the same size), and for shrinking derivations it is greater or equal to such number.

It is expected that the result holds more generally for all tight and unitary shrinking derivations,

not just those for normal terms. Proving it, however, requires an (even more) involved study.

Intuition tells that minimality can be pulled back to all typable terms via subject expansion. The

problem is that subject expansion is formulated as an existential property (there exists a derivation...)
and establishing minimality requires to compare the obtained expanded derivation with all the

derivations for the expanded term, that may bear no similarity with the derivation in the hypothesis

of subject expansion. A possible approach is to formalise subject reduction and expansion as

operations over derivations (and not as existential properties). The precise definition of these

operations is however very technical, because they can rewrite multi-sets of sub-derivations at

once, if the rewriting step takes place in some arguments (in the term).

We estimated that the technical effort is not worth the minor additional result, given that this

paper already has its good amount of technical material.
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Type bounds and relational denotational semantics. The fact that for traditional typings the types
in the final judgements provide a bound on the size of the normal form is a strong property.

It is in particular the starting point for de Carvalho’s transfer of the study of bounds to the

relational semantics of terms [de Carvalho 2007, 2018]—a term is interpreted as the set of its

possible typings (thus including the typing context), that is a notion independent of the typing

derivations themselves.

As we said in the introduction, multi types can be seen as a syntactic presentation of relational

denotational semantics, which is themodel obtained by interpreting the λ-calculus into the relational
model of linear logic [Bucciarelli and Ehrhard 2001; de Carvalho 2007, 2016; Girard 1988], often

considered as a canonical model.

The idea is that the interpretation (or semantics) of a term is simply the set of its types, together

with their typing contexts. More precisely, let t be a term and x1, . . . , xn (with n ≥ 0) be pairwise

distinct variables. If fv(t) ⊆ {x1, . . . , xn}, we say that the list ®x = (x1, . . . , xn) is suitable for t . If
®x = (x1, . . . , xn) is suitable for t , the (relational) semantics of t for ®x is

[[t]]®x := {((M1, . . . ,Mn),A) | ∃Φ ▷lo x1 :M1, . . . , xn :Mn ⊢(b ,r ) t :A such that Φ is shrinking} .

By subject reduction and expansion, the interpretation [[t]]®x is an invariant of evaluation, and

by correctness and completeness it is non-empty if and only if t is leftmost normalisable. Said

differently, shrinking multi typing judgements provide an adequate denotational model with respect

to the leftmost strategy. If the interpretation is restricted to traditional typing derivations, then it

coincides with the one in the relational model in the literature. General derivations still provide

a relational model, but a slightly different one, with the two new types abs and neutral, whose
categorical semantics still has to be studied.

6 EXTENSIONS
In the rest of the paper we are going to further explore the properties of the tight approach to multi

types along two independent axes:

(1) Maximal evaluation: we adapt the tight methodology to the case of maximal evaluation,

which relates to strong normalisation in that the maximal evaluation strategy terminates only

if the term being evaluated is strongly normalising. This case is a simplification of [Bernadet

and Graham-Lengrand 2013a] that can be directly related to the head and leftmost evaluation

cases. It is in fact very close to leftmost evaluation but for the fact that, during evaluation,

typing contexts are not necessarily preserved and the size of the terms being erased has to

be taken into account. The statements of the properties have to be adapted accordingly.

(2) Linear head evaluation: we reconsider head evaluation in the linear substitution calculus

obtaining exact bounds on the number of steps and on the size of normal forms. The surprise

here is that the type system is essentially unchanged and that it is enough to count also

axiom rules (that are ignored for head evaluation in the λ-calculus) in order to exactly bound

also the number of linear substitution steps.

Let us stress that these two variations on a theme can be read independently.

7 MAXIMAL EVALUATION
In this section we consider the maximal strategy, which gives the longest evaluation sequence from

any strongly normalising term to its normal form. The maximal evaluation strategy is perpetual in
that, if a term t has a diverging evaluation path then the maximal strategy diverges on t . Therefore,
its termination subsumes the termination of any other strategy, which is why it is often used to

reason about strong normalisation property [van Raamsdonk et al. 1999].
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Fig. 9. Maximal strategy

Strong normalisation and erasing steps. It is well-known that in the framework of relevant (i.e.
without weakening) multi types it is technically harder to deal with strong normalisation (all

evaluations terminate)—which is equivalent to the termination of the maximal strategy— than with

weak normalisation (there exists a terminating evaluation)—which is equivalent to the termination

of the leftmost strategy. The reason is that one has to ensure that all subterms that are erased along

any evaluation are themselves strongly normalising.

The simple proof technique that we used in the previous section does not scale up—in general—to

strong normalisation (or to the maximal strategy), because subject reduction breaks for erasing

steps, as they change the final typing judgement. Of course the same is true for subject expansion.

There are at least three ways of circumventing this problem:

(1) Memory: to add a memory constructor, as in Klop’s calculus [Klop 1980], that records the

erased terms and allows evaluation inside the memory, so that diverging subterms are

preserved. Subject reduction then is recovered.

(2) Subsumption/weakening: adding a simple form of sub-typing, that allows stabilising the final

typing judgement in the case of an erasing step, or more generally, adding a strong form of

weakening, that essentially removes the empty multi type.

(3) Big-step subject reduction: abandon the preservation of the typing judgement in the erasing

cases, and rely on a more involved big-step subject reduction property relating the term

directly to its normal form, stating in particular that the normal form is typable, potentially

by a different type.

Surprisingly, the tight characterisation of the maximal strategy that we are going to develop

does not need any of these workarounds: in the case of tight typings subject reduction for the

maximal strategy holds, and the simple proof technique used before adapts smoothly. To be precise,

an evaluation step may still change the final typing judgement, but the key point is that the

judgement stays tight. Morally, we are employing a form of subsumption of tight contexts, but an

extremely light one, that in particular does not require a sub-typing relation. We believe that this is

a remarkable feature of tight multi types.

Maximal evaluation and predicates. The maximal strategy shares with leftmost evaluation the

predicates neutrallo , normallo , abslo , and the notion of term size |t |lo , which we respectively

write neutralmax , normalmax , absmax , and |t |max . We actually define, in Fig. 9, a version of the

maximal strategy, denoted

r
−→max , that is indexed by an integer r representing the size of what is

erased by the evaluation step. We define the transitive closure of

r
−→max as follows:

t
0

−→0

max t

t
r1
−→max p p

r2
−→k

max u

t
r1+r2
−−−−→k+1

max u

t
r
−→k

max p

t
r
−→∗

max p
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Typing rules {ax, funb , funr , appb , applor } in Fig. 8 plus

|I | > 0 (∆i ⊢⊢⊢
(bi ,ri )t : Ai )i ∈I

many>0
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(+i∈Ibi ,+i∈I ri )t : [Ai ]i ∈I

∆ ⊢⊢⊢(b ,r )t : A
none

∆ ⊢⊢⊢(b ,r )t : [ ]

Fig. 10. Type system for maximal evaluation

Proposition 7.1 (max evaluation system). (Λ, −→max , neutralmax , normalmax , absmax ) is
an evaluation system.

Also in this case the proof is routine.

Multi types. Multi types are defined exactly as in Section 3. The type system max for max-
evaluation is defined in Fig. 10. Rules many>0 and none (which is a special 0-ary version of many),
are both used to prevent an argument p in rule appb to be untyped: either it is typed by means of

rule many>0—and thus it is typed with at least one type—or it is typed by means of rule none—and
thus it is typed with exactly one type: the type itself is then forgotten, but requiring the premiss to

have a type forces the term to be −→max normalising. The fact that arguments are always typed,

even those that are erased during reduction, is essential to guarantee strong normalisation: system

max cannot type anymore a term like xΩ.
The next lemma expresses the relevance property of systemmax , that distinguishes it from the

head and leftmost cases, and that can be proved by a straightforward induction on Φ.

Lemma 7.2 (Relevance). Let Φ ▷max Γ ⊢⊢⊢(b ,r )t : A. Then x ∈ fv(t) if and only if x ∈ dom(Γ).

The size |Φ| of a typing derivation Φ is naturally adapted to system max , counting all rule

applications in Φ, except those of rules many>0 and none. And again if Φ ▷max Γ ⊢⊢⊢(b ,r )t : A then

b + r ≤ |Φ|.
Similarly to the head and leftmost cases, the quantitative information in typing derivations is

used to characterise evaluation lengths and sizes of normal forms, as captured by the correctness

and completeness theorems that we now present.

7.1 Tight Correctness
The correctness theorem is proved following the same schema used for head and leftmost evalua-

tions. Most proofs are similar, and are therefore omitted.

We start with the properties of typed normal forms. The proof of the tight spreading on neutral

terms (Lemma 4.3) also applies to typing systemmax , providing the following lemma.

Lemma 7.3 (Tight spreading on neutral terms for max). If neutralhd (t) and Φ ▷max
Γ ⊢⊢⊢(b ,r )t : A such that tight(Γ), then tight(A) and the last rule of Φ is not appb .

The general properties of typed normal forms hold as well, using the same notion of tightness as

in Definition 3.2.

Proposition 7.4 (Properties of typings for normal forms). Given Φ ▷max Γ ⊢⊢⊢(b ,r )t : A with
normalmax (t),
(1) Size bound: |t | ≤ |Φ|
(2) Tight indices: if Φ is tight then b = 0 and r = |t |.
(3) Neutrality: if A = neutral then neutralmax (t).

Proof. See Appendix D.1. □
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We now turn to the typing derivations of terms that are not necessarily in normal form. The

case of maximal evaluation starts differing from head and leftmost evaluations: indeed, rule none
is not used in tight derivations of normal forms but must be used to type terms that are erased

by reduction. If the types of such terms are left unconstrained, then precision is lost regarding

the quantitative information that typing derivations contain about erasable terms. For maximal

evaluation we must therefore strengthen the notion of tightness for typing derivations, which

becomes a global condition because it is no longer a property of the final judgment only:

Definition 7.5 (Max-tight derivations). A derivation Φ ▷max Γ ⊢⊢⊢(b ,r )t : B is garbage-tight if in
every instance of rule (none) in Φ we have tight(A). It is max-tight if also Φ is tight, in the sense

of Definition 3.2.

Then we can type substitutions:

Lemma 7.6 (Substitution and typings for max). Let M , [ ], Φt ▷max ∆;x : M ⊢⊢⊢(b ,r )t : A,
and Φp ▷max Γ ⊢⊢⊢(b ,r )p :M . Then there exists a derivation Φt {x�p } ▷max Γ ⊎ ∆ ⊢⊢⊢(b+b

′,r+r ′)t{x�p} : A
where |Φt {x�p } | = |Φt | + |Φp | − |M |. Moreover if Φt and Φp are garbage-tight, then so is Φt {x�p } .

Note that the substitution lemma differs in two points with respect to the those for the head and

leftmost cases (Lemma 3.5 and Lemma 4.5):

(1) Relevance: we assume that the multi-setM is not empty, so that the typing hypothesis for p
is derived with rule many>0 rather than none. Note that indeed meta-level substitution is

used in the definition of t
r
−→max p only when the substituted variable x does occur, that by

relevance (Lemma 7.2), corresponds to having x assigned to a non-empty multi-setM in the

type context typing the body of the abstraction.

(2) Garbage-tightness: the substitution lemma has to ensure that garbage-tightness is preserved.

This has no analogous on the head and leftmost cases because their notions of tightness only

concern the final judgement, while here tightness has also an internal component, given

precisely by garbage-tightness.

Nonetheless, the proof of the substitution lemma follows exactly the same schemas in the head and

leftmost cases, and is therefore omitted.

Subject reduction. The statement of the subject reduction property here slightly differs from

the corresponding ones for the head and leftmost cases. Indeed, if t
r
−→max p then the typing

environment Γ for term t is not necessarily preserved when typing p, because the evaluation step

may erase a subterm of t . Consider for instance term t = (λx .x ′)(yy). In anymax-typing derivation
of t , the typing context must declare y with an appropriate type that ensures that, when applying

a well-typed substitution to t , the resulting term is still normalising for −→max . For instance,

the context should declare y : [[A] → A,A], or even y : [neutral] if the typing derivation for

t is max-tight. However, as t
1

−→max x ′
, the typing derivation for x ′

will clearly have a typing

environment Γ′ that maps y to [ ]. Hence, the subject reduction property has to take into account

the change of typing context, as shown below. In what follows we write Γ ⊑ Γ′ if Γ(x) ⊑ Γ′(x) for
every variable x , where ⊑ denotes multi-set inclusion.

Proposition 7.7 (Quantitative tight subject reduction formax). If Φ ▷max Γ ⊢⊢⊢(b ,r )t : A

is max-tight and t
e
−→max p, then there exist Γ′ ⊑ Γ and an max-tight typing Ψ such that Ψ ▷max

Γ′ ⊢⊢⊢(b−1,r−e)p : A and |Φ| > |Ψ|.

Proof. As for the leftmost case (Proposition 4.6) we need to strengthen the statement, as follows:

Let t
e
−→max p, Φ ▷max Γ ⊢⊢⊢(b ,r )t : A is garbage-tight, tight(Γ), and (tight(A) or ¬absmax (t)).

Then there exist Γ′ and a garbage-tight typing Ψ ▷max Γ′ ⊢⊢⊢(b−1,r−e)p : A such that tight(Γ′).
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We give here the two interesting cases of evaluation at top level: the non-erasing one, that

requires the strengthen substitution lemma, and the erasing one, that modifies the type context.

The full proof is in Appendix D.1.

• Non-erasing top-level step:

x ∈ fv(u)

(λx .u)q
0

−→max u{x�q}

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)q : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , the derivation of its premiss for λx .u must end with funb . Hence, there are
two garbage-tight derivations Φu ▷max Γu ;x : M ⊢⊢⊢(bu ,ru )u : A and Φp ▷max Γp ⊢⊢⊢

(bp ,rp )p : M ,

with (b, r ) = (bu + bq + 1, ru + rq) and Γ = Γu ⊎ Γp . Moreover, by hypothesis x ∈ fv(u), and
so M , [ ] by relevance (Lemma 7.2). Then, the substitution lemma (Lemma 7.6) gives a

garbage-tight derivationΨ▷max Γ ⊢⊢⊢(bu+bq ,ru+rq )u{x�q} :A such that |Ψ| = |Φu |+ |Φq |− |M | <
|Φu | + |Φq | + 2 = |Φ|.

• Erasing top-level step:

x < fv(u) normalmax (q)

(λx .u)q
|q |max
−−−−−→max u

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)q : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , and the derivation of its premiss for (λx .u) must end with funb . Moreover,

since x < fv(u), then by relevance (Lemma 7.2) the derivation of its premiss q must end with

rule none:
Φu ▷max Γu ⊢⊢⊢(bu ,ru )u : A

funb
Γu ⊢⊢⊢(bu+1,ru )λx .u : [ ] → A

Φq ▷max Γq ⊢⊢⊢
(bq ,rq )q : Aq

none
Γq ⊢⊢⊢

(bq ,rq )q : [ ]
appb

Γu ⊎ Γq ⊢⊢⊢
(bu+bq+1,ru+rq )(λx .u)q : A

with (b, r ) = (bu + bq + 1, ru + rq) and Γ = Γu ⊎ Γp . Since Φ is garbage-tight, then Γq
is tight and Aq must be tight, and since normalmax (q), we can apply the tight indices

property of normal forms (Proposition 7.4) and obtain (bq, rq) = (0, |q |max ), so that (bu , ru ) =
(b−1, r − |q |max ). Since tight(Γu ⊎ Γq)we have tight(Γu ), so Φu is the desired garbage-tight

derivation. Moreover, |Φu | < |Φu | + |Φq | + 2 = |Φ|.
□

Correctness theorem. Now the correctness theorem easily follows. It differs from the corresponding

theorem in Section 3.1 in that the second index in the max-tight typing judgement does not only

measure the size of the normal form but also the sizes of all the terms erased during evaluation

(and necessarily in normal form).

Theorem 7.8 (Tight correctness formax-evaluation). Let Φ ▷max Γ ⊢⊢⊢(b ,r )t : A be a max-
tight derivation. Then there is an integer e and a term p such that normalmax (p), t

e
−→b

max p and
|p |max + e = r . Moreover, if A = neutral then neutralmax (p).

Proof. See Appendix D.1. □

On removing the measure of erased terms. It is possible to slightly modify the definition of system

max so that the second counter r is exactly the size |p |max of the normal form. Simply, one needs

to modify the none rule as follows:
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∆ ⊢⊢⊢(b ,r )t : A
none0

∆ ⊢⊢⊢(b ,0)t : [ ]

Indeed, by setting the second counter to 0, rule none0 ignores the size of erasable arguments.

7.2 Tight Completeness
Completeness is again similar to completeness in the head and leftmost cases, and differs from

them in the same way as correctness differs from their correctness. Namely, the second index in

the completeness theorem also accounts for the size of erased terms, and the appendix provides the

proof of the subject expansion property. The completeness statement follows.

Proposition 7.9 (Normal forms are tightly typable in max). Let t be such that normalmax (t).
Then
(1) Existence: there exists a max-tight derivation Φ ▷max Γ ⊢⊢⊢(0, |t |max )t : A.
(2) Structure: Moreover, if neutralmax (t) then A = neutral, and if absmax (t) then A = abs.

Lemma 7.10 (Anti-substitution and typings for max). If Φ ▷max Γ ⊢⊢⊢(b ,r )t{x�p} : A and
x ∈ fv(t), then there exist:

• a multi-setM different from [ ];
• a typing derivation Φt ▷max Γt ;x : M ⊢⊢⊢(bt ,rt )t : A; and
• a typing derivation Φp ▷max Γp ⊢⊢⊢

(bp ,rp )p :M
such that:

• Typing context: Γ = Γt ⊎ Γp ;
• Indices: (b, r ) = (bt + bp, rt + rp ).
• Sizes: |Φ| = |Φt | + |Φp | − |M |.

Moreover, if Φ is garbage-tight then so are Φt and Φp .

Proposition 7.11 (Quantitative tight subject expansion formax ). If Φ ▷max Γ ⊢⊢⊢(b ,r )p : A

is max-tight and t
e
−→max p, then there exist Γ′ ⊒ Γ and a max-tight typing Ψ such that Ψ ▷max

Γ′ ⊢⊢⊢(b+1,r+e)t : A and |Φ| < |Ψ|. Ψ ▷max Γ′ ⊢⊢⊢(b+1,r+e)t : A and |Φ| < |Ψ|.

Proof. See Appendix D.2. □

Theorem 7.12 (Tight completeness for formax ). If t
e
−→k

max p with normalmax (p), then there
exists an max-tight typing Φ▷max Γ ⊢⊢⊢(k , |p |max+e)t :A. Moreover, if neutralmax (p) thenA = neutral,
and if absmax (p) then A = abs.

Proof. See Appendix D.2. □

8 LINEAR HEAD EVALUATION
In this section we consider the linear version of the head evaluation system, where linear comes

from the linear substitution calculus (LSC), a formalism that is a subtle reformulation of Milner’s

calculus with explicit substitutions [Kesner and Conchúir 2008; Milner 2007], which is inspired

from the structural lambda-calculus [Accattoli and Kesner 2010]. The linear substitution calculus

has all the good properties one expect from a calculus with explicit substitutions, inherited from

those of Milner’s calculus [Kesner and Conchúir 2008]. It also has properties that no other calculus

with explicit substitutions has, such as a residual system and a theory of standardisation [Accattoli

et al. 2014].

Concretely, the LSC is a refinement of the λ-calculus where the language is extended with

an explicit substitution constructor t[x\p], and linear substitution is a micro-step rewriting rule
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replacing one occurrence at a time—therefore, linear does not mean that variables have at most

one occurrence, only that their occurrences are replaced one by one. Linear head evaluation—first

studied in [Danos and Regnier 2004; Mascari and Pedicini 1994]—admits various presentations. The

one in the LSC adopted here is the simplest one and has been introduced in [Accattoli 2012].

The insight here is that switching from head to linear head, and from the λ-calculus to the

LSC only requires counting ax rules for the size of typings and the head variable for the size of

terms—the type system, in particular is the same. The correspondence between the two system is

spelled out in the last subsection of this part. Of course, switching to the LSC some details have to be

adapted: a further index traces linear substitution steps, there is a new typing rule to type the new

explicit substitution constructor, and the proof schema slightly changes, as the (anti-)substitution

lemma is replaced by a linear (anti-)substitution one—these are unavoidable and yet inessential

modifications.

Thus, the main point of this section is to split the complexity measure among the multiplicative

steps (beta steps) and the exponential ones (substitutions). Moreover, linear logic proof nets are

known to simulate the λ-calculus, and LSC is known to be isomorphic to the proof-nets used in the

simulation [Accattoli 2018b]. Therefore, the results of this section directly apply to those proof

nets.

Explicit substitutions. We start by introducing the syntax of our language, which is given by the

following set Λlsc of terms, where t[x\p] is a new constructor called explicit substitution (shortened
ES), that is equivalent to let x = p in t :

LSC Terms t,p F x | λx .t | tp | t[x\p]

The notion of free variable is defined as expected, in particular, fv(t[x\p]) := (fv(t) \ {x}) ∪ fv(p).
(List of) substitutions and linear head contexts are given by the following grammars:

(List of) substitution contexts L ::= ⟨·⟩ | L[x\t]
Linear head contexts H ::= ⟨·⟩ | λx .H | Ht | H [x\t]

We write L⟨t⟩ (resp. H ⟨t⟩) for the term obtained by replacing the hole ⟨·⟩ in context L (resp. H ) by

the term t . This plugging operation, as usual with contexts, can capture variables. We write H ⟨⟨t⟩⟩
when we want to stress that the context H does not capture the free variables of t .

Normal, neutral, and abs predicates. The predicate normallhd defining linear head normal terms

and neutrallhd defining linear head neutral terms are introduced in Fig. 11. They are a bit more

involved than before, because switching to the micro-step granularity of the LSC the study of

normal forms requires a finer analysis. The predicates are now based on three auxiliary predicates

neutralxlhd , normal
x
lhd , and normal

#

lhd : the first two characterise neutral and normal terms whose

head variable x is free, the third instead characterises normal forms whose head variable is bound.

Note also that the abstraction predicate abslhd is now defined modulo ES, that is, a term such as

(λx .t)[z\p][y\u] satisfies the predicate. It is worth noticing that a term t of the formH ⟨⟨y⟩⟩ does not
necessarily verify normallhd (t), e.g. (λz.(yx)[x\y])p, because it has a multiplicative redex (defined

below). Examples of linear head normal forms are λx .xy and (yx)[x\z](I I ).

Small-step semantics. Linear head evaluation is often specified by means of a non-deterministic

strategy having the diamond property [Accattoli 2012]. Here, however, we present a minor de-

terministic variant, in order to follow the general schema presented in the introduction. The

deterministic notion of linear head evaluation lhd is in Fig. 12. An example of→lhd -sequence is

((λz.(xx)[x\y])p)[y\w] −→lhd (xx)[x\y][z\p][y\w] −→lhd
(yx)[x\y][z\p][y\w] −→lhd (wx)[x\y][z\p][y\w]
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linear head abstractions

abslhd (λx .t)

abslhd (t)

abslhd (t[x\p])

linear head normal forms

lhnvar
neutralxlhd (x)

neutralxlhd (t)
lhnapp

neutralxlhd (tp)

y , x neutralxlhd (t)
lhnsubx

neutralxlhd (t[y\p])

neutralxlhd (t)
lhnno

normalxlhd (t)

y , x normalxlhd (t)
lhnolamx

normalxlhd (λy.t)

y , x normalxlhd (t)
lhnosubx

normalxlhd (t[y\p])

normalxlhd (t)
lhnolamx

normal#lhd (λx .t)

normal#lhd (t)
lhnolam

normal#lhd (λx .t)

normal#lhd (t)
lhnosub

normal#lhd (t[y\p])

neutralxlhd (t)
lhnx

neutrallhd (t)

normalxlhd (t)
lhnox

normallhd (t)

normal#lhd (t)
lhno

normallhd (t)

Fig. 11. Linear head neutral and normal forms�
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lhdm
L⟨λx .t⟩u −→lhd L⟨t[x\u]⟩

lhde
H ⟨⟨x⟩⟩[x\t] −→lhd H ⟨⟨t⟩⟩[x\t]

t −→lhd u
lhdλ

λx .t −→lhd λx .u

¬abslhd (t) t −→lhd u
lhd@

tv −→lhd uv

t , H ⟨⟨x⟩⟩ t −→lhd u
lhds

t[x\v] −→lhd u[x\v]

Fig. 12. Linear-head strategy

From now on, we split the evaluation relation →lhd in two relations, multiplicative −→m and

exponential −→e evaluation, where −→m (resp. −→e ) is generated by the base case (lhdm) (resp. (lhde))
and closed by the three rules (lhdλ), (lhd@), (lhds ). The terminology multiplicative and exponential
comes from the linear logic interpretation of the LSC. The literature contains also an alternative

terminology, using B at a distance for −→m (or distant B, where B is a common name for the variant

of β introducing an ES instead of using meta-level substitution) and linear substitution for −→e .

Proposition 8.1 (linear head evaluation system).

(Λlsc,→lhd , neutrallhd , normallhd , abslhd ) is an evaluation system.

Proof. In the linear case the proof is subtler than for the head, LO, and maximal cases. It is in

Appendix E. □

Size of Normal Forms. In Fig. 13 the notion of linear head size |t |lhd extends the head size to

terms with ES by counting 1 for variables—note that ES do not contribute to the linear head size.

One way to understand why ES do not count for |t |lhd is having in mind the cost of recognizing a

linear head normal form. In contrast to the previous cases, however, here one has to consider terms

represented as proof nets, or, equivalently, a pointer-based representation of variables. In these

cases, in the representation of t[x\p] the topmost constructor of t and the ES [x\p] are not next
to each other, and there might not even be a path between the two. To check whether t is linear
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|x |lhd := 1 |λx .t |lhd := |t |lhd + 1

|tu |lhd := |t |lhd + 1 |t[x\u]|lhd := |t |lhd

Fig. 13. Head linear size of terms'
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ax
x : [A] ⊢⊢⊢(0,0,1)x : A

(∆i ⊢⊢⊢
(bi ,ei ,ri )t : Ai )i ∈I

many
⊎i ∈I∆i ⊢⊢⊢

(+i∈Ibi ,+ei ,+i∈I ri )t : [Ai ]i ∈I

Γ ⊢⊢⊢(b ,e ,r )t : A
funb

Γ \\ x ⊢⊢⊢(b+1,e+ |Γ(x ) |,r−|Γ(x ) |)λx .t : Γ(x) → A

tight(Γ(x)) Γ ⊢⊢⊢(b ,e ,r )t : tight
funr

Γ \\ x ⊢⊢⊢(b ,e ,r+1)λx .t : abs

Γ ⊢⊢⊢(b ,e ,r )t :M → A ∆ ⊢⊢⊢(b
′,e ′,r ′)p :M

appb
Γ ⊎i ∈I ∆i ⊢⊢⊢

(b+b′,e+e ′,r+r ′)tp : A

Γ ⊢⊢⊢(b ,e ,r )t : neutral
apphdr

Γ ⊢⊢⊢(b ,e ,r+1)tu : neutral

Γ ⊢⊢⊢(b ,e ,r )t : A ∆ ⊢⊢⊢(b
′,e ′,r ′)u : Γ(x)

ES
(Γ \\ x) ⊎ ∆ ⊢⊢⊢(b+b

′,e+e ′+ |Γ(x ) |,r+r ′−|Γ(x ) |)t[x\u] : A

Fig. 14. Type system for linear head evaluation.

head normal then amounts to go through the left branch of the syntax tree, as for the head case,

and once arrived on the head variable, verifying that the variable does not point to a ES (that is, it

points to an abstraction or nowhere, if it is a free variable).

Multi types. We consider the same multi types of Sect. 3, but now typing judgements are of the

form Γ ⊢⊢⊢(b ,e ,r )t : A, where (b, e, r ) is a triple of integers whose intended meaning is explained in

the next paragraph. The typing system lhd is defined in Fig. 14. By abuse of notation, we use for

all the typing rules—except ES which is a new rule—the same names used for hd . As in the case

of hd and lo, there is an alternative way to specify the functional rules, which is also applicable

now to rule ES. These formulations are often used in the technical proofs, they look as follows:

Γ;x : M ⊢⊢⊢(b ,e ,r )t : A
funb

Γ ⊢⊢⊢(b+1,e+ |M |,r−|M |)λx .t :M → A

Γ;x : Tight ⊢⊢⊢(b ,e ,r )t : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λx .t : abs

Γ;x : M ⊢⊢⊢(b ,e ,r )t : A ∆ ⊢⊢⊢(b
′,e ′,r ′)u :M

ES
Γ ⊎ ∆ ⊢⊢⊢(b+b

′,e+e ′+ |M |,r+r ′−|M |)t[x\u] : A

As in the head and leftmost case, the size of a typing derivation |Φ| is the number of rules in Φ,
not counting the occurrences of rule many.

Indices. The roles of the three components of (b, e, r ) in a typing derivation Γ ⊢⊢⊢(b ,e ,r )t : A can be

described as follows:

• b and multiplicative steps: similarly to the head case, b is supposed to bound the number of

multiplicative redexes, i.e. the number of subterms of the form L⟨λx .t⟩u that are reduced

during an evaluation to normal form.

• e and exponential steps: the index e is supposed to bound the number of exponential redexes,

i.e. subterms of the form H ⟨⟨x⟩⟩[x\t] that are reduced during an evaluation to normal form.
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Note that e is incremented by axioms, and thus it counts the number of times an axioms is

replaced by an exponential step. The ES typing rule does not change the index because a

single ES can be involved in many exponential steps along an evaluation sequence.

• r and size of the result: r counts the rules typing variables, abstractions and applications (i.e.
ax, funr and apphdr ) that cannot be consumed by lhd evaluation, so that they appear in the

linear head normal form of a term. Note that the ES constructor is not consider part of the

head of terms.

Note also that the typing rules assume that variable occurrences (corresponding to ax rules) end
up in the result, by having the third index set to 1. When a variable x becomes bound by an ES

(rule ES) or by an abstraction destined to be applied (funb ), the number of uses of x , expressed by

the multiplicity of the multi-setM typing it, is subtracted from the size of the result, because those

uses of x correspond to the times that it shall be replaced via a linear substitution step, and thus

they should no longer be considered as contributing to the result. Coherently, that number instead

contributes to the index tracing linear substitution steps.

Definition 8.2 (Tight derivations). A derivation Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : B is tight if tight(B) and
tight(Γ).

Example. Consider again the term t0 = (λx1.(λx0.x0x1)x1)I, where I is the identity function

λx3.x3. The linear head evaluation sequence from t0 to lhd normal-form is given below, in which

we distinguish the multiplicative steps from the exponential ones.

(λx1.(λx0.x0x1)x1)I −→m ((λx0.x0x1)x1)[x1\I] −→m

(x0x1)[x0\x1][x1\I] −→e (x1x1)[x0\x1][x1\I] −→e

(Ix1)[x0\x1][x1\I] −→m x3[x3\x1][x0\x1][x1\I] −→e

x1[x3\x1][x0\x1][x1\I] −→e I[x3\x1][x0\x1][x1\I]

The evaluation sequence has length 7: 3 multiplicative steps and 4 exponential steps. The linear

head normal form has size 2. We now give a tight typing for the term t0, by writing again absabs

for [abs] → abs.

x0 : [absabs] ⊢⊢⊢(0,0,1)x0 : absabs

x1 : [abs] ⊢⊢⊢(0,0,1)x1 : abs

x1 : [abs] ⊢⊢⊢(0,0,1)x1 : [abs]

x0 : [absabs], x1 : [abs] ⊢⊢⊢(0,0,2)x0x1 : abs

x1 : [abs] ⊢⊢⊢(1,1,1)λx0 .x0x1 : [absabs] → abs

x1 : [absabs] ⊢⊢⊢(0,0,1)x1 : absabs

x1 : [absabs] ⊢⊢⊢(0,0,1)x1 : [absabs]

x1 : [abs, absabs] ⊢⊢⊢(1,1,2)(λx0 .x0x1)x1 : abs

⊢⊢⊢(2,3,0)λx1 .(λx0 .x0x1)x1 : [abs, absabs] → abs

.

.

.

⊢⊢⊢(1,1,2)I : [abs, absabs]

⊢⊢⊢(3,4,2)(λx1 .(λx0 .x0x1)x1)I : abs

Indeed, the pair (3, 4, 2) represents 3 (resp. 4) multiplicative (resp. exponential) evaluation steps to

lhd normal-form, and a linear head normal form of size 2.

8.1 Tight Correctness
As in the case of head and LO evaluation, the correctness proof is based on three main properties:

properties of normal forms—themselves based on a lemma about neutral terms—the interaction

between (linear head) substitution and typings, and subject reduction.

Neutral terms and properties of normal forms. As for the head case, the properties of tight typing

of lhd normal forms depend on a spreading property of lhd neutral terms. Additionally, they also
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require a characterisation of the shape of type contexts for tight derivations of neutral and normal

terms.

Lemma 8.3 (Tight spreading onneutral terms, plus typing contexts). LetΦ▷lhd Γ ⊢⊢⊢(b ,e ,r )t :A
be a derivation.
(1) If neutralxlhd (t) then x ∈ dom(Γ). Moreover, if tight(Γ(x)) then tight(A) and dom(Γ) = {x}.
(2) If normalxlhd (t) then x ∈ dom(Γ). Moreover, if tight(Γ(x)) then dom(Γ) = {x}.
(3) If normal#lhd (t) and tight(A) then A = abs and Γ is empty.

In all the cases, if tight(Γ), then the last rule of Φ is not appb .

Note that the points 1 and 2 together imply that if Γ ⊢⊢⊢(b ,e ,r )H ⟨⟨x⟩⟩ : A then x ∈ dom(Γ), i.e.
Γ = Γ′;x : M withM , [ ].

Proof. By induction on Φ. See Appendix E.1. □

Proposition 8.4 (Properties of lhd tight typings for normal forms). Let t be such that
normallhd (t), and Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : A be a typing derivation.
(1) Size bound: |t |lhd ≤ |Φ|.
(2) Tightness: if Φ is tight then b = e = 0 and r = |t |lhd .
(3) Neutrality: if A = neutral then neutrallhd (t).

Proof. The proof is by induction on Φ. We only show here the interesting case which allows

to understand the use of Lemma 8.3, the full proof can be found in Appendix E.1. Let t = p[x\u],
whose derivation Φ has the following form:

Ψ ▷lhd ∆;x : M ⊢⊢⊢(b
′,e ′,r ′)p : A Π ⊢⊢⊢(b

′′,e ′′,r ′′)u :M
ES

∆ ⊎ Π ⊢⊢⊢(b
′+b′′,e ′+e ′′+ |M |,r ′+r ′′−|M |)p[x\u] : A

with b = b ′ + b ′′, e = e ′ + e ′′, r = r ′ + r ′′, and Γ = ∆ ⊎ Π.
(1) Size bound: by i.h. |p |lhd ≤ |Ψ|. Then |t |lhd = |p |lhd ≤i.h. |Ψ| < |Φ|.
(2) Tight bound: There are two cases:

• normal
y
lhd (p) for some y , x . By Lemma 8.3.2 y ∈ dom(∆). All assignments in ∆ are Tight

because Φ is tight, and so applying Lemma 8.3.2 again we obtain that dom(∆) = {y}, that is,
thatM = [ ]. Two consequences: first, the ES has no right premiss, that is, it rather has the

following shape:

Ψ ▷lhd Γ ⊢⊢⊢(b ,e ,r )p : A
ES

Γ ⊢⊢⊢(b ,e ,r )p[x\u] : A

second, Ψ is tight, and so by i.h. b = e = 0 and r = |p |lhd . The statement follows from the

fact that |p |lhd = |p[x\u]|lhd .
• normal#lhd (p). If Φ is tight then A = tight and by Lemma 8.3.3 the context ∆;x : M is

empty, that is, M = [ ]. Two consequences: first, the ES has no right premiss, that is, it

rather has the following shape:

Ψ ▷lhd ⊢⊢⊢(b ,e ,r )p : A
ES

⊢⊢⊢(b ,e ,r )p[x\u] : A

second, Ψ is tight, and so by i.h. b = e = 0 and r = |p |lhd . The statement follows from the

fact that |p |lhd = |p[x\u]|lhd .
□
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Linear substitution lemma. The main difference in the proof schema with respect to the head case

is about the substitution lemma, that is now expressed differently, because evaluation no longer

relies on meta-level substitution. Linear substitutions consume one type at a time: performing a

linear head substitution on a term of the form H ⟨⟨x⟩⟩[x\t] consumes exactly one type resource

associated to the variable x , and all the other ones remain in the typing context after the partial

substitution.

Lemma 8.5 (Linear substitution and typings for lhd). Let Φ ▷lhd x : M ; Γ ⊢⊢⊢(b ,e ,r )H ⟨⟨x⟩⟩ : A.
Then there exists B ∈ M such that for all Φt ▷lhd Γt ⊢⊢⊢

(bt ,et ,rt )t : B there exists a derivation Ψ ▷lhd
x : M \ [B]; Γ ⊎ Γt ⊢⊢⊢

(b+bt ,e+et ,r+rt−1)H ⟨⟨t⟩⟩ : A. Moreover, |Ψ| = |Φ| + |Φt | − 1.

Proof. By induction on H . See Appendix E.1. □

Subject reduction. Quantitative subject reduction is also refined, by taking into account the fact

that now there are two evaluation steps, whose numbers are traced by two different indices.

Proposition 8.6 (Quantitative subject reduction for lhd). If Φ ▷ Γ ⊢(b ,e ,r ) t :A then
(1) If t −→m u then b ≥ 1 and there is a typing Φ′ such that Φ′ ▷ Γ ⊢(b−1,e ,r ) u:A and |Φ′ | = |Φ| − 1.
(2) If t −→e u then e ≥ 1 and there is a typing Φ′ such that Φ′ ▷ Γ ⊢(b ,e−1,r ) u:A and |Φ′ | = |Φ| − 1.

Proof. The proof is by induction on t −→m u and t −→e u, using Lemma 8.5. See Appendix E.1. □

Note that quantitative subject reduction does not assume that the typing derivation is tight: as

for the head case, the tight hypothesis is only used for the study of normal forms—it is needed for

subject reduction / expansion only if evaluation can take place inside arguments, as in the leftmost

and maximal cases.

Note also that the size of derivations decreases of exactly 1—it follows from the moreover part
of the linear substitution lemma. This fact contrasts strikingly with respect to the other subject

reduction properties in the paper, where it is not possible to have such an uniform bound, because

they adopt an operational semantics based on meta-level (full) substitution, that may replace many

or no variable occurrences at the same time. This is one of the reasons behind our slogan that multi

types more naturally measure evaluation in the LSC rather than in the λ-calculus.

Correctness. According to the spirit of tight typings, linear head correctness does not only provide
the size of (linear head) normal forms, but also the lengths of evaluation sequences to (linear head)

normal form: the two first integers b and e in the final judgement count exactly the total number of

evaluation steps to (linear-head) normal form.

Theorem 8.7 (Tight correctness for lhd). Let Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : A be a tight derivation. Then
there exists p such that t →b+e

lhd p, normallhd (p) and |p |lhd = r . Moreover, if A = neutral then
neutrallhd (p).

Proof. See Appendix E.1. □

8.2 Tight Completeness
As in the case of head and LO evaluation the completeness proof is based on the following properties:

typability of linear head normal forms, interaction between (linear head) anti-substitution and

typings, and subject expansion. The proofs are analogous to those of the completeness for head

and LO evaluation, up to the changes for the linear case, that are instead analogous to those of the

correctness of the previous subsection. The statements follow.

Proposition 8.8 (Linear head normal forms are tightly typable for lhd). Let t be such that
normallhd (t). Then there exists a tight typing Φ ▷lhd Γ ⊢⊢⊢(0,0, |t |lhd )t : A. Moreover, if neutrallhd (t)
then A = neutral, and if abslhd (t) then A = abs.
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Proof. See Appendix E.2. □

Lemma 8.9 (Linear anti-substitution and typings for lhd). Let Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )H ⟨⟨u⟩⟩ : A,
where x < u. Then there exists

• a type B
• a typing derivation Φu ▷lhd Γu ⊢⊢⊢(bu ,eu ,ru )u : B
• a typing derivation ΦH ⟨⟨x ⟩⟩ ▷lhd Γ′ ⊎ x :[B] ⊢⊢⊢(b

′,e ′,r ′)H ⟨⟨x⟩⟩ : A
such that

• Typing contexts: Γ = Γ′ ⊎ Γu .
• Indices: (b, e, r ) = (b ′ + bu , e

′ + eu , r
′ + ru − 1).

• Sizes: |Φ| = |Φu | + |ΦH ⟨⟨x ⟩⟩ | − 1.

Proof. By induction on H . See Appendix E.2. □

Proposition 8.10 (Quantitative subject expansion for lhd). If Φ′ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t ′ : A then
(1) If t −→m t

′ then there is a derivation Φ ▷lhd Γ ⊢⊢⊢(b+1,e ,r )t : τ and |Φ′ | = |Φ| + 1.
(2) If t −→e t

′ then there is a derivation Φ ▷lhd Γ ⊢⊢⊢(b ,e+1,r )t : A and |Φ′ | = |Φ| + 1.

Proof. See Appendix E.2. □

As for linear head correctness, linear head completeness also refines the information provided

about the lengths of the evaluation sequences: the number k of evaluation steps to (linear head)

normal form is now split into two integers k1 and k2 representing, respectively, the multiplicative

and exponential steps in such evaluation sequence.

Theorem 8.11 (Tight completeness for lhd). Let t →k
lhd p, where normallhd (p). Then there

exists a tight type derivation Φ ▷lhd Γ ⊢⊢⊢(k1,k2, |p |lhd )t :A, where k = k1+k2. Moreover, if neutrallhd (p),
then A = neutral, and if abslhd (p) then A = abs.

Proof. See Appendix E.2. □

8.3 Relationship Between Head and Linear Head
The head and linear head strategies are specifications at different granularities of the same notion

of evaluation. Their type systems are also closely related—in a sense that we now make explicit,

they are the same system.

In order to formalise this relationship we define the transformation L of hd-derivations into
(linear, hence the notation) lhd-derivations as: ax in hd is mapped to ax in lhd , funr in hd is mapped

to funr in lhd , funb in hd is mapped to funb in lhd , and so on. This transformation preserves the

context and the type of all the typing judgements. Of course, if one restricts the lhd system to λ-
terms, there is an inverse transformationN of lhd-derivations into (non-linear, hence the notation)
hd-derivations, defined as expected. Together, the two transformation realise an isomorphism.

Proposition 8.12 (Head isomorphism). Let t be a λ-term without explicit substitutions. Let | · |ax
denote the number of axiom rules in a derivation. Then
(1) Non-linear to linear: ifΦ▷hd Γ ⊢⊢⊢(b ,r )t :A then there exists e ≥ 0 such thatL(Φ)▷lhd Γ ⊢⊢⊢

(b ,e ,r ′)t :A,
where r ′ = r − e + |Φ|ax. Moreover, N(L(Φ)) = Φ.

(2) Linear to non-linear: if Φ▷lhd Γ ⊢⊢⊢(b ,e ,r
′)t :A thenN(Φ)▷hd Γ ⊢⊢⊢(b ,r )t :A, where r = e+r ′− |Φ|ax.

Moreover, L(N(Φ)) = Φ.

The proof is straightforward.

Morally, the same type system measures both head and linear head evaluations. The difference

is that to measure head evaluation and head normal forms one forgets the number of axiom typing
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rules, that coincides exactly with the number of linear substitution steps, plus 1 for the head variable

of the linear normal form. In this sense, multi types more naturally measure linear head evaluation.

Roughly, a tight multi type derivation for a term is nothing else but a coding of the evaluation in

the LSC, including the normal form itself.

On the number of substitution steps. It is natural to wonder how the index e introduced by L in

Proposition 8.12.1 is related to the other indices b and r . This kind of questions has been studied at

length in the literature about reasonable cost models. It is known that e = O(b2) for any λ-term,

even for untypable ones, see [Accattoli and Dal Lago 2012] for details. The bound is typically

reached by the diverging term δδ , which is untypable, but also by the following terminating (and

therefore typable) term tn := (λxn . . . . (λx1.(λx0.(x0x1 . . . xn))x1)x2 . . . xn)I . Indeed, tn evaluates in

2n multiplicative steps (one for turning each β-redex into an ES, and one for each time that the

identity comes in head position) and Ω(n2) exponential steps.

On terms with ES. Relating typing judgements for λ-terms with ES to judgements for ordinary

λ-terms is a bit trickier—we only sketch the idea. One needs to introduce the unfolding operation

(·)

→

: Λlsc → Λ on λ-terms with ES, that turns all ES into meta-level substitutions, producing the

underlying ordinary λ-term. For instance, (x[x\y][y\z])

→

= z. As in Proposition 8.12.2, types are

preserved:

Lemma 8.13 (Unfolding and lhd derivations). Let t ∈ Λlsc. If Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : A then there
exists Ψ ▷hd Γ ⊢⊢⊢(b ,r−1)t

→

: A.

Note that the indices are also preserved. It is possible to also spell out the relationship between

Φ and Ψ (as done in [Kesner et al. 2018]), that simply requires a notion of unfolding of typing

derivations, and that collapses on the transformation N in the case of ordinary λ-terms.

9 CONCLUSIONS
Type systems provide guarantees both internally and externally. Internally, a typing discipline

ensures that a program in isolation has a given desired property. Externally, the property is ensured

compositionally: plugging a typed program in a typed environment preserves the desired property.

Multi types (a.k.a. non-idempotent intersection types) are used in the literature to quantify the

resources that are needed to produce normal forms. Minimal typing derivations provide exact upper

bounds on the number of β-steps plus the size of the normal form—this is the internal guarantee.

Unfortunately, such minimal typings provide almost no compositionality, as they essentially force

the program to interact with a linear environment. Non-minimal typings allow compositions with

less trivial environments, at the price of laxer bounds.

In this paper we have engineered typing so that, via the use of tight constants among base

types, some typing judgements express compositional properties of programs while other typing

judgements, namely the tight ones, provide exact and separate bounds on the lengths of evaluation

sequences on the one hand, and on the sizes of normal forms on the other hand. The distinction

between the two counts is motivated by the size explosion problem, where the size of terms can

grow exponentially with respect to the number of evaluation steps.

We conducted this study building on some of the ideas in [Bernadet and Graham-Lengrand

2013a], by presenting a flexible and parametric typing framework, which we systematically applied

to three evaluation strategies of the pure λ-calculus: head, leftmost-outermost, and maximal.

In the case of leftmost-outermost evaluation, we have also developed the traditional shrinking

approach which does not make use of tight constants. One of the results is that the number of

(leftmost) evaluation steps can be measured using only the (sizes) of the types of the final typing
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judgement, in contrast to the size of the whole typing derivation. Another point, is the connection

between tight typings and minimal unitary shrinking typings without tight constants.

In the case of maximal evaluation, we have circumvented the traditional techniques to show

strong normalisation: by focusing on the maximal deterministic strategy, we do not require any

use of memory operator or subtyping for abstractions to recover subject reduction.

We have also extended our (pure) typing framework to linear head evaluation, presented in the

linear substitution calculus (LSC). The result is that tight typings naturally encode evaluation in

the LSC, which can be seen as the natural computing device behind multi types. In particular, and

surprisingly, exact bounds for head and linear head evaluation rely on the same type system.
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A APPENDIX: HEAD EVALUATION
A.1 Tight Head Correctness
Lemma A.1 (Multi-set decomposition for hd). LetM = ⊎k ∈KMk . Then Φ ▷hd Γ ⊢(b ,r ) t :M if

and only if there exist (Φk )k ∈K , (Γk )k ∈K , (bk )k ∈K and (rk )k ∈K and such that Φk ▷hd Γk ⊢(bk ,rk ) t :Mk ,
where Γ = ⊎k ∈K Γk , b = +k ∈Kbk and r = +k ∈Krk . Moreover, |Φ|hd = +k ∈K |Φk |hd .

Proof. By induction on the size of K . □

Lemma 3.5 (Substitution and typings for hd). Let Φt ▷hd ∆;x : M ⊢⊢⊢(b ,r )t : A and Φp ▷hd
Γ ⊢⊢⊢(b

′,r ′)p : M . Then there exists a derivation Φt {x�p } ▷hd Γ ⊎ ∆ ⊢⊢⊢(b+b
′,r+r ′)t{x�p} : A where

|Φt {x�p } | = |Φt | + |Φp | − |M |.

Proof. Let Φp (resp. Φt ) be the typing derivation of Γ ⊢⊢⊢(b
′,r ′)p : M (resp. ∆;x : M ⊢⊢⊢(b ,r )t : A) in

system hd . We prove that there exists a typing Φt {x�p } ▷hd Γ ⊎ ∆ ⊢⊢⊢(b+b
′,r+r ′)t{x�p} : A. The proof

is by induction on Φt . Let us writeM as [Bi ]i ∈I for some (potentially empty) set of indices I . We

reason by cases of the last rule of Φt :

• Rule ax. Two cases:

(1) t = x , and so t{x�p} = x{x�p} = p and Φt ▷hd x : [A] ⊢⊢⊢(0,0)x : A. Thus, |I | = 1 and

M = [A], and the hypothesis Φp ▷hd Γ ⊢(b
′,r ′) p:[A] is necessarily obtained by applying a

unary many rule to a derivation of the form Ψp ▷hd Γ ⊢(b
′,r ′) p:A. Given that x{x�p} = p,

r + r ′ = 0 + r ′ = r ′, and b + b ′ = b ′, the typing derivation Φt {x�p } := Ψp satisfies the

requirements.

(2) t = y, and so M = [ ], b ′ = r ′ = 0 and t{x�p} = y{x�p} = y. Then it is enough to take

Φt {x�p } := Φt .

• Rule funb . Then t = λy.u, and Φt is such that b = bu + 1, and it has the following form:

Φu ▷hd ∆;x : M ;y : N ⊢⊢⊢(bu ,r )u : B
funb

∆;x : M ⊢⊢⊢(bu+1,r )λy.u : N → B

By i.h. there exists Φu {x�p } such that

Φu {x�p } ▷hd Γ ⊎ ∆;y : N ⊢(bu+b
′,r+r ′) u{x�p}:B

from which by applying funb we obtain:

Φt {x�p } ▷hd Γ ⊎ ∆ ⊢(bu+b
′+1,r+r ′) λy.u{x�p}:N → B

The derivation Φt {x�p } satisfies the requirements because bu + b
′ + 1 = b + b ′.

• Rule funr . Then t = λy.u, and Φt is such that r = r ′′ + 1 and it has the following form:

Φu ▷hd ∆;x : M ;y : Tight ⊢⊢⊢(b ,r
′′)u : tight

funb
∆;x : M ⊢⊢⊢(b ,r

′′+1)λy.u : abs

By i.h. there exists Φu {x�p } such that

Φu {x�p } ▷hd Γ ⊎ ∆;y : Tight ⊢(b+b
′,r ′′+r ′) u{x�p}:tight

from which by applying funr we obtain:

Φt {x�p } ▷hd Γ ⊎ ∆ ⊢(b+b
′,r ′′+r ′+1) λy.u{x�p}:abs

that satisfies the requirements because r ′′ + r ′ + 1 = r + r ′.
• Rule appb . Then t = uq. The left premiss of the appb rule in Φt assigns a type u : N → A and

the right premiss is amany rule with k := |N | premisses. The multisetM assigned to x can be

partioned in k + 1 (potentially empty) multisetsM1, . . .Mk andMu , to be distributed among
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the premisses of the appb rule of Φ as follows (if k=0 then the many rule has no premisses):

Φu ▷hd ∆u ;x : Mu ⊢⊢⊢(b
′′,r ′′)u : N → A

(Φ
j
q ▷hd ∆

j
q ;x : Mj ⊢⊢⊢

(bj ,r j )q : Cj )j=1, ...,k
many

Φq ▷hd ∆q ;x : M◦ ⊢⊢⊢(b
◦,r ◦)q : N

appb
∆u ⊎ ∆q ;x : M ⊢⊢⊢(b

′′+b◦,r ′′+r ◦)uq : A

where the notations satisfy:

b◦ = +j=1...kbj , r
◦ = +j=1...kr j , ∆q = ⊎k

j=1∆
j
q , andM

◦ = ⊎k
j=1Mj ,

∆ = ∆u ⊎ ∆q ,

b = b ′′ + b◦, and
r = r ′′ + r ◦.

Moreover, given the partition ofM intoM1, . . . ,Mk ,Mu , the derivation Φp ▷hd Γ ⊢(b
′,r ′) p:M

of the first hypothesis gives rise, by Lemma A.1 to derivations Ψu ▷hd Γu ⊢(bu ,ru ) p:Mu and

(Ψq
j ▷hd Γj ⊢

(b′j ,r
′
j ) p:Mj )j=1, ...,k with

Γ = Γu ⊎j=1...k Γj ,
b ′ = bu +j=1...k b

′
j , and

r ′ = ru +j=1...k r
′
j .

Now, by i.h. we can substitute these derivations Ψu and Ψq
j
into the premisses of the appb

rule, obtaining the derivations Φu {x�p } , Φ
j
q {x�p } , and ϒq {x�p } such that

Φu {x�p } ▷hd ∆u ⊎ Γu ⊢⊢⊢(b
′′+bu ,r ′′+ru )u{x�p} : N → A

(Φj
q {x�p } ▷hd ∆j

q ⊎ Γj ⊢⊢⊢
(bj+b′j ,r j+r

′
j )q{x�p} : Cj )j=1, ...,k

many
ϒq {x�p } ▷hd ∆q ⊎ Γq ⊢⊢⊢

(+j=1. . .k (bj+b′j ),+j=1. . .k (r j+r
′
j ))q{x�p} : [Cj ]j=1, ...,k

where Γq stands for ⊎k
j=1Γj . By applying appb we obtain:

Ψ ▷hd ∆u ⊎ ∆q ⊎ Γu ⊎ Γq ⊢⊢⊢
(b∗,r ∗)u{x�p}q{x�p} = (uq){x�p} : A

We conclude since

– ∆u ⊎ ∆q ⊎ Γu ⊎ Γq = ∆ ⊎ Γ.
– The resulting first counter is as required:

b∗ = b ′′ + bu +j=1...k (bj + b
′
j )

= b ′′ +j=1...k bj + bu +j=...k b
′
j

= b ′′ + b◦ + b ′

= b + b ′

– The resulting second counter is as required:

r ∗ = r ′′ + ru +j=1...k (r j + r
′
j )

= r ′′ +j=1...k r j + ru +j=1...k r
′
j

= r + r ′

• Rule apphdr . Then t = uq and Φt is such that r = ru + 1 and it has the following form:

Φu ▷hd ∆;x : M ⊢⊢⊢(b ,ru )u : neutral
apphdr

∆;x : M ⊢⊢⊢(b ,ru+1)uq : neutral

By i.h. we can substitute Φp into Φu obtaining Φu {x�p } such that

ϒ ▷hd Γ ⊎ ∆ ⊢⊢⊢(b+b
′,ru+r ′)u{x�p} : neutral

By applying apphdr we obtain

Θ ▷hd Γ ⊎ ∆ ⊢⊢⊢(b+b
′,ru+r ′+1)u{x�p}q{x�p} = (uq){x�p} : neutral
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that satisfies the requirements because ru + r
′ + 1 = r + r ′.

□

A.2 Tight Head Completeness
Proposition 3.8 (Normal forms are tightly typable for hd). Let t be such that normalhd (t).

Then
(1) Existence: there exists a tight derivation Φ ▷hd Γ ⊢⊢⊢(0, |t |hd )t : A.
(2) Structure: moreover, if neutralhd (t) then A = neutral, and if abshd (t) then A = abs.

Proof. By induction on normalhd (t). Cases:
(1) Variable, i.e. t = x . Then the following derivation evidently satisfies all points of the statement:

ax
x : [neutral] ⊢⊢⊢(0,0)x : neutral

(2) Abstraction, i.e. t = λy.pwith normalhd (p). By i.h. there is a tight derivationΦp▷hd ∆⊢⊢⊢(0, |p |hd )p : tight.
Since the derivation Φp is tight, the typing context ∆ has the shape Γ;y : Tight (potentially,

y : [ ]). Then the following is a tight derivation for λy.p:

Φp ▷hd Γ;y : Tight ⊢⊢⊢(0, |p |hd )p : tight
funr

Γ ⊢⊢⊢(0, |p |hd+1)λy.p : abs

Moreover, t is not neutral so the part about neutral terms is trivially true, while it is an

abstraction and it is indeed typed with abs.
(3) Application, i.e. t = pu and normalhd (t) implies neutralhd (t), that implies neutralhd (p),

that implies normalhd (p). By i.h., there is a tight derivation Ψ ▷hd Γ ⊢⊢⊢(0, |p |hd )p : tight typing
p with neutral. Then the following is a tight derivation Φ types t = pu with neutral, and
having as second index satisfies |p |hd + 1 = |pu |hd = |t |hd , as required:

Ψ ▷hd Γ ⊢⊢⊢(0, |p |hd )p : neutral
apphdr

Γ ⊢⊢⊢(0, |p |hd+1)pu : neutral

Moreover, neutralhd (t) andΦ does indeed type t with neutral. Dually, t is not an abstraction
and so that point trivially holds.

□

Lemma 3.9 (Anti-substitution and typings for hd). Let Φ ▷hd Γ ⊢⊢⊢(b ,r )t{x�p} : A. Then there
exist:

• a multi-setM ;
• a typing derivation Φt ▷hd Γt ;x : M ⊢⊢⊢(bt ,rt )t : A; and
• a typing derivation Φp ▷hd Γp ⊢⊢⊢

(bp ,rp )p :M
such that:

• Typing context: Γ = Γt ⊎ Γp ;
• Indices: (b, r ) = (bt + bp, rt + rp ).
• Size: |Φ| = |Φt | + |Φp | − |M |.

Proof. By induction on t . Cases:
• Variable, i.e. t = y. Two subcases, depending on the identity of y:
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(1) x = y. Then t{x�p} = x{x�p} = p, so that Φ ▷hd Γ ⊢(b ,r ) p:A. There is only one possibility:
|M | = 1, Φp is

Φ ▷hd Γ ⊢(b ,r ) p:A
many

Γ ⊢(b ,r ) p:[A]

and Φt is

ax
x : [A] ⊢⊢⊢(0,0)x : A

(2) x , y. Then t{x�p} = y{x�p} = y. There is only one possibility: |M | = 0, Φt is exactly Φ,
that is,

ax
y : [A] ⊢⊢⊢(0,0)y : A

and Φp is

many
⊢(0,0) p:[ ]

• Abstraction, i.e. t = λy.u. Then t{x�p} = λy.u{x�p}. Two sub-cases, depending on the last

rule of Φ:
(1) Rule funb . Then Φ has the following form:

Φu {x�p } ▷hd Γ;y : N ⊢⊢⊢(bu{x�p} ,r )u{x�p} : D
funb

Γ ⊢⊢⊢(bu{x�p}+1,r )λy.u{x�p} : N → D

with b = bu {x�p } + 1. By i.h. there existM and typing derivations

Φu ▷hd ∆u ;y : N ;x : M ⊢(bu ,ru ) u:A Φp ▷hd ∆p ⊢(bp ,rp ) p:M

such that:

– Typing context: (Γ;y : N ) = (∆u ;y : N ⊎ ∆p );

– Indices: (bu {x�p }, r ) = (bu + bp, ru + rp ).
Then the derivation Φt defined as

Φu ▷hd Γ;y : N ;x : M ⊢⊢⊢(bu ,ru )u : D
funb

Γ;x : M ⊢⊢⊢(bu+1,ru )λy.u : N → D

satisfies the statement with respect to bt := bu + 1 and rt := ru because:

– Typing context: the i.h. implies Γ = (∆u ⊎ ∆p );

– Indices:
(a) bt + bp = bu + 1 + bp =i.h. bu {x�p } + 1 = b,
(b) rt + rp = ru + rp =i.h. ru {x�p } = r .

(2) Rule funr . Then Φ has the following form:

Φu {x�p } ▷hd Γ;y : Tight ⊢⊢⊢(b ,ru{x�p})u{x�p} : tight
funr

Γ ⊢⊢⊢(b ,ru{x�p}+1)λy.u{x�p} : abs

with r = ru {x�p } + 1. By i.h. there existM and typing derivations

Φu ▷ ∆u ;y : Tight;x : M ⊢(bu ,ru ) u:tight Φp ▷ ∆p ⊢(bp ,rp ) p:M

such that:

– Typing context: (Γ;y : Tight) = (∆u ;y : Tight ⊎ ∆p );

– Indices: (b, ru {x�p }) = (bu + bp, ru + rp ).
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Then the derivation Φt defined as

Φu ▷hd Γ;y : Tight;x : M ⊢⊢⊢(bu ,ru )u : tight
funb

Γ;x : M ⊢⊢⊢(bu ,ru+1)λy.u : abs

satisfies the statement with respect to rt := ru + 1 because:
– Typing context: the i.h. implies Γ = (∆u ⊎ ∆p )

– Indices:
(a) bu + bp =i.h. b,
(b) rt + rp = ru + 1 + rp =i.h. ru {x�p } + 1 = r .

• Application, i.e. t = uq. Then t{x�p} = u{x�p}q{x�p}. Two sub-cases, depending on the

last rule of Φ:
(1) Rule appb . Then Φ has the following form:

Φu {x�p } ▷hd Γ1 ⊢⊢⊢
(b1,r1)u{x�p} :M → A Φq {x�p } ▷hd Γ2 ⊢⊢⊢

(b2,r2)q{x�p} :M
appb

Γ1 ⊎ Γ2 ⊢⊢⊢
(b1+b2,r1+r2)u{x�p}q{x�p} : A

with Γ = Γ1 ⊎ Γ2, b = b1 + b2, and r = r1 + r2.
By i.h. applied to u{x�p} and q{x�p}, there exist (disjoint) finite sets Mu and Mq and

typing derivations:

Φu ▷hd ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u :M → A

Φq ▷hd ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q :M

Φup ▷hd Πu ⊢(b
u
p ,r

u
p ) p:Mu

Φ
q
p ▷hd Πq ⊢(b

q
p ,r

q
p ) p:Mq

such that:

– Typing context: Γ1 = ∆u ⊎ Πu and Γ2 = ∆q ⊎ Πq .

– Indices: (b1, r1) = (bu + b
u
p , ru + r

u
p ) and (b2, r2) = (bq + b

q
p , rq + r

q
p ).

The derivations Φup and Φ
q
p can be summed (by inverting theirmany final rule and reapply-

ing a many rule to the union of the premisses) obtaining a derivation Φp ▷hd Π ⊢(bp ,rp ) p:M ,

where Π = Πu ⊎ Πq and bp = b
u
p + b

q
p and rp = r

u
p + r

q
p andM = Mu +Mq . We then apply

appb to obtain the following derivation Φt :

Φu ▷hd ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u :M → A Φq ▷hd ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q :M

appb
∆u ⊎ ∆q ;x : Mu +Mq ⊢⊢⊢

(bu+bq ,ru+rq )uq : tight

We let ∆ := ∆u ⊎ ∆q , bt := bu + bq and rt := ru + rq and then observe that we obtained the

statement, because of the following equalities:

(a) Typing context: Γ = Γ1 ⊎ Γ2 = ∆u ⊎ Πu ⊎ ∆q ⊎ Πq = ∆ ⊎ Π.
(b) Indices: (b, r ) = (b1 + b2, r1 + r2) = (bt + bp, rt + rp ).

(2) Rule apphdr . Let t = uq so that t{x�p} = u{x�p}q{x�p}. Then Φ has the following form:

Φu {x�p } ▷hd Γ ⊢⊢⊢(b ,r
′)u{x�p} : neutral

apphdr
Γ ⊢⊢⊢(b ,r

′+1)u{x�p}q{x�p} : neutral

with r = r ′ + 1.
By i.h. applied to u{x�p} there existsM and typing derivations:

Φu ▷hd Γu ;x : M ⊢⊢⊢(bu ,ru )u : neutral

Φp ▷hd Γp ⊢(bp ,rp ) p:M
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such that:

– Typing context: Γ = Γu ⊎ Γp .
– Indices: (b, r ′) = (bu + bp, ru + rp ).

We then apply apphdr to obtain the following derivation Φt :

Φu ▷lo Γu ;x : M ⊢⊢⊢(bu ,ru )u : neutral
apphdr

Γu ;x : M ⊢⊢⊢(bu ,ru+1)uq : neutral

We let Γt := Γu , bt := bu and rt := ru + 1 and then observe that we obtained the statement,

because of the following equalities:

(a) Typing context: Γ = Γt ⊎ Γp .
(b) Indices: (b, r ) = (b, r ′ + 1) = (bu + bp, ru + rp ) = (bt + bp, rt + rp ).

□

B APPENDIX: LEFTMOST EVALUATION
B.1 Tight Leftmost Correctness
Lemma B.1 (Multi-set decomposition for lo). Let M = ⊎k ∈KMk . Then Φ ▷lo Γ ⊢(b ,r ) t :M if

and only if there exist (Φk )k ∈K , (Γk )k ∈K , (bk )k ∈K and (rk )k ∈K and such that Φk ▷lo Γk ⊢(bk ,rk ) t :Mk
for all k ∈ K , where Γ = ⊎k ∈K Γk , b = +k ∈Kbk and r = +k ∈Krk . Moreover, |Φ|lo = +k ∈K |Φk |lo .

Proof. By induction on the size of K . □

Proposition 4.4 (Properties of lo typings for normal forms). Let t be such that normallo(t),
and Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a tight type derivation. Then
(1) Tight indices: b = 0 and r = |t |lo . As a consequence |t |lo ≤ |Φ|.
(2) Neutrality: if A = neutral then neutrallo(t).

Proof. By induction on t . Note that neutrallo implies normallo and so we can apply the i.h.
when neutrallo holds on some subterm of t . If normallo(t) because neutrallo(t) there are two
cases:

• Variable, i.e. t = x . Then Φ has the following form and evidently verifies all the points of the

statement:

ax
x : [A] ⊢⊢⊢(0,0)x : A

• Application, i.e. t = pu, neutrallo(p) and normallo(u). Cases of the last rule of Φ:
– appb rule: this case is excluded by Lemma 4.3.

– applor rule:

Φp ▷lo Γp ⊢⊢⊢
(bp ,rp )p : neutral Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : tight

applor
Γp ⊎ Γu ⊢⊢⊢(bp+bu ,rp+ru+1)pu : neutral

with b = bp + bu , r = rp + ru + 1, and Γ = Γp ⊎ Γu .
(1) Tight counters: if Φ is tight, then Φp and Φu are tight and by i.h. rp = |p |lo and bp = 0,

and ru = |u |lo and bu = 0. Then, r = rp + ru + 1 =i.h. |p |lo + |u |lo + 1 = |pu |lo = |t |lo and
b = bp + bu = 0 + 0 = 0.

(2) Neutrality: neutrallo(t) holds by hypothesis.

Now, there is only one case left for normallo(t):
• Abstraction, i.e. t = λx .p and normallo(t) because normallo(p). Cases of the last rule of Φ:
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– funb rule:
Φp ▷lo Γ;x : M ⊢⊢⊢(bp ,r )p : A

funb
Γ ⊢⊢⊢(bp+1,r )λx .p :M → A

with b = bp + 1. Φ is not tight, so the statement trivially holds.

– funr rule:
Φp ▷ Γ;x : Tight ⊢⊢⊢(b ,rp )p : tight

funr
Γ ⊢⊢⊢(b ,rp+1)λx .p : abs

with r = rp + 1.
(1) Tight counters: if Φ is tight, then Φp is tight and by i.h. and rp = |p |lo and b = 0. Then,

r = rp + 1 =i.h. |p |lo + 1 = |t |lo .
(2) Neutrality: A , neutral, so the statement trivially holds.

□

Lemma 4.5 (Substitution and typings for lo). Let Φt ▷lo ∆;x : M ⊢⊢⊢(b ,r )t : A and Φp ▷lo
Γ ⊢⊢⊢(b

′,r ′)p :M . Then there exists a derivationΦt {x�p }▷lo Γ ⊎ ∆⊢⊢⊢(b+b
′,r+r ′)t{x�p} :Awhere |Φt {x�p } | =

|Φt | + |Φp | − |M |. Moreover, if Φt and Φp are traditional, then Φt {x�p } is traditional too.

Proof. Let Φt ▷lo ∆;x : M ⊢⊢⊢(b ,r )t : A and Φp ▷lo Γ ⊢⊢⊢(b
′,r ′)p : M . We prove that there exists a

derivation Φt {x�p } ▷S Γ ⊎ ∆ ⊢⊢⊢(b+b
′,r+r ′)t{x�p} : A by induction on Φt . System lo differs from hd

only for because it replaces rule apphdr with applor . Then the proof for all cases but applor is like the

one for system hd (Lemma 3.5). We only treat here the case of applor .

• Rule applor . Now, t = uq andM splits into twomultisetsMu andMq so thatΦ has the following

form:

Φu ▷lo ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u : neutral Φq ▷lo ∆q ;x : Mq ⊢⊢⊢(bq ,rq )q : tight
applor

∆u ⊎ ∆q ;x : M ⊢⊢⊢(bu+bq ,ru+rq+1)uq : neutral

with

b = bu + bq ,
r = ru + rq + 1, and
∆ = ∆u ⊎ ∆q .

Since M = Mu ⊎Mq , Lemma B.1 gives two derivations Ψu ▷lo Γu ⊢⊢⊢(b
′
u ,r

′
u )p : Mu and Ψq ▷lo

Γq ⊢⊢⊢
(b′q ,r

′
q )p :Mq such that Γ = Γu ⊎ Γq , b

′ = b ′u + b
′
q , and r

′ = r ′u + r
′
q .

By i.h. there exist Θu and Θq such that:

Θu ▷lo ∆u ⊎ Γu ⊢⊢⊢(bu+b
′
u ,ru+r

′
u )u{x�p} : neutral

Θq ▷lo ∆q ⊎ Γq ⊢⊢⊢
(bq+b′q ,rq+r

′
q )q{x�p} : tight

with |Θu | = |Φu | + |Ψu | − |Mu | and |Θq | = |Φq | + |Ψq | − |Mq |. Then by applying applor we

obtain:

Φt {x�p } ▷lo Γ ⊎ ∆ ⊢⊢⊢(b
∗,r ∗)u{x�p}q{x�p} = (uq){x�p} : neutral

where:

– b∗ = bu + b
′
u + bq + b

′
q = b + b

′
, and

– r ∗ = ru + r
′
u + rq + r

′
q + 1 = r + r

′
, and

– |Φt {x�p } | = |Θu |+ |Θq |+ 1 = |Φu |+ |Ψu | − |Mu |+ |Φq |+ |Ψq | − |Mq |+ 1 = |Φt | − |Φp | − |M |.

□
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Theorem 4.7 (Tight correctness for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a tight derivation. Then there
exists p such that t −→b

lo p, normallo(p), and |p |lo = r . Moreover, if A = neutral then neutrallo(p).

Proof. By induction on |Φ|. If t is a −→lo normal form—that covers the base case |Φ| = 1, for

which t is necessarily a variable—then by taking p := t and k := 0 the statement follows from the

tightness property of tight typings of normal forms (Proposition 4.4.1)—the moreover part follows
from the neutrality property (Proposition 4.4.2). Otherwise, t −→lo u and by quantitative subject

reduction (Proposition 4.6) there is a derivation Ψ ▷lo Γ ⊢⊢⊢(b−1,r )u : A such that |Ψ| < |Φ|. By i.h.,
there exists p such that normallo(p) and u −→b−1

lo p and |p |lo = r . Just note that t −→lo u −→b−1
lo p, that

is, t −→b
lo p. □

B.2 Tight Leftmost Completeness
Proposition 4.8 (Normal forms are tightly typable for lo). Let t be such that normallo(t).

Then
(1) Existence: there exists a tight derivation Φ ▷lo Γ ⊢⊢⊢(0, |t |lo )t : A.
(2) Structure: moreover, if neutrallo(t) then A = neutral, and if abslo(t) then A = abs.
(3) Unique size: if Ψ is another tight derivation for t then |Φ| = |Ψ|.

Proof. By induction on normallo(t). Cases:
(1) Variable, i.e. t = x . Then the following derivation evidently satisfies the first two points of

the statement:

ax
x : [neutral] ⊢⊢⊢(0,0)x : neutral

The only other possible tight derivation for x is

ax
x : [abs] ⊢⊢⊢(0,0)x : abs

that has the same size.

(2) Abstraction, i.e. t = λy.pwith normallo(p). By i.h. there is a tight derivationΦp▷lo ∆⊢⊢⊢(0, |p |lo )p : tight.
(a) Existence: since the derivation Φp is tight, the typing context ∆ has the shape Γ;y : Tight

(potentially, y : [ ]). Then the following is a tight derivation for λy.p:

Φp ▷lo Γ;y : Tight ⊢⊢⊢(0, |p |lo )p : tight
funr

Γ ⊢⊢⊢(0, |p |lo+1)λy.p : abs

(b) Structure: Moreover, t is not neutral so the part about neutral terms is trivially true, while

it is an abstraction and it is indeed typed with abs.
(c) Unique size: by i.h. all tight derivations for p have the same size. The statement follows by

the evident fact that all tight derivations for λx .p are obtained by applying a funr rule to a

tight derivation for p.
(3) Application, i.e. t = pu. Then normallo(t) implies neutrallo(t), that implies neutrallo(p)

and normallo(u), and the first implies normallo(p).
(a) Existence: By i.h., there are tight derivations

• Φp ▷lo Γp ⊢⊢⊢
(0, |p |lo )p : neutral typing p with neutral (because neutrallo(p)), and

• Φu ▷lo Γu ⊢⊢⊢(0, |u |lo )u : tight.
Then the following is a tight derivation Φ for t = pu whose second index satisfies |p |lo +
|u |lo + 1 = |t |lo , as required:

Φp ▷lo Γp ⊢⊢⊢
(0, |p |lo )p : neutral Φu ▷lo Γu ⊢⊢⊢(0, |u |lo )u : tight

applor
Γp ⊎ Γu ⊢⊢⊢(0, |p |lo+ |u |lo+1)pu : neutral



1:54 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner

(b) Structure: Moreover, neutrallo(t) and Φ does indeed type t with neutral. Dually, t is not
an abstraction and so that point trivially holds. .

(c) Unique size: from neutrallo(t) we obtain neutralhd (t). Now consider a tight derivation Ψ
for t . By Lemma 4.3 the last rule of Ψ is applor and so—exactly as Φ in the first point—the two

premisses Ψp and Ψu of the last rule are both tight. Then by i.h. |Ψp | = |Φp | and |Ψu | = |Φu |,
from which it follows |Ψ| = |Φ|.

□

Lemma 4.9 (Anti-substitution and typings for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t{x�p} : A. Then there
exist:

• a multi-setM ;
• a typing derivation Φt ▷lo Γt ;x : M ⊢⊢⊢(bt ,rt )t : A; and
• a typing derivation Φp ▷lo Γp ⊢⊢⊢

(bp ,rp )p :M
such that:

• Typing context: Γ = Γt ⊎ Γp ;
• Indices: (b, r ) = (bt + bp, rt + rp ).
• Sizes: |Φ| = |Φt | + |Φp | − |M |.
• If Φ is traditional, then Φt and Φp are traditional too.

Proof. By induction on t . Cases:
• Variable, i.e. t = y. Two subcases, depending on the identity of y:
(1) x = y. Then t{x�p} = x{x�p} = p, so that Φ ▷lo Γ ⊢(b ,r ) p:A. There is only one possibility:

|M | = 1, Φp is

Φ ▷lo Γ ⊢(b ,r ) p:A
many

Γ ⊢(b ,r ) p:[A]

and Φt is

ax
x : [A] ⊢⊢⊢(0,0)x : A

that satisfies the all the equalities in the statement, in particular |Φp | = |Φ| and |M | = 1 =

|Φt |.

(2) x , y. Then t{x�p} = y{x�p} = y. There is only one possibility: |M | = 0, Φt is exactly Φ,
that is,

ax
y : [A] ⊢⊢⊢(0,0)y : A

and Φp is

many
⊢(0,0) p:[ ]

that satisfies the all the equalities in the statement, in particular |Φt | = |Φ| and |M | = 0 =

|Φp |.

• Abstraction, i.e. t = λy.u. Then t{x�p} = λy.u{x�p}. Two sub-cases, depending on the last

rule of Φ:
(1) Rule funb . Then Φ has the following form:

Φu {x�p } ▷lo Γ;y : N ⊢⊢⊢(bu{x�p} ,r )u{x�p} : D
funb

Γ ⊢⊢⊢(bu{x�p}+1,r )λy.u{x�p} : N → D

with b = bu {x�p } + 1. By i.h. there exist aM and type derivations
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Φu ▷lo ∆u ;y : N ;x : M ⊢(bu ,ru ) u:A Φp ▷lo ∆p ⊢(bp ,rp ) p:M

such that:

– Typing context: (Γ;y : N ) = (∆u ;y : N ⊎ ∆p );

– Indices: (bu {x�p }, r ) = (bu + bp, ru + rp ).
– Sizes: |Φu {x�p } | = |Φu | + |Φp | − |M |.

Then the derivation Φt defined as

Φu ▷lo Γ;y : N ;x : M ⊢⊢⊢(bu ,ru )u : D
funb

Γ;x : M ⊢⊢⊢(bu+1,ru )λy.u : N → D

satisfies the statement with respect to bt := bu + 1 and rt := ru because:

– Typing context: the i.h. implies Γ = (∆u ⊎ ∆p );

– Indices:
(a) bt + bp = bu + 1 + bp =i.h. bu {x�p } + 1 = b,
(b) rt + rp = ru + rp =i.h. ru {x�p } = r .
– Sizes: |Φ| = |Φu {x�p } | + 1 =i.h. |Φu | + |Φp | − |M | + 1 = |Φt | + |Φp | − |M |.

(2) Rule funr . Then Φ has the following form:

Φu {x�p } ▷lo Γ;y : Tight ⊢⊢⊢(b ,ru{x�p})u{x�p} : tight
funr

Γ ⊢⊢⊢(b ,ru{x�p}+1)λy.u{x�p} : abs

with r = ru {x�p } + 1. By i.h. there existM and type derivations

Φu ▷ ∆u ;y : Tight;x : M ⊢(bu ,ru ) u:tight Φp ▷ ∆p ⊢(bp ,rp ) p:M

such that:

– Typing context: (Γ;y : Tight) = (∆u ;y : Tight ⊎ ∆p );

– Indices: (b, ru {x�p }) = (bu + bp, ru + rp ).
– Sizes: |Φu {x�p } | = |Φu | + |Φp | − |M |.

Then the derivation Φt defined as

Φu ▷lo Γ;y : Tight;x : M ⊢⊢⊢(bu ,ru )u : tight
funb

Γ;x : M ⊢⊢⊢(bu ,ru+1)λy.u : abs

satisfies the statement with respect to rt := ru + 1 because:
– Typing context: the i.h. implies Γ = (∆u ⊎ ∆p )

– Indices:
(a) bu + bp =i.h. b,
(b) rt + rp = ru + 1 + rp =i.h. ru {x�p } + 1 = r .
– Sizes: |Φ| = |Φu {x�p } | + 1 =i.h. |Φu | + |Φp | − |M | + 1 = |Φt | + |Φp | − |M |.

• Application, i.e. t = uq. Then t{x�p} = u{x�p}q{x�p}. Two sub-cases, depending on the

last rule of Φ:
(1) Rule appb . Then Φ has the following form:

Φu {x�p } ▷lo Γ1 ⊢⊢⊢
(b1,r1)u{x�p} :M → A Φq {x�p } ▷lo Γ2 ⊢⊢⊢

(b2,r2)q{x�p} :M
appb

Γ1 ⊎ Γ2 ⊢⊢⊢
(b1+b2,r1+r2)u{x�p}q{x�p} : A

with Γ = Γ1 ⊎ Γ2, b = b1 + b2, and r = r1 + r2.
By i.h. applied to u{x�p} and q{x�p}, there exist (disjoint) finite setsMu andMq and type

derivations:

Φu ▷lo ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u :M → A

Φq ▷lo ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q :M
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Φup ▷lo Πu ⊢(b
u
p ,r

u
p ) p:Mu

Φ
q
p ▷lo Πq ⊢(b

q
p ,r

q
p ) p:Mq

such that:

– Type context: Γ1 = ∆u ⊎ Πu and Γ2 = ∆q ⊎ Πq .

– Indices: (b1, r1) = (bu + b
u
p , ru + r

u
p ) and (b2, r2) = (bq + b

q
p , rq + r

q
p ).

– Sizes: |Φu {x�p } | = |Φu | + |Φup | − |Mu | and |Φq {x�p } | = |Φq | + |Φ
q
p | − |Mq |.

The derivations Φup and Φ
q
p can be summed (by inverting theirmany final rule and reapply-

ing a many rule to the union of the premisses) obtaining a derivation Φp ▷lo Π ⊢(bp ,rp ) p:M ,

where Π = Πu ⊎ Πq and bp = bup + b
q
p and rp = rup + r

q
p and M = Mu + Mq and

|Φp | = |Φup | + |Φ
q
p |. We then apply appb to obtain the following derivation Φt :

Φu ▷lo ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u :M → A Φq ▷lo ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q :M

appb
∆u ⊎ ∆q ;x : Mu +Mq ⊢⊢⊢

(bu+bq ,ru+rq )uq : A

We let ∆ := ∆u ⊎ ∆q , bt := bu + bq and rt := ru + rq and then observe that we obtained the

statement, because of the following equalities:

(a) Typing context: Γ = Γ1 ⊎ Γ2 = ∆u ⊎ Πu ⊎ ∆q ⊎ Πq = ∆ ⊎ Π.
(b) Indices: (b, r ) = (b1 + b2, r1 + r2) = (bt + bp, rt + rp ).

(c) Sizes: |Φ| = |Φu {x�p } | + |Φq {x�p } | + 1 =i.h. |Φu | + |Φ
u
p | − |Mu | + |Φq | + |Φ

q
p | − |Mq | + 1 =

|Φu | + |Φq | + |Φp | − |M | + 1 = |Φt | + |Φp | − |M |.

(2) Rule applor . Let t = uq so that t{x�p} = u{x�p}q{x�p}. Then Φ has the following form:

Φu {x�p } ▷S Γ1 ⊢⊢⊢
(b1,r1)u{x�p} : neutral Φq {x�p } ▷S Γ2 ⊢⊢⊢

(b2,r2)q{x�p} : tight
applor

Γ1 ⊎ Γ2 ⊢⊢⊢
(b1+b2,r1+r2+1)u{x�p}q{x�p} : tight

with Γ = Γ1 ⊎ Γ2, b = b1 + b2, r = r1 + r2 + 1.
By i.h. applied to u{x�p} and q{x�p}, there exist (disjoint) finite setsMu andMq and type

derivations:

Φu ▷lo ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u : neutral

Φq ▷lo ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q : tight

Φup ▷lo Πu ⊢(b
u
p ,r

u
p ) p:Mu

Φ
q
p ▷lo Πq ⊢(b

q
p ,r

q
p ) p:Mq

such that:

– Typing context: Γ1 = ∆u ⊎ Πu and Γ2 = ∆q ⊎ Πq .

– Indices: (b1, r1) = (bu + b
u
p , ru + r

u
p ) and (b2, r2) = (bq + b

q
p , rq + r

q
p ).

– Sizes: |Φu {x�p } | = |Φu | + |Φup | − |Mu | and |Φq {x�p } | = |Φq | + |Φ
q
p | − |Mq |.

The derivations Φup and Φ
q
p can be summed (by inverting theirmany final rule and reapply-

ing a many rule to the union of the premisses) obtaining a derivation Φp ▷lo Π ⊢(bp ,rp ) p:M ,

where Π = Πu ⊎ Πq and bp = b
u
p + b

q
p and rp = r

u
p + r

q
p andM = Mu +Mq . We then apply

applor to obtain the following derivation Φt :

Φu ▷lo ∆u ;x : Mu ⊢⊢⊢(bu ,ru )u : neutral Φq ▷lo ∆q ;x : Mq ⊢⊢⊢
(bq ,rq )q : tight

applor
∆u ⊎ ∆q ;x : Mu +Mq ⊢⊢⊢

(bu+bq ,ru+rq+1)uq : neutral

We let ∆ := ∆u ⊎ ∆q , bt := bu + bq and rt := ru + rq + 1 and then observe that we obtained

the statement, because of the following equalities:

(a) Typing context: Γ = Γ1 ⊎ Γ2 = ∆u ⊎ Πu ⊎ ∆q ⊎ Πq = ∆ ⊎ Π.
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(b) Indices: (b, r ) = (b1 + b2, r1 + r2 + 1) = (bt + bp, rt + rp ).

(c) Sizes: |Φ| = |Φu {x�p } | + |Φq {x�p } | + 1 =i.h. |Φu | + |Φ
u
p | − |Mu | + |Φq | + |Φ

q
p | − |Mq | + 1 =

|Φu | + |Φq | + |Φp | − |M | + 1 = |Φt | + |Φp | − |M |.

□

Proposition 4.10 (Quantitative tight subject expansion for lo). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )p : A be
a tight derivation. If t −→lo p then there exists a (tight) typing Ψ such that Ψ ▷lo Γ ⊢⊢⊢(b+1,r )t : A and
|Ψ| > |Φ|.

Proof. We prove the following stronger statement by induction on t −→lo p (tightness is decom-

posed in two predicates tight(Γ) and tight(A), and the second is paired together with a further

assumption):

Let t −→lo p, Φ ▷lo Γ ⊢⊢⊢(b ,r )p : A, tight(Γ), and either tight(A) or ¬abslo(t). Then there exists a

typing Ψ ▷lo Γ ⊢⊢⊢(b+1,r )t : A with |Ψ| > |Φ|.
• Rule

t = (λx .u)q −→lo u{x�q} = p

Assume Φ ▷lo Γ ⊢⊢⊢(b ,r )u{x�q} : A and tight(Γ). By applying the anti-substitution lemma

(Lemma 4.9) we obtain the two premisses of the following derivation Φ′
that satisfies the

statement:

Φu ▷lo Γu , x : M ⊢⊢⊢(bu ,ru )u : A

Γu ⊢⊢⊢(bu+1,ru )λx .u :M → A Φq ▷lo Γq ⊢⊢⊢
(bq ,rq )q :M

Γu ⊎ Γq ⊢⊢⊢
(bu+bq+2,ru+rq )(λx .u)q : A

with (b, r ) = (bu + bq, ru + rq) and Γ = Γu ⊎ Γq . We conclude since |Ψ| = |Φu | + |Φq | + 2 >
|Φu | + |Φq | − |M | = |Φ|.

• Rule

u −→lo q

t = λx .u −→lo λx .q = p

Assume Φ ▷lo Γ ⊢⊢⊢(b ,r )λx .q : A and tight(Γ). Since abslo(λx .u) we must have hypothesis

tight(A), and as Φ must then finish with rule funr we must have a subderivation Φq ▷lo
Γ, x : Tight ⊢⊢⊢(b ,r−1)q : tight. As tight(Γ, x : Tight)we can apply the i.h. and get the premiss

of the derivation Φ′
below:

Φu ▷lo Γ, x : Tight ⊢⊢⊢(b+1,r−1)u : tight

Γ ⊢⊢⊢(b+1,r )λx .u : A

The decrement of the size follows from the i.h.
• Rule

¬abslo(u) u −→lo q

t = um −→lo qm = p

Assume Φ ▷lo Γ ⊢⊢⊢(b ,r )qm : A and tight(Γ). The derivation Φ must end with rule appb or

applor . Then, there are derivations Φq ▷lo Γq ⊢⊢⊢
(bq ,rq )q :Aq and Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m :Am , with

Γ = Γq ⊎ Γm . Since tight(Γ) we have tight(Γq), and since ¬abslo(u) we can apply the i.h. to
q (independently of whether Aq is tight) obtaining the derivation Φu ▷lo Γq ⊢⊢⊢

(bq+1,rq )u : Aq

and build, using the same rule appb or applor , the derivation Φ′
below:
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Φu ▷lo Γq ⊢⊢⊢
(bq+1,rq )u : Aq Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m : Am

Γ ⊢⊢⊢(b+1,r )um : A

The decrement of the size follows from the i.h.
• Rule

neutrallo(m) u −→lo q

t =mu −→lo mq = p

Assume Φ▷lo Γ ⊢⊢⊢(b ,r )mq :A and tight(Γ). The derivation Φmust end with rule appb or app
lo
r ,

and therefore there are two derivations Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m :Am and Φq ▷lo Γq ⊢⊢⊢
(bq ,rq )q :Aq ,

for some typesAm andAq , with Γ = Γm⊎Γq . Since tight(Γ)we have tight(Γm) and tight(Γq).
By the tight spreading on neutral terms (Lemma 4.3), from tight(Γm) and neutrallo(m) it

follows tight(Am). Therefore, the last rule of Φ must be applor , whence Am = A = neutral
and Aq = tight. Now, the sub-derivation Φq is tight (tight(Γq) and Aq = tight) and we

can apply the i.h. obtaining the derivation Φu ▷lo Γq ⊢⊢⊢
(bq+1,rq )u :Aq and build, using the same

rule applor , the derivation Φ′
below:

Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m : Am Φu ▷lo Γq ⊢⊢⊢
(bq+1,rq )u : Aq

Γ ⊢⊢⊢(b+1,r )mu : A

The decrement of the size follows from the i.h.
□

Theorem 4.11 (Tight completeness for lo). Let t −→k
lo p with normallo(p). Then

(1) Existence: there exists a tight typing Φ ▷lo Γ ⊢⊢⊢(k , |p |lo )t : A.
(2) Structure: moreover, if neutrallo(p) then A = neutral, and if abslo(p) then A = abs.

Proof. By induction on t −→k
lo p. If k = 0 the statement is given by the existence of tight

typings for normallo terms (Proposition 4.8), that also provides the moreover part. Let k > 0

and t −→lo u −→k−1
lo p. By i.h., there exists a tight typing derivation Ψ▷ ⊢

(k−1, |p |lo )
tight u. By subject

expansion (Proposition 4.10) there exists a typing derivation Φ of u with the same types in the

ending judgement of Ψ—then Φ is tight—and with indices (k, |p |lo). □

C APPENDIX: LEFTMOST EVALUATION AND MINIMAL TYPINGS
Lemma 5.3 (Transitivity of polarities). Let T ,U ,V be (multi)-types and a,b ∈ {+,−}. If

U ∈ Occa(T ) and V ∈ Occb (U ) then V ∈ Occδ (a,b)(T ), where

δ (+,+) := + δ (−,+) := − δ (−,−) := + δ (+,−) := −

Proof. Let ¬+ := − and ¬− := +. The proof can be presented in a way that is completely

parametric in the polarities, but for readability reasons we spell out the positive and negative cases

separetely. Cases in which a = +:
• Axioms, i.e. U = T . Note that δ (+,b) = b. Then V ∈ Occb (U ) becomes V ∈ Occb (T ) =
Occδ (+,b)(T ) as required.

• Positive occurrence in an element A of a multiset M , i.e. T = M and U ∈ Occ+(M) because

U ∈ Occ+(A). By the i.h. V ∈ Occδ (+,b)(A) and so V ∈ Occδ (+,b)(M) by one of the two rules

about multisets.
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• Positive occurrence on the right of M → A, i.e. T = M → A and U ∈ Occ+(M → A) because
U ∈ Occ+(A). By the i.h. V ∈ Occδ (+,b)(A) and so V ∈ Occδ (+,b)(M) by one of the two rules

about arrow types.

• Negative occurrence on the left of M → A, i.e. T = M → A and U ∈ Occ+(M → A) because
U ∈ Occ−(M). By the i.h. V ∈ Occδ (−,b)(A) and so V ∈ Occ¬δ (−,b)(M) = Occδ (+,b)(M) by one

of the two rules about arrow types.

Cases in which a = −:

• Negative occurrence in an element A of a multiset M , i.e. T = M and U ∈ Occ−(M) because

U ∈ Occ−(A). By the i.h. V ∈ Occδ (−,b)(A) and so V ∈ Occδ (−,b)(M) by one of the two rules

about multisets.

• Negative occurrence on the right ofM → A, i.e. T = M → A andU ∈ Occ−(M → A) because
U ∈ Occ−(A). By the i.h. V ∈ Occδ (−,b)(A) and so V ∈ Occδ (−,b)(M) by one of the two rules

about arrow types.

• Positive occurrence on the left of M → A, i.e. T = M → A and U ∈ Occ−(M → A) because
U ∈ Occ+(M). By the i.h. V ∈ Occδ (+,b)(A) and so V ∈ Occ¬δ (+,b)(M) = Occδ (−,b)(M) by one

of the two rules about arrow types.

□

C.1 Shrinking Correctness
Lemma 5.6 (Occurrences spreading on neutral terms). Let t be such that neutralhd (t) and

Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a typing derivation. Then A is a positive occurrence of Γ. Moreover, if Γ is
co-shrinking (resp unitary co-shrinking) then A is co-shrinking (resp unitary co-shrinking).

Proof. By induction on neutrallo(t):
• Variable, i.e. t = x . Then Γ = x : [A] and A ∈ Occ+(Γ). If Γ is co-shrinking (resp. unitary

co-shrinking) then A is co-shrinking (resp. unitary co-shrinking) by definition of shrinking

(resp. unitary shrinking) type context.

• Application, i.e. t = pu, the last rule of Φ can only be appb or applor . In both cases the left

subterm p is typed by a sub-derivation Φp ▷lo Γp ⊢⊢⊢
(b′,r ′)p : B such that all types in Γp appear

in Γ. Since neutralhd (t) implies neutralhd (p), we can apply the i.h. and obtain that B has a

positive occurrence in Γp , and thus in Γ, that is, that there is a declaration x : M in Γ such

that B ∈ Occ+(M). There are two cases, either B = A = neutral or B = M ′ → A. In both

cases A is a positive occurrence of B. By transitivity of polarised occurrences (Lemma 5.3),

A is a positive occurrence of M , and thus of Γ. Let M ∈ Occ−(A). Since A ∈ Occ+(Γ) then
M ∈ Occ−(Γ) by transitivity of polarised occurrences. Suppose Γ is co-shrinking (resp. unitary
co-shrinking), then A turns out to be co-shrinking (resp. unitary co-shrinking).

□

Proposition 5.7 (Shrinking derivations bound the size of normal forms). Let normallo(t)
and Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a derivation, and let |Φ|ax denote the number of axiom rules in Φ.
(1) If Γ is co-shrinking and (A is shrinking or t is not an abstraction) then |t |lo ≤ |Φ| − |Φ|ax.

Moreover, if Φ is traditional then |t |λ ≤ b.
(2) If Γ is unitary co-shrinking and (A is unitary shrinking or t is not an abstraction) then |t |lo =

|Φ| − |Φ|ax. Moreover, if Φ is traditional then |t |λ = b.

Proof. By induction on t . Note that neutrallo implies normallo and so we can apply the i.h.
when neutrallo holds on some subterm of t . If normallo(t) because neutrallo(t) there are three
cases:
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• Variable, i.e. t = x . Then Φ has the following form and evidently verifies both statements

because |x |lo = 0 = 1 − 1 = |Φ| − |Φ|ax and |x |λ = 0 = b:

ax
x : [A] ⊢⊢⊢(0,0)x : A

• Application, i.e. t = pu, neutrallo(p) and normallo(u). Cases of the last rule of Φ:
– appb rule:

Φp ▷lo Γp ⊢⊢⊢
(bp ,rp )p : [Bi ]i ∈I → A

(Φi
u ▷lo ∆i ⊢⊢⊢

(bi ,ri )u : Bi )i ∈I
many

⊎i ∈I∆i ⊢⊢⊢
(+i∈Ibi ,+i∈I ri )u : [Bi ]i ∈I

appb
Γp ⊎ (⊎i ∈I∆i ) ⊢⊢⊢

(bp+i∈Ibi ,rp+i∈I ri )pu : A

with b = bp +i ∈I bi , r = rp +i ∈I ri , and Γ = Γp ⊎i ∈I ∆i . LetM = [Bi ]i ∈I .
(1) Since neutrallo(p) and Γ is co-shrinking then M → A is co-shrinking by Lemma 5.6,

and soM is shrinking. Therefore,M is not empty, i.e. |I | , 0, and every Bi is shrinking.
Moreover, Γp and every ∆i are also shrinking so that every Φi

u is shrinking.

Since p is neutral and thus not an abstraction, we can apply the i.h. on normallo(p)
and obtain |p |lo ≤ |Φp | − |Φp |ax. Since every Φi

u is shrinking we can apply the i.h. on
normallo(u) obtaining |u |lo ≤ |Φi

u | ≤ +i ∈I |Φ
i
u | − |Φi

u |ax, thus |t |lo = |p |lo + |u |lo + 1 ≤

|Φp | − |Φp |ax +i ∈I (|Φ
i
u | − |Φi

u |ax) + 1 = |Φ| − |Φ|ax.
Moreover, if Φ is traditional so are its sub-derivations and so the i.h. on normallo(p) gives
|p |λ ≤ bp and the i.h. on normallo(u) gives |u |λ ≤ bi for all i ∈ I . Then |t |λ = |p |λ + |u |λ ≤

bp +i ∈I bi = b.
(2) Since neutrallo(p) and Γ is unitary co-shrinking thenM → A is unitary co-shrinking

by Lemma 5.6, and soM is unitary shrinking. Therefore,M is a singleton, i.e.M = [B1],

and B1 is unitary shrinking. Moreover, Γp and ∆1 are also unitary shrinking so that Φ1

u is

unitary shrinking.

Since p is neutral and thus not an abstraction, we can apply the i.h. on normallo(p)
and obtain |p |lo = |Φp | − |Φp |ax. Since Φ

1

u is unitary shrinking we can apply the i.h. on
normallo(u) obtaining |u |lo = |Φ1

u | − |Φ1

u |ax, thus |t |lo = |p |lo + |u |lo + 1 = |Φp | − |Φp |ax +

|Φ1

u | − |Φ1

u |ax + 1 = |Φ| − |Φ|ax.
Moreover, if Φ is traditional so are its sub-derivations and so the i.h. on normallo(p) gives
|p |λ = bp and the i.h. on normallo(u) gives |u |λ = b1. Then |t |λ = |p |λ + |u |λ = bp +b1 = b.

– applor rule:

Φp ▷lo Γp ⊢⊢⊢
(bp ,rp )p : neutral Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : tight

applor
Γp ⊎ Γu ⊢⊢⊢(bp+bu ,rp+ru+1)pu : neutral

with b = bp + bu , r = rp + ru + 1, and Γ = Γp ⊎ Γu .
(1) Since Γ is co-shrinking, then Γp and Γu are co-shrinking. Since neutral and tight are

shrinking types, by i.h. |p |lo ≤ |Φp | − |Φp |ax and |u |lo ≤ |Φu | − |Φu |ax. Then |t |lo =
|p |lo + |u |lo +1 ≤i.h. |Φp | − |Φp |ax+ |Φu | − |Φu |ax+1 = |Φ| − |Φ|ax. The moreover statement

does not apply in this case.

(2) Since Γ is unitary co-shrinking, then Γp and Γu are unitary co-shrinking. Since neutral
and tight are unitary shrinking types, by i.h. |p |lo = |Φp |−|Φp |ax and |u |lo = |Φu |−|Φu |ax.
Then |t |lo = |p |lo + |u |lo + 1 =i.h. |Φp | − |Φp |ax + |Φu | − |Φu |ax + 1 = |Φ| − |Φ|ax. The
moreover statement does not apply in this case.

Now, there is only one case left for normallo(t):
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• Abstraction, i.e. t = λx .p and normallo(t) because normallo(p). Cases of the last rule of Φ:
– funb rule:

Φp ▷S Γ;x : M ⊢⊢⊢(bp ,r )p : A
funb

Γ ⊢⊢⊢(bp+1,r )λx .p :M → A

with b = bp + 1.
(1) Since t is an abstraction, it must hold that M → A is shrinking, that is, A is shrinking,

andM is co-shrinking. This last fact, together with the hypothesis that Γ is co-shrinking

gives Γ;x : M co-shrinking. Then we can apply the i.h. obtaining |p |lo ≤ |Φp | − |Φp |ax,

and |t |lo = |p |lo + 1 ≤i.h. |Φp | − |Φp |ax + 1 = |Φ| − |Φ|ax.
Moreover, if Φ is traditional so is Φp and the i.h. gives |p |λ ≤ bp . Then |t |λ = |p |λ + 1 ≤

bp + 1 = b.
(2) Since t is an abstraction, it must hold thatM → A is unitary shrinking, that is,A is unitary

shrinking andM is unitary co-shrinking. This last fact, together with the hypothesis that

Γ is unitary co-shrinking gives Γ;x : M unitary shrinking. Then we can apply the i.h.,
obtaining |p |lo = |Φp | − |Φp |ax. Then, |t |lo = |p |lo + 1 =i.h. |Φp | − |Φp |ax + 1 = |Φ| − |Φ|ax.
Moreover, if Φ is traditional so is Φp and the i.h. gives |p |λ = bp . Then |t |λ = |p |λ + 1 =
bp + 1 = b.

– funr rule:
Φp ▷ Γ;x : Tight ⊢⊢⊢(b ,rp )p : tight

funr
Γ ⊢⊢⊢(b ,rp+1)λx .p : abs

with r = rp + 1.
(1) If Γ is co-shrinking, then Γ;x : Tight is co-shrinking. Since tight is a shrinking type, by

i.h. |p |lo ≤ |Φp | − |Φp |ax. Then, |t |lo = |p |lo + 1 ≤i.h. |Φp | − |Φp |ax + 1 = |Φ| − |Φ|ax. The
moreover statement does not apply in this case.

(2) If Γ is unitary co-shrinking, then Γ;x : Tight is unitary co-shrinking. Since tight
is a unitary shrinking type, by i.h. |p |lo = |Φp | − |Φp |ax. Then, |t |lo = |p |lo + 1 =i.h.
|Φp | − |Φp |ax + 1 = |Φ| − |Φ|ax. The moreover statement does not apply in this case.

□

Proposition 5.8 (Traditional types bounds the size of neutral and normal terms). Let
Φ ▷lo Γ ⊢(b ,r ) t :A be a traditional derivation such that Γ is co-shrinking. Then:
(1) If neutrallo(t) then #(A) + |t |lo ≤ #(Γ) and #N (A) + b ≤ #

N (Γ).
(2) If normallo(t) and A is shrinking then |t |lo ≤ #(Γ) + #(A) and b ≤ #

N (Γ) + #P (A).

Proof. By mutual induction on neutrallo(t) and normallo(t).
(1) Cases of neutrallo(t):

• Variable, i.e. t = x . Then
ax

x : [A] ⊢⊢⊢(0,0)x : A

Moreover, #(A)+ |x |lo = #(A)+ 0 = #(A) = #([A]) = #(x : [A]) and #N (A)+b = #
N (A)+ 0 =

#
N (A) = #

N ([A]) = #
N (x : [A]).

• Application, i.e. t = pu with neutrallo(p) and normallo(u). The hypothesis that Φ is

traditional forces the last rule of Φ to be appb and Φ to have the following form:

Φp ▷lo Γp ⊢⊢⊢
(bp ,0)p : [Bi ]i ∈I → A

(Φu ▷lo ∆i ⊢⊢⊢
(b′i ,0)u : Bi )i ∈I

many
⊎i ∈I∆i ⊢⊢⊢

(+i∈Ib′i ,0)u : [Bi ]i ∈I
appb

Γp ⊎ (⊎i ∈I∆i ) ⊢⊢⊢
(bp+i∈Ib′i ,0)pu : A
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LetM := [Bi ]i ∈I and Γu = ⊎i ∈I∆i . Since Φ is shrinking, Γp is co-shrinking. The hypothesis

neutrallo(p) gives neutralhd (p) (which is a weaker predicate), and by the occurrences

spreading on neutral terms (Lemma 5.6) we obtain thatM → A is co-shrinking and soM is

shrinking. Therefore,M is not empty, that is, I , ∅ and each Bi is shrinking.
By i.h. (Point 2) (repeatedly) applied to u, we obtain |u |lo ≤ #(∆i )+ #(Bi ) and b

′
i ≤ #

N (∆i )+

#
P (Bi ) for every i ∈ I , and so |u |lo ≤ #(Γu ) + #(M) and +i ∈Ib

′
i ≤ +i ∈I (#

N (∆i ) + #
P (Bi )) =

+i ∈I #
N (∆i ) + #

P (M).

By i.h. (Point 1) applied to p, we obtain #(M → A) + |p |lo ≤ #(Γp ) and #
N (M → A) + bp ≤

#
N (Γp ).

Then:

#(A) + |t |lo = #(A) + |p |lo + |u |lo + 1
≤i.h. on u #(A) + |p |lo + #(Γu ) + #(M) + 1

= #(Γu ) + |p |lo + #(M → A)
≤i.h. on p #(Γu ) + #(Γp )
= #(Γp ⊎ Γu ) = #(Γ)

and

#
N (A) + b = #

N (A) + bp +i ∈I b
′
i ≤i.h. on u #

N (A) + bp +i ∈I #
N (∆i ) + #

P (M)

= #
N (Γu ) + #

N (M → A) + bp
≤i.h. on p #

N (Γu ) + #
N (Γp )

= #
N (Γp ⊎ Γu ) = #

N (Γ)

(2) Cases of normallo(t):
(a) neutrallo(t). By i.h., #(A) + |t |lo ≤ #(Γ) and #

N (A) + b ≤ #
N (Γ), from which it trivially

follows |t |lo ≤ #(Γ) + #(A) and b ≤ #
N (Γ) ≤ #

N (Γ) + #P (A).
(b) Abstraction, i.e. t = λy.p and normallo(p). Since Φ is traditional, its last rule is necessarily

funb . Then let y : M the declaration of y in the premiss of funb (remark thatM is possibly

[ ]). Then Φ has the following form:

Φp ▷lo y : M ; Γ ⊢(bp ,0) p:B
funb

Γ ⊢(bp+1,0) λy.p:M → B

with b = bp + 1 and A = M → B shrinking, that implies B shrinking andM co-shrinking,

that is, Γ;y : M is co-shrinking (because Γ is co-shrinking by hypothesis). We can then

apply the i.h. and obtain:

|λy.p |lo = |p |lo + 1
≤i.h. #(y : M ; Γ) + #(B) + 1
= #(Γ) + #(M) + #(B) + 1
= #(Γ) + #(M → B)

and

bp + 1 ≤i.h. #
N (y : M ; Γ) + #P (B) + 1

= #
N (Γ) + #N (M) + #P (B) + 1

= #
N (Γ) + #P (M → B)

□

Proposition 5.9 (Shrinking subject reduction). Let Φ ▷lo Γ ⊢(b ,r ) t :A. If t −→lo p then b ≥ 1

and there exists Ψ such that Ψ ▷lo Γ ⊢(b
′,r ) p:A with b ′ ≤ b and |Ψ| ≤ |Φ|. Moreover, Φ traditional

implies Ψ traditional, and if Φ is shrinking (resp. unitary shrinking) then b ′ < b (resp. b ′ = b − 1) and
|Ψ| < |Φ|.
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Proof. The first part (without the shrinking/unitary shrinking hypothesis) is an easy induction

on t −→lo p. The moreover part is also by induction on t −→lo p, but it requires a strengthened

statement, along the same lines of the proof for the tight case:

(1) If t −→lo p, Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A, Γ is co-shrinking, and (A is shrinking or ¬abslo(t)), then there

exists a typing Ψ ▷lo Γ ⊢⊢⊢(b
′,r )p : A with b ′ < b and |Ψ| < |Φ|.

(2) If t −→lo p, Φ▷lo Γ ⊢⊢⊢(b ,r )t :A, Γ is unitary co-shrinking, andA is unitary shrinking or ¬abslo(t),

then there exists a typing Ψ ▷lo Γ ⊢⊢⊢(b
′,r )p : A with b ′ = b − 1 and |Ψ| < |Φ|.

The cases of evaluation at top level, under abstraction, and in the left subterm of an application

follows exactly the schema of the tight case: at top level the tight/shrinking hypothesis does not

play any role, the abstraction case immediately follows from the i.h., and the left application case

follows from the reinforced hypothesis that the left subterm is not an abstraction. We treat the case

of evaluation in the right subterm of an application, that is the delicate one, where the shrinking

predicate plays a crucial role.

The rule is:

neutrallo(u) q −→lo m

t = uq −→lo um = p

There are two cases for the last rule of the derivation Φ:
• appb rule:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : [Bi ]i ∈I → A

(Φqi ▷lo Γiq ⊢⊢⊢
(bi ,ri )q : Bi )i ∈I

many
⊎i ∈I Γ

i
q ⊢⊢⊢

(+i∈Ibi ,+i∈I ri )q : [Bi ]i ∈I
appb

Γ = Γu ⊎i ∈I Γ
i
q ⊢⊢⊢

(bu+i∈Ibi+1,ru+i∈I ri )uq : A

The i.h. applied to each Φqi and q −→lo m gives Φmi such that Φmi ▷lo Γiq ⊢⊢⊢
(b′i ,ri )m : Bi with

b ′i ≤ bi and |Φmi | ≤ |Φqi |. Then the derivation Ψ given by:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : [Bi ]i ∈I → A

(Φmi ▷lo Γiq ⊢⊢⊢
(b′i ,ri )m : Bi )i ∈I

⊎i ∈I Γ
i
q ⊢⊢⊢

(+i∈Ib′i ,+i∈I ri )m : [Bi ]i ∈I
appb

Γ = Γu ⊎i ∈I Γ
i
q ⊢⊢⊢

(bu+i∈Ib′i+1,ru+i∈I ri )um : A

verifies the statement. LetM := [Bi ]i ∈I .
Shrinking: we have to show two things, that the multi-setM is non empty and that, in order

to apply the i.h., the derivations Φmi in the right premiss of the rule are all shrinking. Since

Φ is shrinking, Γ is co-shrinking, and so are Γu and all the Γiq . The hypothesis neutrallo(u)
gives neutralhd (u) (which is a weaker predicate). Then, neutralhd (u) and Γu co-shrinking

allow to apply the occurrences spreading on neutral terms (Lemma 5.6), obtainingM → A
is co-shrinking, and so M is shrinking. Then I , ∅ and every Bi is shrinking and so every

premiss Φmi is shrinking.

Then by i.h.b ′i < bi and |Φmi | < |Φqi | for every i ∈ I , and sob ′ = bu+i ∈Ib
′
i+1 < bu+i ∈Ibi+1 =

b, and |Ψ| = |Φu | +i ∈I |Φmi | + 1 <i.h. |Φu | +i ∈I |Φqi | + 1 = |Φ|, as required.
Unitary shrinking: Since Γ is unitary co-shrinking, then Γu is unitary co-shrinking. This,

together with neutrallo(u) allows to apply Lemma 5.6, thenM → A is unitary co-shrinking

and so M is unitary shrinking. Therefore, M is a singleton and B1 is unitary shrinking.

Moreover, Γ1q is also unitary co-shrinking so that Φq1 is unitary shrinking.
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Then by i.h. b ′
1
= b1 − 1 and |Φm1

| < |Φq1 |, and so b ′ = bu + b
′
1
+ 1 = bu + b1 − 1 + 1 = b − 1,

and |Ψ| = |Φu | + |Φm1
| + 1 <i.h. |Φu | + |Φq1 | + 1 = |Φ|, as required.

• applor rule:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : neutral Φq ▷lo Γq ⊢⊢⊢
(bq ,rq )q : tight

applor
Γ = Γu ⊎ Γq ⊢⊢⊢

(bu+bq ,ru+rq+1)uq : neutral

with b = bu + bq and r = ru + rq + 1. The i.h. applied to Φq and q −→lo m gives Φm such that

Φm ▷lo Γq ⊢⊢⊢
(bm ,rq )m : tight with bm ≤ bq and so |Φm | ≤ |Φq |. Then the derivation Ψ given

by:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : neutral Φm ▷lo Γq ⊢⊢⊢
(bm ,rq )m : tight

applor
Γ = Γu ⊎ Γq ⊢⊢⊢

(bu+bm ,ru+rq+1)uq : neutral

verifies the statement.

Shrinking: if Φ is shrinking then Γq is co-shrinking, and so is Φq (because tight types are

shrinking). By i.h. then bm < bq and |Φm | < |Φq |, and so b ′ = bu + bm < bu + bq = b, and
|Ψ| = |Φu | + |Φm | + 1 < |Φu | + |Φq | + 1 = |Φ|, as required.
Unitary shrinking: if Φ is unitary shrinking then Γq is unitary co-shrinking, and so is Φq
(because tight types are unitary shrinking). By i.h. then bm = bq − 1 and |Φm | < |Φq |, and

so b ′ = bu + bm = bu + bq − 1 = b − 1, and |Ψ| = |Φu | + |Φm | + 1 < |Φu | + |Φq | + 1 = |Φ|, as
required.

□

Theorem 5.10 (Shrinking correctness). Let Φ ▷lo Γ ⊢⊢⊢(b ,r )t : A be a shrinking derivation. Then
there exists a −→lo normal form p and k ≤ b such that
(1) Steps: t −→lo -evaluates to p in k steps, i.e. t −→k

lo p;
(2) Size bound: |p |lo + k ≤ |Φ|;

Moreover, if Φ is traditional then |p |lo ≤ #(Γ)+ #(A) and |p |λ ≤ #
N (Γ)+ #P (A), and if Φ is also unitary

shrinking then |p |λ = b − k .

Proof. By induction on |Φ|. If t is a −→lo normal form—that covers the base case |Φ| = 1, for which

t is necessarily a variable—then we take p := t and k := 0. The first statement trivially holds. The

second statement holds by Proposition 5.7. The moreover part: if Φ is traditional |p |lo ≤ #(Γ) + #(A)
holds by Proposition 5.8.2 and |p |λ ≤ #

N (Γ) + #P (A) is obtained by composing |p |λ ≤ b, given by

Proposition 5.7.1, and b ≤ #
N (Γ) + #P (A), given by Proposition 5.8.2, and if Φ is unitary shrinking

then |p |λ = b is given by Proposition 5.7.2 .

If instead t −→lo u then by shrinking subject reduction (Proposition 5.9) there is a shrinking

derivation Ψ ▷lo Γ ⊢⊢⊢(b
′,r )u : A such that b ′ < b and |Ψ| < |Φ|. By i.h., there exists a −→lo normal

form p and a natural number k ′ ≤ b ′ satisfying the statement with respect to u, so in particular

|p |lo + k
′ ≤ |Ψ|lo . Let k := k ′ + 1. Then:

(1) Steps: t →k
lo p because t −→lo u →k ′

lo p. Moreover, k = k ′ + 1 ≤i.h. b
′ + 1 ≤ b.

(2) Size bound: |p |lo + k = |p |lo + k
′ + 1 ≤i.h. |Ψ| + 1 ≤ |Φ|.

The moreover part mainly follows from the i.h.: only the relationship |p |λ = b − k is not immediate,

but if Φ is unitary shrinking then |p |λ =i.h. b
′ − k ′

and b = b ′ + 1 by shrinking subject reduction

and, since k = k ′ + 1, then |p |λ = b − k holds. □
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C.2 Shrinking Completeness
Proposition 5.11 (Neutral and normal terms have minimal traditional shrinking typ-

ings).

(1) If neutrallo(t) then for every unitary co-shrinking type A there exists a traditional derivation
Φ▷lo Γ ⊢(b ,0) t :A such that Γ is unitary co-shrinking, #(A)+ |t |lo = #(Γ), and #N (A)+b = #

N (Γ).
(2) If normallo(t) then there exists a traditional unitary shrinking derivation Φ ▷lo Γ ⊢(b ,0) t :A such

that |t |lo = #(Γ) + #(A) and b = #
N (Γ) + #P (A).

Proof. By mutual induction on neutrallo(t) and normallo(t).
(1) Cases of neutrallo(t):

• Variable, i.e. t = x . Then
ax

x : [A] ⊢⊢⊢(0,0)x : A

whose type context x : [A] is unitary shrinking because A is unitary co-shrinking by

hypothesis. We have #(A) + |x |lo = #([A]) + 0 = #(x : [A]) and #
N (A) + b = #

N ([A]) + 0 =
#
N (x : [A]).

• Application, i.e. t = pu with neutrallo(p) and normallo(u). By i.h. (point 2) applied to

u, there exists a traditional unitary shrinking typing Φu ▷lo Γu ⊢(bu ,0) u:B with |u |lo =
#(Γu ) + #(B) and bu = #

N (Γu ) + #
P (B).

Now, consider the type [B] → A, that is unitary co-shrinking, because A is unitary co-

shrinking and B is unitary shrinking. By i.h. (point 1) applied to p and [B] → A there exists

a traditional typing Φp ▷lo Γp ⊢(bp ,0) p:[B] → A such that Γp is unitary co-shrinking and

satisfying #([B] → A) + |p |lo = #(Γp ) and #
N ([B] → A) + bp = #

N (Γp ).
Then the derivation Φ built as follows:

Φp ▷lo Γp ⊢⊢⊢
(bp ,0)p : [B] → A

Φu ▷lo Γu ⊢⊢⊢(bu ,0)u : B
many

Γu ⊢⊢⊢(bu ,0)u : [B]
appb

Γp ⊎ Γu ⊢⊢⊢(bp+bu ,0)pu : A

It is traditional and such that its type context is unitary co-shrinking. Moreover,

#(A) + |t |lo = #(A) + |p |lo + |u |lo + 1
=i.h. on u #(A) + |p |lo + #(Γu ) + #(B) + 1
= #(Γu ) + #([B] → A) + |p |lo

=i.h. on p #(Γu ) + #(Γp )
= #(Γp ⊎ Γu )

and

#
N (A) + bp + bu =i.h. on u #

N (A) + bp + #
N (Γu ) + #

P (B)
= #

N (Γu ) + #
N ([B] → A) + bp

=i.h. on p #
N (Γu ) + #

N (Γp )
= #

N (Γp ⊎ Γu )

(2) Cases of normallo(t):
(a) neutrallo(t). By i.h. (point 1), for every unitary co-shrinking typeA there exists a traditional

typing Φ▷lo Γ ⊢(b ,0) t :A such that Γ is unitary co-shrinking. It is then enough to pickA := X ,

that is both unitary shrinking and unitary co-shrinking, so that Φ is unitary shrinking,

#(A) = 0, and the statement trivially holds, because then |t |lo = #(A) + |t |lo =i.h. #(Γ) =
#(Γ) + #(A). Moreover, #

P (A) = #
N (A) = 0, so that by i.h. #N (A) + b = #

N (Γ), which is

equivalent to b = #
N (Γ) + #P (A), as required.
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(b) Abstraction, i.e. t = λy.p and normallo(p). By i.h. (point 2), there exists a unitary shrinking

traditional typing Φp ▷lo Γp ⊢(bp ,0) p:B with |p |lo = #(Γp ) + #(B).
Then let y : M (M possibly [ ]) the declaration of y in Γp and set Γ be Γp without y : M .

Then let Φ be the derivation

Φp ▷lo y : M ; Γ ⊢(bp ,0) p:B
funb

Γ ⊢(bp+1,0) λy.p:M → B

which is traditional and unitary shrinking because Φp is. We have

|λy.p |lo = |p |lo + 1
=i.h. #(y : M ; Γ) + #(B) + 1
= #(Γ) + #(M) + #(B) + 1
= #(Γ) + #(M → B)

and

bp + 1 =i.h. #
N (y : M ; Γ) + #P (B) + 1

= #
N (Γ) + #N (M) + #P (B) + 1

= #
N (Γ) + #P (M → B)

□

Proposition 5.12 (Shrinking subject expansion). If t −→lo p and Φ ▷lo Γ ⊢(b ,r ) p:A then there
exists Ψ such that Ψ ▷lo Γ ⊢(b

′,r ) t :A with b ′ ≥ b. Moreover, if Φ is shrinking (resp. unitary shrinking)
then b ′ ≥ b + 1 (resp. b ′ = b + 1) and |Ψ| > |Φ|, and if Φ is traditional then Ψ is traditional.

Proof. The first part (without the shrinking hypothesis) is an easy induction on t −→lo p. The
part about shrinking/unitary shrinking typings is also by induction on t −→lo p, but it requires a
strengthened statement, along the same lines of the proof for the tight case and of subject reduction:

(1) If t −→lo p, Φ ▷lo Γ ⊢⊢⊢(b ,r )p : A, Γ is co-shrinking and either A is shrinking or ¬abslo(t), then

there exists a typing Ψ ▷lo Γ ⊢⊢⊢(b+1,r )t : A such that b ′ ≥ b + 1 and |Ψ| > |Φ|.
(2) If t −→lo p, Φ ▷lo Γ ⊢⊢⊢(b ,r )p : A, Γ is unitary co-shrinking, and either A is unitary shrinking or

¬abslo(t), then there exists a typing Ψ ▷lo Γ ⊢⊢⊢(b+1,r )t : A such that b ′ = b + 1 and |Ψ| > |Φ|.
The cases of evaluation at top level, under abstraction, and in the left subterm of an application

follows exactly the schema of the tight case: at top level the tight / shrinking hypothesis does not

play any role, the abstraction case immediately follows from the i.h., and the left application case

follows from the reinforced hypothesis that the left subterm is not an abstraction. We treat the case

of evaluation in the right subterm of an application, that is the delicate one, where shrinkness plays

a crucial role.

The rule is:

neutrallo(u) q −→lo m

t = uq −→lo um = p

There are two cases for the last rule of the derivation Φ:
• appb rule:

Φu ▷lo Π ⊢⊢⊢(bu ,ru )u : [Bi ]i ∈I → A

(Φmi ▷lo ∆i ⊢⊢⊢
(bi ,ri )m : Bi )i ∈I

many
⊎i ∈I∆i ⊢⊢⊢

(+i∈Ibi ,+i∈I ri )m : [Bi ]i ∈I
appb

Γ = Π ⊎i ∈I ∆i ⊢⊢⊢
(bu+i∈Ibi ,ru+i∈I ri )um : A

The i.h. applied to each Φmi and q −→lo m gives Φqi such that Φqi ▷lo ∆i ⊢⊢⊢
(b′i ,ri )q : Bi with
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b ′i ≥ bi and |Φqi | ≥ |Φmi |. Then the derivation Ψ given by:

Φu ▷lo Π ⊢⊢⊢(bu ,ru )u : [Bi ]i ∈I → A

(Ψqi ▷lo ∆i ⊢⊢⊢
(b′i ,ri )q : Bi )i ∈I

⊎i ∈I∆i ⊢⊢⊢
(+i∈Ib′i ,+i∈I ri )q : [Bi ]i ∈I

appb
Γ = Π +i ∈I ∆i ⊢⊢⊢

(bu+i∈Ib′i ,ru+i∈I ri )uq : A

verifies the statement. The statement |Ψ| > |Φ| is a straightforward consequence of the i.h.
Shrinking/Unitary shrinking: exactly the same reasoning used for shrinking/unitary shrinking

subject reduction proves that Φu is shrinking/unitary shrinking, I is non-empty, and the Bi
are all shrinking/unitary shrinking. The i.h. then provides b ′i ≥ bi + 1 (resp. b

′
i = bi + 1) for

every i ∈ I , from which the property follows.

• applor rule:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : neutral Φm ▷lo Γm ⊢⊢⊢(bm ,rm )m : tight
applor

Γ = Γu ⊎ Γm ⊢⊢⊢(bu+bm ,ru+rm+1)um : neutral

with b = bu + bm and r = ru + rm + 1. The i.h. applied to Φm and q −→lo m gives Ψq such that

Ψq ▷lo Γq ⊢⊢⊢
(bm ,rq )m : tight with bq ≥ bm and so |Ψq | ≥ |Φm |. Then the derivation Ψ given

by:

Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : neutral Ψq ▷lo Γq ⊢⊢⊢
(bq ,rm )q : tight

applor
Γ = Γu ⊎ Γq ⊢⊢⊢

(bu+bq ,ru+rm+1)uq : neutral

verifies the statement. The statement |Ψ| > |Φ| is a straightforward consequence of the i.h.
Shrinking/Unitary shrinking: ifΦ is shrinking/unitary shrinking then Γm is co-shrinking/unitary

co-shrinking, and Φm is shrinking/unitary shrinking (because tight types are shrinking and

unitary shrinking). By i.h. bq ≥ bm +1 (resp. bq = bm +1), and so b
′ = bu +bq ≥ bu +bm +1 =

b + 1 (resp. b ′ = bu + bq = bu + bm + 1 = b + 1), as required.
□

Theorem 5.13 (Shrinking completeness). Let t −→k
lo p with p such that normallo(p). Then there

exists a traditional unitary shrinking typing Φ ▷lo Γ ⊢(b ,0) t :A such that k = b − #
N (Γ) − #

P (A) and
|p |lo = #(Γ) + #(A).

Proof. By induction on k . If k = 0 the statement is given by the existence of traditional unitary

shrinking typings for −→lo -normal terms (Proposition 5.11), for which k = 0 and b = #
N (Γ)+ #P (A).

Let k > 0 and t −→lo u →k−1
lo p. By i.h., there exists a traditional unitary shrinking typing derivation

Ψ ▷lo Γ ⊢(b
′,0) u:A with k − 1 = b ′ − #

N (Γ) − #
P (A), and |p |lo = #(Γ) + #(A). By shrinking subject

expansion (Proposition 5.12) there exists a traditional typing derivation Φ of t with the same types

in the ending judgement of Ψ—then Φ is unitary shrinking and |p |lo = #(Γ) + #(A) still holds—and
with indices (b ′ + 1, 0). Then k = k − 1 + 1 =i.h. b

′ − #
N (Γ) − #

P (A) + 1 = b − #
N (Γ) − #

P (A). □

D APPENDIX: MAXIMAL EVALUATION
D.1 Tight Correctness

Proposition 7.4 (Properties of typings for normal forms). Given Φ ▷max Γ ⊢⊢⊢(b ,r )t : A with
normalmax (t),
(1) Size bound: |t | ≤ |Φ|
(2) Tight indices: if Φ is tight then b = 0 and r = |t |.
(3) Neutrality: if A = neutral then neutralmax (t).
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Proof. By induction on t . Note that neutralmax implies normalmax and so we can apply the

i.h. when neutralmax holds on some subterm of t . If normalmax (t) because neutralmax (t) there
are two cases:

• Variable, i.e. t = x . Then Φ has the following form and evidently verifies all the points of the

statement:

ax
x : [A] ⊢⊢⊢(0,0)x : A

• Application, i.e. t = pu, neutralmax (p) and normalmax (u). Cases of the last rule of Φ:
– appb rule:

Φp ▷max Γp ⊢⊢⊢
(bp ,rp )p :M → A Φu ▷max Γu ⊢⊢⊢(bu ,ru )u :M

appb
Γp ⊎ Γu ⊢⊢⊢(bp+bu+1,rp+ru )pu : A

with b = bp + bu + 1, r = rp + ru , and Γ = Γp ⊎ Γu .
(1) Size bound: Φu end with rule (many>0) or (none), so in both cases there are n ≥ 1

subderivations (Φi
u )1≤i≤n typing u such that |u |max ≤i.h. |Φ

i
u |max ≤ |Φu |max . The i.h.

gives |p |max ≤ |Φp |max . We conclude |t |max = |p |max + |u |max +1 ≤ |Φp |max + |Φu |max +

1 = |Φ|max .

(2) Tight indices: Lemma 7.3 shows this case to be impossible, as normalmax (pu) means

neutralmax (pu), which implies neutralhd (pu).
(3) Neutrality: neutralmax (t) holds by hypothesis.

– applor rule:

Φp ▷lo Γp ⊢⊢⊢
(bp ,rp )p : neutral Φu ▷lo Γu ⊢⊢⊢(bu ,ru )u : tight

applor
Γp ⊎ Γu ⊢⊢⊢(bp+bu ,rp+ru+1)pu : neutral

with b = bp + bu , r = rp + ru + 1, and Γ = Γp ⊎ Γu .
(1) Size bound: by i.h. |p |lo ≤ |Φp |lo and |u |max ≤ |Φu |max . Then |t |max = |p |max + |u |max +

1 ≤i.h. |Φp |max + |Φu |max + 1 = |Φ|max .

(2) Tight indices: if Φ is tight, then Φp and Φu are tight and rp = |p |max and bp = 0, and

ru = |u |max and bu = 0. Then, r = rp + ru + 1 =i.h. |p |max + |u |max + 1 = |pu |max = |t |max
and b = bp + bu = 0 + 0 = 0.

(3) Neutrality: neutrallo(t) holds by hypothesis.

Now, there is only one case left for normalmax (t):
• Abstraction, i.e. t = λx .p and normalmax (t) because normalmax (p). Cases of the last rule of
Φ:
– funb rule:

Φp ▷S Γ;x : M ⊢⊢⊢(bp ,r )p : A
funb

Γ ⊢⊢⊢(bp+1,r )λx .p :M → A

with b = bp + 1.
(1) Size bound: Then, |t |max = |p |max + 1 ≤i.h. |Φp |max + 1 = |Φ|max .

(2) Tight indices: Φ is not tight, so the statement trivially holds.

(3) Neutrality: A , neutral, so the statement trivially holds.

– funr rule:
Φp ▷ Γ;x : Tight ⊢⊢⊢(b ,rp )p : tight

funr
Γ ⊢⊢⊢(b ,rp+1)λx .p : abs
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with r = rp + 1.
(1) Size bound: Then, |t |max = |p |max + 1 ≤i.h. |Φp |max + 1 = |Φ|max .

(2) Tight indices: if Φ is tight, then Φp is tight and by i.h. rp = |p |max and b = 0. Then,

r = rp + 1 =i.h. |p |max + 1 = |t |max .

(3) Neutrality: A , neutral, so the statement trivially holds.

□

Proposition 7.7 (Quantitative tight subject reduction formax). If Φ ▷max Γ ⊢⊢⊢(b ,r )t : A

is max-tight and t
e
−→max p, then there exist Γ′ ⊑ Γ and an max-tight typing Ψ such that Ψ ▷max

Γ′ ⊢⊢⊢(b−1,r−e)p : A and |Φ| > |Ψ|.

Proof. We prove, by induction on t
e
−→max p, the stronger statement:

Assume t
e
−→max p, Φ ▷max Γ ⊢⊢⊢(b ,r )t : A is garbage-tight, tight(Γ), and either tight(A) or

¬absmax (t). Then there exist Γ′ and a garbage-tight typing Ψ ▷max Γ′ ⊢⊢⊢(b−1,r−e)p : A such that

tight(Γ′).
• Non-erasing top-level step:

x ∈ fv(u)

(λx .u)q
0

−→max u{x�q}

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)q : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , the derivation of its premiss for λx .u must end with funb . Hence, there are
two garbage-tight derivations Φu ▷max Γu ;x : M ⊢⊢⊢(bu ,ru )u : A and Φp ▷max Γp ⊢⊢⊢

(bp ,rp )p : M ,

with (b, r ) = (bu + bq + 1, ru + rq) and Γ = Γu ⊎ Γp . Moreover, by hypothesis x ∈ fv(u), and
so M , [ ] by relevance (Lemma 7.2). Then, the substitution lemma (Lemma 7.6) gives a

garbage-tight derivationΨ▷max Γ ⊢⊢⊢(bu+bq ,ru+rq )u{x�q} :A such that |Ψ| = |Φu |+ |Φq |− |M | <
|Φu | + |Φq | + 2 = |Φ|.

• Erasing top-level step:

x < fv(u) normalmax (q)

(λx .u)q
|q |max
−−−−−→max u

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)q : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , and the derivation of its premiss for (λx .u) must end with funb . Moreover,

since x < fv(u), then by relevance (Lemma 7.2) the derivation of its premiss q must end with

rule none:
Φu ▷max Γu ⊢⊢⊢(bu ,ru )u : A

funb
Γu ⊢⊢⊢(bu+1,ru )λx .u : [ ] → A

Φq ▷max Γq ⊢⊢⊢
(bq ,rq )q : Aq

none
Γq ⊢⊢⊢

(bq ,rq )q : [ ]
appb

Γu ⊎ Γq ⊢⊢⊢
(bu+bq+1,ru+rq )(λx .u)q : A

with (b, r ) = (bu + bq + 1, ru + rq) and Γ = Γu ⊎ Γp . Since Φ is garbage-tight, then Γq
is tight and Aq must be tight, and since normalmax (q), we can apply the tight indices

property of normal forms (Proposition 7.4) and obtain (bq, rq) = (0, |q |max ), so that (bu , ru ) =
(b−1, r − |q |max ). Since tight(Γu ⊎ Γq)we have tight(Γu ), so Φu is the desired garbage-tight

derivation. Moreover, |Φu | < |Φu | + |Φq | + 2 = |Φ|.
• Rule

t
e
−→max p

λx .t
e
−→max λx .p
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Assume Φ ▷max Γ ⊢⊢⊢(b ,r )λx .t : A is garbage-tight and tight(Γ). Since absmax (λx .t) we must

have hypothesis tight(A), then Φ must necessarily finish with rule funr and there is a sub-

derivationΦt ▷max Γ;x : Tight⊢⊢⊢(b ,r−1)t : tight. AsΦt is garbage-tight and tight(Γ;x : Tight)
we can apply the i.h. and get Φp ▷max Γ′;x : Tight? ⊢⊢⊢(b−1,r−1−e)p : tight where x : Tight?
means x : Tight or x : [ ] and Γ′ ⊑ Γ, Φp is garbage-tight and tight(Γ′;x : Tight?). Then
we construct the derivation Ψ:

Φp ▷max Γ′;x : Tight? ⊢⊢⊢(b−1,r−1−e)p : tight
funr

Γ′ ⊢⊢⊢(b−1,r−e)λx .p : A

Then tight(Γ′) and thus Ψ is garbage-tight. We conclude |Φ| = |Φt | + 1 > |Φp | + 1 = |Ψ|
thanks to the i.h. |Φt | > |Φp |.

• Rule

¬absmax (t) t
e
−→max p

tu
e
−→max pu

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )tu : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb or applor , and therefore there are two garbage-tight derivations Φt ▷max
Γt ⊢⊢⊢

(bt ,rt )t :At and Φu ▷max Γu ⊢⊢⊢
(bu ,ru )u :Au , for some typesAt andAu , with Γ = Γt ⊎Γu . Since

tight(Γ) we have tight(Γt ) and tight(Γu ). Since ¬absmax (t), we can apply the i.h. and get

the garbage-tight derivation Φp ▷max Γp ⊢⊢⊢
(bt−1,rt−e)p :At , with tight(Γp ). Then the same rule

appb or app
lo
r can be applied to get the garbage-tight derivationΨ▷max Γp ⊎ Γu ⊢⊢⊢

(b−1,r−e)pu :A,
with tight(Γp ⊎ Γu ). We conclude |Φ| = |Φt | + |Φu | + 1 > |Φp | + |Φu | + 1 = |Ψ| thanks to the
i.h. |Φt | > |Φp |.

• Rule

neutralmax (u) t
e
−→max p

ut
e
−→max up

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )ut : A is garbage-tight and tight(Γ). The derivation Φ must end with

rule applor , since Lemma 7.3 (which applies as neutralmax (u) implies neutralhd (ut)) rules
out rule appb . Hence, there are two garbage-tight derivations Φu ▷max Γu ⊢⊢⊢

(bu ,ru )u : neutral
and Φt ▷max Γt ⊢⊢⊢(bt ,rt )t : tight, with Γ = Γu ⊎ Γt , tight(Γu ) and tight(Γt ). Further-
more, A = neutral. Therefore we can apply the i.h. to get the tight derivation Φp ▷max

Γp ⊢⊢⊢
(bt−1,rt−e)p : tight.

Then applor can be applied to get the tight derivation Ψ ▷max Γu ⊎ Γp ⊢⊢⊢
(b−1,r−e)up : neutral.

We conclude |Φ| = |Φu | + |Φt | + 1 > |Φu | + |Φp | + 1 = |Ψ| thanks to the i.h. |Φt | > |Φp |.

• Rule

x < fv(u) t
e
−→max p

(λx .u)t
e
−→max (λx .u)p

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)t : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , therefore there are garbage-tight derivations Φu ▷max Γu ⊢⊢⊢
(bu ,ru )λx .u : [ ] → A

and Φt ▷max Γt ⊢⊢⊢
(bt ,rt )t : tight, with Γ = Γu ⊎Γt and (b, r ) = (bt +bu +1, rt +ru ). We can apply

the i.h. to get the tight derivation Φp ▷max Γp ⊢⊢⊢
(bt−1,rt−e)p : tight. Then appb can be applied

to get the garbage-tight derivation Ψ ▷max Γu ⊎ Γp ⊢⊢⊢
(b−1,r−e)(λx .u)p : A, with tight(Γu ⊎ Γp ).

We conclude |Φ| = |Φu | + |Φt | + 1 > |Φu | + |Φp | + 1 = |Ψ| thanks to the i.h. |Φt | > |Φp |.

□
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Theorem 7.8 (Tight correctness formax-evaluation). Let Φ ▷max Γ ⊢⊢⊢(b ,r )t : A be a max-
tight derivation. Then there is an integer e and a term p such that normalmax (p), t

e
−→b

max p and
|p |max + e = r . Moreover, if A = neutral then neutralmax (p).

Proof. By induction on |Φ|. If t is amax normal form—that covers the base case |Φ| = 1, for

which t is necessarily a variable—then by taking p := t , k := 0 and e := 0 the statement follows

from the tightness property of tight typings of normal forms (Proposition 7.4.2)—the moreover part

follows from the neutrality property (Proposition 7.4.3). Otherwise, t
e ′
−→max u and by quantitative

subject reduction (Proposition 7.7) there is a derivation Ψ ▷max Γ′ ⊢⊢⊢(b−1,r−e
′)u : A such that Γ′ ⊑ Γ

and |Ψ| < |Φ|. By i.h., there exists p such that normalmax (p) andu
e ′′
−−→b−1

max p and |p |max +e
′′ = r −e ′.

Just note that t
e ′+e ′′
−−−−→b

max p. We conclude by taking e = e ′ + e ′′ because |p |max + e
′ + e ′′ = r as

required. □

D.2 Tight Completeness
Proposition 7.11 (Quantitative tight subject expansion formax ). If Φ ▷max Γ ⊢⊢⊢(b ,r )p : A

is max-tight and t
e
−→max p, then there exist Γ′ ⊒ Γ and a max-tight typing Ψ such that Ψ ▷max

Γ′ ⊢⊢⊢(b+1,r+e)t : A and |Φ| < |Ψ|. Ψ ▷max Γ′ ⊢⊢⊢(b+1,r+e)t : A and |Φ| < |Ψ|.

Proof. We prove, by induction on t
e
−→max p, the stronger statement:

Assume t
e
−→max p, Φ ▷max Γ ⊢⊢⊢(b ,r )p : A is garbage-tight, tight(Γ), and either tight(A) or

¬absmax (t). Then there exist Γ′ ⊒ Γ and a garbage-tight typing Ψ ▷max Γ′ ⊢⊢⊢(b+1,r+e)t : A such that

tight(Γ′) and |Φ| < |Ψ|. In what follows we treat all the cases, by omitting the details about the

decreasigness of size derivations, which are the same appearing in previous subject expansion

properties of this paper.

• Rule

x ∈ fv(u)

(λx .u)q
0

−→max u{x�q}

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )u{x�q} : A is garbage-tight and tight(Γ). By applying the anti

substitution (Lemma 7.10) we obtain the premisses of the following derivation Φ′
:

Φu ▷max Γu , x : M ⊢⊢⊢(bu ,ru )u : A

Γu ⊢⊢⊢(bu+1,ru )λx .u :M → A Φq ▷max Γq ⊢⊢⊢
(bq ,rq )q :M

Γu ⊎ Γq ⊢⊢⊢
(bu+bq+1,ru+rq )(λx .u)q : A

with (b, r ) = (bu + bq, ru + rq) and Γ = Γu ⊎ Γq . Moreover, Φu and Φq are all garbage-tight, so

Φ′
is garbage-tight.

• Rule

x < fv(u) normalmax (q)

(λx .u)q
|q |max
−−−−−→max u

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )u :A is garbage-tight and tight(Γ). By applying the existence of tight
derivations for normal forms (Proposition 7.9), we obtain the max-tight derivation Φq used

in the construction of derivation Φ′
below:
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Φ ▷max Γ ⊢⊢⊢(b ,r )u : A

Γ ⊢⊢⊢(b+1,r )λx .u : [ ] → A

Φq ▷max Γq ⊢⊢⊢
(0, |q |max )q : tight

Γq ⊢⊢⊢
(0, |q |max )q : [ ]

Γ ⊎ Γq ⊢⊢⊢
(b+1,r+ |q |max )(λx .u)q : A

Moreover, tight(Γ ⊎ Γq) and Φ′
is garbage-tight.

• Rule

t
e
−→max p

λx .t
e
−→max λx .p

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )λx .p : A is garbage-tight and tight(Γ). Since absmax (λx .t) holds,
then we must have tight(A), and then Φ must finish with rule funr which must have

a subderivation of the form Φp ▷max Γ, x : Tight ⊢⊢⊢(b ,r−1)p : tight. The derivation Φp is

garbage-tight and tight(Γ, x : Tight) holds, then we can apply the i.h. and get Φt ▷max
Γ′, x : Tight ⊢⊢⊢(b+1,r−1+e)t : tight, where Γ′ ⊒ Γ, Φt is garbage-tight and tight(Γ

′, x : Tight).
We construct the following derivation Φ′

:

Φt ▷max Γ′, x : Tight ⊢⊢⊢(b+1,r−1+e)t : tight
funr

Γ′ ⊢⊢⊢(b+1,r+e)λx .t : A

Then Φ′
is garbage-tight and tight(Γ′).

• Rule

¬absmax (t) t
e
−→max p

tu
e
−→max pu

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )pu : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb or applor , and therefore there are two garbage-tight derivations Φp ▷max

Γp ⊢⊢⊢
(bp ,rp )p :Ap andΦu ▷max Γu ⊢⊢⊢

(bu ,ru )u :Au , for some typesAp andAu , with Γ = Γp⊎Γu . Since
tight(Γ) we have tight(Γp ) and tight(Γu ). Since ¬absmax (t), we can apply the i.h. and get

the garbage-tight derivation Φt ▷max Γt ⊢⊢⊢
(bp+1,rp+e)t :Ap , with tight(Γt ). Then the same rule

appb or app
lo
r can be applied to get the garbage-tight derivationΦ′▷max Γt ⊎ Γu ⊢⊢⊢

(b+1,r+e)tu :A,
with tight(Γt ⊎ Γu ).

• Rule

neutralmax (u) t
e
−→max p

ut
e
−→max up

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )up : A is garbage-tight and tight(Γ). The derivation Φ must end with

rule applor , since Lemma 7.3 (which applies as neutralmax (u) implies neutralhd (up)) rules
out rule appb . Hence, there are two garbage-tight derivations Φu ▷max Γu ⊢⊢⊢

(bu ,ru )u : neutral
and Φp ▷max Γp ⊢⊢⊢(bp ,rp )p : tight, with Γ = Γu ⊎ Γp , tight(Γu ) and tight(Γp ). Further-
more, A = neutral. Therefore we can apply the i.h. to get the tight derivation Φt ▷max
Γt ⊢⊢⊢(bp+1,rp+e)t : tight. Then applor can be applied to get the tight derivation

Φ′ ▷max Γt ⊎ Γu ⊢⊢⊢(b+1,r+e)ut : neutral.
• Rule

x < fv(u) t
e
−→max p

(λx .u)t
e
−→max (λx .u)p

Assume Φ ▷max Γ ⊢⊢⊢(b ,r )(λx .u)p : A is garbage-tight and tight(Γ). The derivation Φ must end

with rule appb , therefore there are garbage-tight derivations Φu ▷max Γu ⊢⊢⊢
(bu ,ru )λx .u : [ ] → A
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and Φp ▷max Γp ⊢⊢⊢(bp ,rp )p : tight, with Γ = Γu ⊎ Γp and (b, r ) = (bp + bu + 1, rp + ru ). We

can apply the i.h. to get the tight derivation Φt ▷max Γt ⊢⊢⊢
(bp+1,rp+e)t : tight. Then appb

can be applied to get the garbage-tight derivation Φ′ ▷max Γt ⊎ Γu ⊢⊢⊢(b+1,r+e)(λx .u)t : A, with
tight(Γt ⊎ Γu ).

□

Theorem 7.12 (Tight completeness for formax ). If t
e
−→k

max p with normalmax (p), then there
exists an max-tight typing Φ▷max Γ ⊢⊢⊢(k , |p |max+e)t :A. Moreover, if neutralmax (p) thenA = neutral,
and if absmax (p) then A = abs.

Proof. By induction on t −→k
max p. If k = 0 (and thus e = 0) the statement is given by the existence

of tight typings for normalmax terms (Proposition 7.9), that also provides the moreover part. Let

k > 0 and t
e ′
−→max u

e ′′
−−→k−1

max p, where e = e ′ + e ′′. By i.h., there exists a max-tight derivation

Ψ ▷max Γu ⊢⊢⊢(k−1, |p |max+e ′′)u : A which also provides the moreover part. By subject expansion

(Proposition 7.11) there exists a max-tight typing derivation Φ ▷max Γ ⊢⊢⊢(k−1+1, |p |max+e ′′+e ′)t :A such

that Γ ⊒ Γu . Then we conclude since the indices (k, |p |max + e) are as expected. □

E APPENDIX: LINEAR HEAD EVALUATION
Proposition 8.1 (linear head evaluation system).

(Λlsc,→lhd , neutrallhd , normallhd , abslhd ) is an evaluation system.

Proof. The determinism of −→lhd is straightforward. We prove here the characterisation of

lhd-normal terms and lhd-neutral terms.

⇒) Let t be −→lhd -normal. Then t has either a free head variable x or a bound head variable.

We then refine the general statement as follows:

(1) If t is −→lhd -normal and has a free head variable x and is not a (potentially) substituted

abstraction, then neutralxlhd (t).
(2) If t is −→lhd -normal and has a free head variable x and is a (potentially) substituted abstraction,

then normalxlhd (t).

(3) If t is −→lhd -normal has a bound head variable, then normal#lhd (t).
We show simultaneously the three statement by induction on terms.

• If t is a variable, then it corresponds to case (1) and we conclude by rule lhnvar.
• If t = λy.p, then p is also −→lhd -normal. There are two cases: case (2) or (3).

If λy.p corresponds to case (2), then y , x and p corresponds to case (1) or (2). In the first case

the i.h. (1) gives that neutralxlhd (p) and thus we conclude by rules lhnno and then lhnolamx.
In the second case the i.h. (2) gives that normalxlhd (p) and we conclude with rule lhnolamx.
If λy.p corresponds to case (3), then either p corresponds to case (3), or p corresponds to

cases (1) or (2) with y = x . In the first case we get that normal#lhd (p) by the i.h. (3) and thus

normal#lhd (λx .p) by rule lhnolam. In the second case we get that neutralxlhd (p) by the i.h. (1)
(resp. normalxlhd (p) by the i.h. (2)). We conclude with rules lhnno and then lhnolamx (resp.
lhnolamx).

• If t = pu, then p is also −→lhd -normal, otherwise rule lhdλ would apply, and p is not a

(potentially) substituted abstraction, otherwise rule lhdm would apply. The term pu neces-

sarily corresponds to case (1) for some variable x and the same for p. We thus obtain that

neutralxlhd (p) by the i.h. (1) and we conclude by rule lhnapp.
• If t = p[y\u], p is also −→lhd -normal, otherwise rule lhds would apply, and p has no free

head variable y, otherwise rule lhde would apply. Then p[y\u] corresponds to one of cases
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(1)-(2)-(3). If p corresponds to (1), then neutralxlhd (p) by the i.h. (1) and we conclude with

rule lhnsubx. If p corresponds to (2), then normalxlhd (p) by the i.h. (2) and we conclude with

rule lhnosubx. If p corresponds to (3), then normal#lhd (p) by the i.h. (3) and we conclude with
rule lhnosub.

Now, given t in −→lhd -normal: if case (1) holds we conclude neutralxlhd (t) with the previous

statement (1), then rules lhnno and lhnox; if case (2) holds we conclude normalxlhd (t) with the

previous statement (2), then rule lhnox; if case (3) holds we conclude normalxlhd (t)with the previous
statement (3), then rule lhno;
⇐) By induction on normallhd (t). We remark that two cases are possible: either normalxlhd (t)

for some variable x or normal#lhd (t). We then refine the statement as follows:

(1) If neutralxlhd (t), then t is −→lhd -normal and t has a head free variable x and t is not a
(potentially) substituted abstraction.

(2) If normalxlhd (t), then t is −→lhd -normal and t has a head free variable x .

(3) If normal#lhd (t), then t is −→lhd -normal and t has a head bound variable.

We reason by induction on the definition.

• If neutralxlhd (t) by rule lhnvar, then property (1) trivially holds.

• If neutralxlhd (pu) because neutralxlhd (p) by rule lhnapp, then by the i.h. (1) p is −→lhd -

normal –so rule lhdm does not apply– and p has a head free variable x and is not a (potentially)

substituted abstraction –so rule lhd@ does not apply. Then pu is −→lhd -normal, it has a head

free variable x and is not a (potentially) substituted abstraction.

• If neutralxlhd (p[y\u]) because neutralxlhd (p) and y , x by rule lhnsubx, then by the i.h.
(1) p is −→lhd -normal –so rule lhds does not apply– and p has a head free variable x and

is not a (potentially) substituted abstraction –so rule lhde does not apply. Then p[y\u] is
−→lhd -normal, it has a head free variable x and is not a (potentially) substituted abstraction.

• If normalxlhd (t) because neutral
x
lhd (t) by rule lhnno, then by the i.h. (1) t is −→lhd -normal

and has a head free variable x . We are then done for this case.

• If normalxlhd (λy.p) because normal
x
lhd (t) and y , x by rule lhnolamx, then by the i.h. (2) p

is −→lhd -normal –so that rule lhdλ does not apply– and p has a head free variable x . We

conclude λy.p is −→lhd -normal and has a head free variable x .
• If normalxlhd (p[y\u]) because normal

x
lhd (p) and y , x by rule lhnosubx, then by the i.h. (2) p

is −→lhd -normal –so that rule lhds does not apply– and p has a head free variable x –so that

rule lhde does not apply–. We conclude p[y\u] is −→lhd -normal and has a head free variable

x .
• If normal#lhd (λx .p) because normal

x
lhd (p) by rule lhnolamx, then by the i.h. (2) p is −→lhd -

normal –so that rule lhdλ does not apply–. We conclude λx .p is −→lhd -normal and has a

bound head variable.

• If normal#lhd (λy.p) because normal#lhd (p) by rule lhnolam, then by the i.h. (3) p is −→lhd -

normal –so that rule lhdλ does not apply– and p has a bound head variable. We conclude

λx .p is −→lhd -normal and has a bound head variable.

• If normal#lhd (p[y\u]) because normal
#

lhd (p) by rule lhnosub, then by the i.h. (3) p is −→lhd -

normal –so that rule lhdλ does not apply– and p has a bound head variable. We conclude

p[y\u] is −→lhd -normal and has a bound head variable.

□

E.1 Tight Correctness
Lemma E.1 (Multi-set decomposition for lhd). LetM = ⊎k ∈KMk . Then Φ ▷lhd Γ ⊢(b ,e ,r ) t :M

if and only if there exist (Φk )k ∈K , (Γk )k ∈K , (bk )k ∈K , (ek )k ∈K and (rk )k ∈K and such that Φk ▷lhd
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Γk ⊢(bk ,ek ,rk ) t :Mk , where Γ = ⊎k ∈K Γk , b = +k ∈Kbk , e = +k ∈Kek and r = +k ∈Krk . Moreover,
|Φ|lhd = +k ∈K |Φk |hd .

Proof. By induction on the size of K . □

Lemma 8.3 (Tight spreading onneutral terms, plus typing contexts). LetΦ▷lhd Γ ⊢⊢⊢(b ,e ,r )t :A
be a derivation.
(1) If neutralxlhd (t) then x ∈ dom(Γ). Moreover, if tight(Γ(x)) then tight(A) and dom(Γ) = {x}.
(2) If normalxlhd (t) then x ∈ dom(Γ). Moreover, if tight(Γ(x)) then dom(Γ) = {x}.
(3) If normal#lhd (t) and tight(A) then A = abs and Γ is empty.

In all the cases, if tight(Γ), then the last rule of Φ is not appb .

Proof.

(1) By induction on neutralxlhd (t). Cases:
• Variable, i.e. t = x . Then Φ is

ax
x : [A] ⊢⊢⊢(0,0,1)x : A

and so dom(Γ) = {x}. If Γ(x) = Tight then it must be A = tight.
• Application, i.e. t = pu. The last rule of Φ can only be appb or apphdr . In both cases the left

subterm p is typed by a sub-derivation Φ′ ▷lhd Γp ⊢⊢⊢
(b′,e ′,r ′)p : B such that all assignments

in Γp appear in Γ. Since neutralxlhd (t) implies neutralxlhd (p), we can apply the i.h. and
obtain that x ∈ dom(Γp ) ⊆ dom(Γ). If moreover, Γ(x) = Tight then Γp (x) = Tight and by

i.h. B = tight and dom(Γp ) = {x}. This forces B = neutral and the last rule of Φ to be

apphdr . Then A = neutral and Γ = Γp , that implies dom(Γ) = {x}.
• Explicit substitution, i.e. t = p[y\u] and y , x . The last rule of Φ is ES and the left subterm p
is typed by a sub-derivation Φ′ ▷lhd Γp ;y : M ⊢⊢⊢(b

′,e ′,r ′)p : A such that all types in Γp appear

in Γ. Since neutralxlhd (t) implies neutralxlhd (p), we can apply the i.h. and obtain that

x ∈ dom(Γp ) ⊆ dom(Γ). If moreover, Γ(x) = Tight then (Γp ;y : M)(x) = Tight and by the

i.h. A = tight and dom(Γp ;y : M) = {x}. This forces M = [ ] and the ES rule to have no

right premiss. Then Γ = Γp , that implies dom(Γ) = {x}.
(2) By induction on normalxlhd (t). If normal

x
lhd (t) because neutral

x
lhd (t) then it follows from

the previous point. The two other cases are:

• Abstraction, i.e. t = λy.p with normalxlhd (p) andy , x . The last rule of Φ can only be funb or

funr . In both cases the subterm p is typed by a sub-derivation Φ′ ▷lhd Γ;y : M ⊢⊢⊢(b
′,e ′,r ′)p : B.

By i.h., x ∈ dom(Γ;y : M) and so x ∈ dom(Γ), because y , x . If moreover, Γ(x) = Tight then
by i.h. dom(Γ;y : M) = {x}, that is,M = [ ]. Then dom(Γ) = {x}.

• Explicit substitution, i.e. t = p[y\u] with normalxlhd (p) and y , x . The last rule of Φ is ES

and the left subterm p is typed by a sub-derivation Φ′ ▷lhd Γp ;y : M ⊢⊢⊢(b
′,e ′,r ′)p : A such that

all types in Γp appear in Γ. By i.h., x ∈ dom(Γp ) ⊆ dom(Γ). If moreover, Γ(x) = Tight then
by i.h. dom(Γp ;y : M) = {x}, that is, M = [ ]. Therefore, the ES rule has no right premiss.

Then Γ = Γp , that implies dom(Γ) = {x}.
(3) By induction on normal#lhd (t). Cases:

• Abstraction on the head variable, i.e. t = λx .p with normalxlhd (p). If A = tight then the last

rule of Φ can only be funr and A = abs:

Γ;x : Tight ⊢⊢⊢(b ,e ,r )p : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λx .p : abs

By the previous point, dom(Γ;x : Tight) = {x}, that is, Γ is empty.
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• Abstraction on a non-head variable, i.e. t = λx .p with normal#lhd (p). If A = tight then the

last rule of Φ can only be funr and A = abs:

Γ;x : Tight ⊢⊢⊢(b ,e ,r )p : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λx .p : abs

By i.h., Γ is empty.

• Explicit substitution, i.e. t = p[y\u] with normal#lhd (p). The last rule of Φ is ES and the left

subterm p is typed by a sub-derivation Φ′ ▷lhd Γp ;y : M ⊢⊢⊢(b
′,e ′,r ′)p : tight such that all

types in Γp appear in Γ. By i.h., the typing context Γp ;y : M is empty, that forces M = [ ].

Therefore, the ES rule has no right premiss. Then Γ = Γp , i.e. Γ is empty.

□

Proposition 8.4 (Properties of lhd tight typings for normal forms). Let t be such that
normallhd (t), and Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : A be a typing derivation.
(1) Size bound: |t |lhd ≤ |Φ|.
(2) Tightness: if Φ is tight then b = e = 0 and r = |t |lhd .
(3) Neutrality: if A = neutral then neutrallhd (t).

Proof. By induction on Φ. Cases of t :
• Variable, i.e. t = x . Then Φ has the following form and evidently verifies all the points of the

statement:

ax
x : [A] ⊢⊢⊢(0,0,1)x : A

The derivation verifies r = 1 = |x |lhd = |Φ|, b = e = 0, as required.

• Abstraction, i.e. t = λx .p with normallhd (p). Cases of the last rule of Φ:
– funb rule:

Ψ ▷lhd Γ;x : M ⊢⊢⊢(b
′,e ,r )p : A

funb
Γ ⊢⊢⊢(b

′+1,e ,r )λx .p :M → A
with b = b ′ + 1.

(1) Size bound: by i.h., |p |lhd ≤ |Ψ|. Then, |t |lhd = |p |lhd + 1 ≤i.h. |Ψ| + 1 = |Φ|.
(2) Tight bound: Φ is not tight, so the statement trivially holds.

– funr rule:
Ψ ▷lhd Γ;x : Tight ⊢⊢⊢(b ,e ,r

′)p : tight
funr

Γ ⊢⊢⊢(b ,e ,r
′+1)λx .p : abs

with r = r ′ + 1.
(1) Size bound: by i.h., |p |lhd ≤ |Ψ|. Then, |t |lhd = |p |lhd + 1 ≤i.h. |Ψ| + 1 = |Φ|.
(2) Tight bound: if Φ is tight, then Ψ is tight and by i.h. r ′ = |p |lhd and b = e = 0. Then,

r = r ′ + 1 =i.h. |p |lhd + 1 = |t |lhd .
• Application, i.e. t = pu with neutralxlhd (p) for some x . Cases of the last rule of Φ:
– appb rule:

Ψ ▷lhd ∆ ⊢⊢⊢(b
′,e ′,r ′)p :M → A Θ ▷ Π ⊢(b

′′,e ′′,r ′′) u : M
appb

∆ ⊎ Π ⊢⊢⊢(b
′+b′′+1,e ′+e ′′,r ′+r ′′)pu : A

with b = b ′ + b ′′ + 1, e = e ′ + e ′′, r = r ′ + r ′′, and Γ = ∆ ⊎ Π.
(1) Size bound: by i.h., |p |lhd ≤ |Ψ|, from which it follows |t |lhd = |p |lhd +1 ≤i.h. |Ψ|+1 = |Φ|.
(2) Tight bound: since Φ is tight and t is normal, this case is impossible by Lemma 8.3.



Tight Typings and Split Bounds, Fully Developed 1:77

– apphdr rule:

Ψ ▷lhd Γ ⊢⊢⊢(b ,e ,r
′)p : neutral

apphdr
Γ ⊢⊢⊢(b ,e ,r

′+1)pu : neutral

with r = r ′ + 1.
(1) Size bound: by i.h., |p |lhd ≤ |Ψ|. Then |t |lhd = |p |lhd + 1 ≤i.h. |Ψ| + 1 = |Φ|.
(2) Tight bound: if Φ is tight, then Ψ is tight and by i.h. r ′ = |p |lhd and b = e = 0. Then,

r = r ′ + 1 =i.h. |p |lhd + 1 = |pu |lhd = |t |lhd .
• Explicit substitution, i.e. t = p[x\u] and the last rule of Φ is:

Ψ ▷lhd ∆;x : M ⊢⊢⊢(b
′,e ′,r ′)p : A Π ⊢⊢⊢(b

′′,e ′′,r ′′)u :M
ES

∆ ⊎ Π ⊢⊢⊢(b
′+b′′,e ′+e ′′+ |M |,r ′+r ′′−|M |)p[x\u] : A

with b = b ′ + b ′′, e = e ′ + e ′′, r = r ′ + r ′′, and Γ = ∆ ⊎ Π.
(1) Size bound: by i.h. |p |lhd ≤ |Ψ|. Then |t |lhd = |p |lhd ≤i.h. |Ψ| < |Φ|.
(2) Tight bound: There are two cases:

– normal
y
lhd (p) for somey , x . By Lemma 8.3.2y ∈ dom(∆). All assignments in ∆ are Tight

because Φ is tight, and so applying Lemma 8.3.2 again we obtain that dom(∆) = {y}, that
is, thatM = [ ]. Two consequences: first, the ES has no right premiss, that is, it rather has

the following shape:

Ψ ▷lhd Γ ⊢⊢⊢(b ,e ,r )p : A
ES

Γ ⊢⊢⊢(b ,e ,r )p[x\u] : A

second, Ψ is tight, and so by i.h. b = e = 0 and r = |p |lhd . The statement follows from

the fact that |p |lhd = |p[x\u]|lhd .
– normal#lhd (p). If Φ is tight then A = tight and by Lemma 8.3.3 the context ∆;x : M is

empty, that is, M = [ ]. Two consequences: first, the ES has no right premiss, that is, it

rather has the following shape:

Ψ ▷lhd ⊢⊢⊢(b ,e ,r )p : A
ES

⊢⊢⊢(b ,e ,r )p[x\u] : A

second, Ψ is tight, and so by i.h. b = e = 0 and r = |p |lhd . The statement follows from

the fact that |p |lhd = |p[x\u]|lhd .
□

Lemma 8.5 (Linear substitution and typings for lhd). Let Φ ▷lhd x : M ; Γ ⊢⊢⊢(b ,e ,r )H ⟨⟨x⟩⟩ : A.
Then there exists B ∈ M such that for all Φt ▷lhd Γt ⊢⊢⊢

(bt ,et ,rt )t : B there exists a derivation Ψ ▷lhd
x : M \ [B]; Γ ⊎ Γt ⊢⊢⊢

(b+bt ,e+et ,r+rt−1)H ⟨⟨t⟩⟩ : A. Moreover, |Ψ| = |Φ| + |Φt | − 1.

Proof. By induction on H . Cases:

• Empty context, i.e. H = ⟨·⟩. The typing derivation Φ is simply

ax
x : [A] ⊢⊢⊢(0,0,1)x : A

and Γ is empty. Then M = [A]. The statement then holds with respect to Ψ := Φt , because

b = 0, e = 0, and r = 1. The moreover statement is straightforward since |Φ| = 1.

• Abstraction, i.e. H = λy.H ′
. Two sub-cases, depending on the last rule of Φ:
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(1) The last rule is funb , and so Φ has the form:

x : M ;y : N ; Γ ⊢(bΓ ,e ,r ) H ′⟨⟨x⟩⟩:A
funb

x : M ; Γ ⊢(bΓ+1,e ,r ) λy.H ′⟨⟨x⟩⟩:N → A

where b = bΓ + 1. By i.h., there exists a splittingM = [B] ⊎O such that for every derivation

Ψ ▷lhd ∆ ⊢⊢⊢(b
′,e ′,r ′)t : B there exists a derivation

ΦH ′ ⟨⟨t ⟩⟩ ▷lhd x : O ;y : N ; Γ ⊎ ∆ ⊢⊢⊢(bΓ+b
′,e+e ′,r+r ′−1)H ′⟨⟨t⟩⟩ : A

Note thaty < dom(∆): we are working up to α-equivalence, and soy < fv(t), and the system
is relevant, and so y < fv(t) implies y < dom(∆). By applying the funb rule we obtain:

x : O ;y : N ; Γ ⊎ ∆ ⊢⊢⊢(bΓ+b
′,e+e ′,r+r ′−1)H ′⟨⟨t⟩⟩ : A

funb
x : O ; Γ ⊎ ∆ ⊢(bΓ+1+b

′,e+e ′,r+r ′−1) λy.H ′⟨⟨t⟩⟩:N → A

that satisfies the statement (because b = bΓ + 1).
(2) The last rule is funr , and so Φ has the form:

x : M ;y : Tight; Γ ⊢(b ,e ,rΓ) H ′⟨⟨x⟩⟩:tight
funr

x : M ; Γ ⊢(b ,e ,rΓ+1) λy.H ′⟨⟨x⟩⟩:abs

where r = rΓ + 1. By i.h., there exists a splittingM = [B] ⊎O such that for every derivation

Ψ ▷lhd ∆ ⊢⊢⊢(b
′,e ′,r ′)t : B there exists a derivation

ΦH ′ ⟨⟨t ⟩⟩ ▷lhd x : O ;y : N ; Γ ⊎ ∆ ⊢⊢⊢(b+b
′,e+e ′,rΓ+r ′−1)H ′⟨⟨t⟩⟩ : tight

Note that y < dom(∆), for the same reasons as in the previous sub-case. By applying an

funr rule we obtain:

x : O ;y : Tight; Γ ⊎ ∆ ⊢⊢⊢(b+b
′,e+e ′,rΓ+r ′−1)H ′⟨⟨t⟩⟩ : tight

funr
x : O ; Γ ⊎ ∆ ⊢(b+b

′,e+e ′,rΓ+r ′) λy.H ′⟨⟨t⟩⟩:abs

that satisfies the statement (because r = rΓ + 1).
In both cases the moreover statement is straightforward by the i.h.

• Left on an application, i.e. H = H ′p. Two sub-cases, depending on the last rule of Φ:
(1) The last rule is appb , and so Φ has the form:

x : MΠ ;Π ⊢(bΠ ,eΠ ,rΠ) H ′⟨⟨x⟩⟩:N → A x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:N
appb

x : (MΠ ⊎MΣ); (Π ⊎ Σ) ⊢(bΠ+bΣ,eΠ+eΣ,rΠ+rΣ) H ′⟨⟨x⟩⟩p:A

where Γ = Π⊎Σ, Π(x) = Σ(x) = [ ],MΠ⊎MΣ = M , b = bΠ +bΣ, e = eΠ +eΣ, and r = rΠ +rΣ.
By i.h., there exists a splitting MΠ = [B] ⊎ O such that for every derivation Ψ ▷lhd
∆ ⊢⊢⊢(b

′,e ′,r ′)t : B there exists a derivation

ΦH ′ ⟨⟨t ⟩⟩ ▷lhd x : O ;Π ⊎ ∆ ⊢⊢⊢(bΠ+b
′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : N → A

By applying an appb rule we obtain:

x : O ;Π ⊎ ∆ ⊢⊢⊢(bΠ+b
′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : N → A x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:N

appb
x : (O ⊎MΣ); (Π ⊎ ∆ ⊎ Σ) ⊢(bΠ+b

′+bΣ,eΠ+e ′+eΣ,rΠ+r ′+rΣ−1) H ′⟨⟨t⟩⟩p:A

Now, by defining N := O ⊎ MΣ, we obtain M = MΠ ⊎ MΣ = [B] ⊎ O ⊎ MΣ = [B] ⊎ N .

Therefore by applying the equalities on the type context the last obtained judgement is in

fact:

x : N ; (Γ ⊎ ∆) ⊢(bΠ+b
′+bΣ,eΠ+e ′+eΣ,rΠ+r ′+rΣ−1) H ′⟨⟨t⟩⟩p:A
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and by applying those on the indices we obtain:

x : N ; (Γ ⊎ ∆) ⊢(b+b
′,e+e ′,r+r ′−1) H ′⟨⟨t⟩⟩p:A

as required.

(2) The last rule of Φ is apphdr , and so Φ has the form:

x : MΠ ;Π ⊢(bΠ ,eΠ ,rΠ) H ′⟨⟨x⟩⟩:neutral x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:tight
apphdr

x : (MΠ ⊎MΣ); (Π ⊎ Σ) ⊢(bΠ+bΣ,eΠ+eΣ,rΠ+rΣ+1) H ′⟨⟨x⟩⟩p:neutral

where Γ = Π ⊎ Σ, Π(x) = Σ(x) = [ ], MΠ ⊎ MΣ = M , b = bΠ + bΣ, e = eΠ + eΣ, and
r = rΠ + rΣ + 1.
By i.h., there exists a splitting MΠ = [B] ⊎ O such that for every derivation Ψ ▷lhd
∆ ⊢⊢⊢(b

′,e ′,r ′)t : B there exists a derivation

ΦH ′ ⟨⟨t ⟩⟩ ▷lhd x : O ;Π ⊎ ∆ ⊢⊢⊢(bΠ+b
′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : neutral

By applying an apphdr rule we obtain:

x : O ;Π ⊎ ∆ ⊢⊢⊢(bΠ+b
′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : neutral x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:tight

apphdr
x : (O ⊎MΣ); (Π ⊎ ∆ ⊎ Σ) ⊢(bΠ+b

′+bΣ,eΠ+e ′+eΣ,rΠ+r ′+rΣ) H ′⟨⟨t⟩⟩p:neutral

Now, by defining N := O ⊎ MΣ, we obtain M = MΠ ⊎ MΣ = [B] ⊎ O ⊎ MΣ = [B] ⊎ N .

Therefore by applying the equalities on the type context the last obtained judgement is in

fact:

x : N ; (Γ ⊎ ∆) ⊢(bΠ+b
′+bΣ,eΠ+e ′+eΣ,rΠ+r ′+rΣ) H ′⟨⟨t⟩⟩p:neutral

and by applying those on the indices we obtain:

x : N ; (Γ ⊎ ∆) ⊢(b+b
′,e+e ′,r+r ′−1) H ′⟨⟨t⟩⟩p:neutral

as required.

In both cases the moreover statement is straightforward by the i.h.
• Left of a substitution, i.e. H = H ′[y\p]. Note that x , y, because the hypothesis H ⟨⟨x⟩⟩ implies

that H does not capture x .
The last rule of Φ can only be ES, and so Φ has the form:

x : MΠ ;y : M
′
;Π ⊢(bΠ ,eΠ ,rΠ) H ′⟨⟨x⟩⟩:A x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:M ′

ES
x : (MΠ ⊎MΣ); (Π ⊎ Σ) ⊢(bΠ+bΣ,eΠ+eΣ+ |M |,rΠ+rΣ−|M |) H ′⟨⟨x⟩⟩[y\p]:A

where Γ = Π ⊎ Σ, Π(x) = Σ(x) = [ ], MΠ ⊎ MΣ = M , b = bΠ + bΣ, e = eΠ + eΣ + |M |, and

r = rΠ + rΣ − |M |.

By i.h., there exists a splittingMΠ = [B]⊎O such that for every derivation Ψ▷lhd ∆ ⊢⊢⊢(b
′,e ′)t : B

there exists a derivation

ΦH ′ ⟨⟨t ⟩⟩ ▷lhd x : O ;y : M ′
;Π ⊎ ∆ ⊢⊢⊢(bΠ+b

′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : A

Note that y < dom(∆): we are working up to α-equivalence, and so y < fv(p), and the system

is relevant, and so y < fv(p) implies y < dom(∆). By applying a ES rule we obtain

x : O ;y : M ′
;Π ⊎ ∆ ⊢⊢⊢(bΠ+b

′,eΠ+e ′,rΠ+r ′−1)H ′⟨⟨t⟩⟩ : A x : MΣ; Σ ⊢(bΣ,eΣ,rΣ) p:M ′

ES
x : O ⊎MΣ;Π ⊎ ∆ ⊎ Σ ⊢(bΠ+b

′+bΣ,eΠ+e ′+eΣ+ |M |,rΠ+r ′−1+rΣ−|M |) H ′⟨⟨t⟩⟩[y\p]:A

Now, by defining N := O ⊎MΣ, we obtainM = MΠ⊎MΣ = [B]⊎O ⊎MΣ = [B]⊎N . Therefore

by applying the equalities on the type context the last obtained judgement is in fact:

x : N ; (Γ ⊎ ∆) ⊢(bΠ+b
′+bΣ,eΠ+e ′+eΣ+ |M |,rΠ+r ′−1+rΣ−|M |) H ′⟨⟨t⟩⟩[y\p]:A



1:80 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner

and by applying those on the indices we obtain:

x : N ; (Γ ⊎ ∆) ⊢(b+b
′,e+e ′,r+r ′−1) H ′⟨⟨t⟩⟩[y\p]:A

as required.

The moreover statement is straightforward by the i.h.
□

Proposition 8.6 (Quantitative subject reduction for lhd). If Φ ▷ Γ ⊢(b ,e ,r ) t :A then
(1) If t −→m u then b ≥ 1 and there is a typing Φ′ such that Φ′ ▷ Γ ⊢(b−1,e ,r ) u:A and |Φ′ | = |Φ| − 1.
(2) If t −→e u then e ≥ 1 and there is a typing Φ′ such that Φ′ ▷ Γ ⊢(b ,e−1,r ) u:A and |Φ′ | = |Φ| − 1.

Proof. By induction on the reduction relation −→lhd .

• t = L⟨λx .v⟩s −→m L⟨v[x\s]⟩ = t ′, then we proceed by induction on L. Let L = ⟨·⟩. By

construction the derivation Φ is of the form:

Φv ▷ x : M ;Π ⊢⊢⊢(bv ,ev ,rv )v : σ

Π ⊢⊢⊢(bv+1,ev+ |M |,rv−|M |)λx .v :M → σ Φs ▷ Γ ⊢⊢⊢(bs ,es ,rs )s :M

Π ⊎ Γ ⊢⊢⊢(bv+bs+1,ev+es+ |M |,rv+rs−|M |)(λx .v)s : A

where b = bv +bs +1, e = ev +es + |M | and r = rv +rs − |M |. We notice that b = bv +bs +1 ≥ 1,

as required. We construct the following derivation Φ′
:

x : M ;Π ⊢⊢⊢(bv ,ev ,rs )v : σ Γ ⊢⊢⊢(bs ,es ,rs )s :M

Π ⊎i ∈I Γi ⊢⊢⊢
(bv+bs ,ev+es+ |M |,rv+rs−|M |)v[x\s] : σ

We let b ′ = bv +bs , e
′ = ev + es + |M | and r ′ = rv + rs − |M |. So that we can verify b = b ′ − 1,

b = b ′, and r = r ′ as required. We conclude since |Φ′ | = |Φv | + |Φs | + 1 = |Φ| − 1.

For L = L′[y\s], the statement follows from the i.h.
• t = H ⟨⟨x⟩⟩[x\v] −→lhd H ⟨⟨v⟩⟩[x\v] = u, then Φ is of the form

ΦH ⟨⟨x ⟩⟩ ▷ x : M ;Π ⊢⊢⊢(bH ,eH ,rH )H ⟨⟨x⟩⟩ : A Φv ▷ ∆ ⊢⊢⊢(bv ,ev ,rv )v :M

Π ⊎ ∆ ⊢⊢⊢(bH+bv ,eH+ev+ |M |,rH+rv−|M |)H ⟨⟨x⟩⟩[x\v] : A

where b = bH + bv , e = eH + ev + |M | and r = rH + rv − |M |.

It is not difficult to see that |M | , 0 and thus e ≥ 1 as required.

LetM = [B] ⊎ N be the splitting ofM given by the linear substitution lemma (Lemma 8.5)

applied to ΦH ⟨⟨x⟩⟩. By the multi-sets decomposition lemma (Lemma E.1) applied to Φv with

respect to such a decomposition, there exist two derivations:

ΦB ▷ ∆B ⊢⊢⊢(bB ,eB ,rB )v : B ΦN ▷ ∆N ⊢⊢⊢(bN ,eN ,rN )v : N

such that ∆v = ∆B ⊎ ∆N , bv = bB + bN , ev = eB + eN , rv = rB + rN , and |Φv | = |ΦB | + |ΦN |.

By the linear substitution Lemma 8.5, there exist a derivation

ΦH ⟨⟨v ⟩⟩ ▷lhd x : N ;Π ⊎ ∆B ⊢⊢⊢(B,E ,R)H ⟨⟨v⟩⟩ : A

where B = bH + bB , E = eH + eB , R = rH + rB − 1 and |ΦH ⟨⟨v ⟩⟩ | = |ΦH ⟨⟨x ⟩⟩ | + |ΦB | − 1. We

construct the following derivation Φ′
:

x : N ;Π ⊎ ∆B ⊢⊢⊢(B,E ,R)H ⟨⟨v⟩⟩ : A ∆N ⊢⊢⊢(bN ,eN ,rN )v : N

Π ⊎ ∆B ⊎ ∆N ⊢⊢⊢(B+bN ,E+eN + |N |,R+rN −|N |)H ⟨⟨v⟩⟩[x\v] : A

that verifies the statement because
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– B + bN = bH + bB + bN = bH + bv = b,
– E + eN + |N | = eH + eB + eN + |N | = eH + ev + |N | = eH + ev + |M | − 1 = e − 1,

– R + rN − |N | = rH + rB − 1 + rN − |N | = rH + rv − |M | = r ,
– |Φ′ | = |ΦH ⟨⟨v ⟩⟩ | + |ΦN | + 1 = |ΦH ⟨⟨x ⟩⟩ | + |ΦB | − 1 + |ΦN | + 1 = |ΦH ⟨⟨x ⟩⟩ | + |Φv | = |Φ| − 1.

• All the other cases follow from the i.h.
□

Theorem 8.7 (Tight correctness for lhd). Let Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t : A be a tight derivation. Then
there exists p such that t →b+e

lhd p, normallhd (p) and |p |lhd = r . Moreover, if A = neutral then
neutrallhd (p).

Proof. By induction on |Φ|. If t is a −→lhd normal form—that covers the base case |Φ| = 1, for

which t is necessarily a variable—then by taking p := t and k := 0 the statement follows from the

tightness property of tight typings of normal forms (Proposition 8.4.2)—the moreover part follows
from the neutrality property (Proposition 8.4.3). Otherwise, two cases:

(1) Multiplicative steps: t −→m u and by quantitative subject reduction (Proposition 8.6) there is

a derivation Ψ ▷lhd Γ ⊢⊢⊢(b−1,e ,r )u : A such that |Ψ| = |Φ| − 1. By i.h., there exists p such that

normallhd (p) and u −→b−1+e
lhd p and |p |lhd = r . Just note that t −→m u −→b−1+e

lhd p, that is, t −→b+e
lhd p.

(2) Exponential steps: t −→e u and by quantitative subject reduction (Proposition 8.6) there is a

derivation Ψ ▷lhd Γ ⊢⊢⊢(b ,e−1,r )u : A such that |Ψ| = |Φ| − 1. By i.h., there exists p such that

normallhd (p) and u −→b+e−1
lhd p and |p |lhd = r . Just note that t −→e u −→b+e−1

lhd p, that is, t −→b+e
lhd p.
□

E.2 Tight Completeness
Proposition 8.8 (Linear head normal forms are tightly typable for lhd). Let t be such that

normallhd (t). Then there exists a tight typing Φ ▷lhd Γ ⊢⊢⊢(0,0, |t |lhd )t : A. Moreover, if neutrallhd (t)
then A = neutral, and if abslhd (t) then A = abs.

Proof. In the proof, for the sake of simplicity, we let the indicies on the judgements generic,

and not as precise as in the statement, because once one knows that there is a tight derivation then

the indicies are forced by Proposition 8.4.

(1) By induction on neutralxlhd (t):
• Variable, i.e. t = x . Then the derivation

axr
x : [neutral] ⊢⊢⊢(0,0,1)x : neutral

is tight and types x with neutral.
• Application, i.e. t = pu and neutrallhd (t) because neutrallhd (p). By i.h., there is a tight
derivation Ψ ▷lhd Γ ⊢⊢⊢(b ,e ,r )p : neutral. Then the following is a tight derivation Φ typing

t = pu with neutral:

Ψ ▷lhd Γ ⊢⊢⊢(b ,e ,r )p : neutral
apphdr

Γ ⊢⊢⊢(b ,e ,r+1)pu : neutral

• Explicit substitution, i.e. t = p[y\u] and neutrallhd (t) because neutral
x
lhd (p) and x , y.

By i.h., there is a tight derivation Ψ ▷lhd Γ ⊢⊢⊢(b ,r )p : neutral. By Lemma 8.3.1, dom(Γ) = {y},
that is, in Γ the variable x is implicitly typed with [ ]. Then the following tight derivation Φ
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types t = p[x\u] with neutral:

Γ;x : [ ] ⊢⊢⊢(b ,e ,r )t : neutral
ES

Γ ⊢⊢⊢(b ,e ,r )t[x\u] : neutral

(2) First, by induction on normalxlhd (t):
• normalxlhd (t) because neutral

x
lhd (t). Then it follows from the previous point.

• Abstraction, i.e. t = λy.p and normalxlhd (t) because normal
x
lhd (p) and x , y. By i.h. there

is a tight derivation Ψ ▷lhd ∆ ⊢⊢⊢(b ,e ,r )p : tight. Since the derivation Ψ is tight, the typing

context ∆ has the shape Γ;y : Tight (potentially, y : [ ]). Then the following is a tight

derivation for λy.p with abs:

Ψ ▷lhd Γ;y : Tight ⊢⊢⊢(b ,e ,r+1)p : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λy.p : abs

• Explicit substitution, i.e. t = p[y\u] and normalxlhd (t) because normal
x
lhd (p) and x , y. It is

essentially like in the neutral case. By i.h., there is a tight derivationΨ▷lhd ∆ ⊢⊢⊢(b ,e ,r )p : tight.
By Lemma 8.3.1, dom(∆) = {x}, that is, in ∆ the variable y is implicitly typed with [ ]. Then

using the notation ∆ = Γ;y : [ ] the following tight derivation Φ types t = p[y\u]:

Γ;y : [ ] ⊢⊢⊢(b ,e ,r )p : tight
ES

Γ ⊢⊢⊢(b ,e ,r )p[y\u] : tight

The part about predicates follows from the i.h.
Now, by induction on normal#lhd (t):
• Abstraction on the head variable, i.e. t = λx .p and normalxlhd (t) because normal

x
lhd (p). By

i.h. there is a tight derivation Ψ ▷lhd ∆ ⊢⊢⊢(b ,e ,r )p : tight. Since the derivation Ψ is tight, the

typing context ∆ has the shape Γ;y : Tight (potentially, y : [ ]). Then the following is a

tight derivation for λy.p with abs:

Ψ ▷lhd Γ;y : Tight ⊢⊢⊢(b ,e ,r )p : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λy.p : abs

• Abstraction on a non-head variable, i.e. t = λx .p and normalxlhd (t) because normal
#

lhd (p). It is

exactly as in the previous sub-case. By i.h. there is a tight derivationΨ▷lhd ∆ ⊢⊢⊢(b ,e ,r )p : tight.
Since the derivation Ψ is tight, the typing context ∆ has the shape Γ;y : Tight (potentially,

y : [ ]). Then the following is a tight derivation for λy.p with abs:

Ψ ▷lhd Γ;y : Tight ⊢⊢⊢(b ,e ,r )p : tight
funr

Γ ⊢⊢⊢(b ,e ,r+1)λy.p : abs

• Explicit substitution, i.e. t = p[y\u] and normal#lhd (t) because normal
#

lhd (p). By i.h., there is
a tight derivation Ψ ▷lhd ∆ ⊢⊢⊢(b ,e ,r )p : tight. By Lemma 8.3.3, ∆ is empty, that is, the variable

y is implicitly typed with [ ]. Then the following tight derivation Φ types t = p[x\u]:

y : [ ] ⊢⊢⊢(b ,e ,r )p : tight
ES

⊢⊢⊢(b ,e ,r )p[y\u] : tight

The part about predicates follows from the i.h.
□
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Lemma 8.9 (Linear anti-substitution and typings for lhd). Let Φ ▷lhd Γ ⊢⊢⊢(b ,e ,r )H ⟨⟨u⟩⟩ : A,
where x < u. Then there exists

• a type B
• a typing derivation Φu ▷lhd Γu ⊢⊢⊢(bu ,eu ,ru )u : B
• a typing derivation ΦH ⟨⟨x ⟩⟩ ▷lhd Γ′ ⊎ x :[B] ⊢⊢⊢(b

′,e ′,r ′)H ⟨⟨x⟩⟩ : A
such that

• Typing contexts: Γ = Γ′ ⊎ Γu .
• Indices: (b, e, r ) = (b ′ + bu , e

′ + eu , r
′ + ru − 1).

• Sizes: |Φ| = |Φu | + |ΦH ⟨⟨x ⟩⟩ | − 1.

Proof. By induction on H .

• If H = ⟨·⟩, then we let Γ′ = ∅ and σ = τ . We have

(b ′, e ′, r ′) = (0, 0, 1) so that (b, e, r ) = (bu , eu , ru ). All the equalities are verified.
• In all the other cases the property is straightforward by the i.h.

□

Proposition 8.10 (Quantitative subject expansion for lhd). If Φ′ ▷lhd Γ ⊢⊢⊢(b ,e ,r )t ′ : A then
(1) If t −→m t

′ then there is a derivation Φ ▷lhd Γ ⊢⊢⊢(b+1,e ,r )t : τ and |Φ′ | = |Φ| + 1.
(2) If t −→e t

′ then there is a derivation Φ ▷lhd Γ ⊢⊢⊢(b ,e+1,r )t : A and |Φ′ | = |Φ| + 1.

Proof. The proof is by induction on t −→lhd t ′.
• If t = L⟨⟨λx .p⟩⟩u −→ L⟨⟨p[x/u]⟩⟩ = t ′, then we proceed by induction on L. Let L = ⟨·⟩, then by

construction Γ = ∆ ⊎ Π and we have the following derivation:

x :M ;∆ ⊢⊢⊢(bp ,ep ,rp )p : τ Π ⊢⊢⊢(b
′,e ′,r ′)u :M

∆ ⊎ Π ⊢⊢⊢(bp+b
′,ep+e ′+ |M |,rp+r ′−|M |)p[x/u] : τ

where b = bp + b
′
, e = ep + e

′ + |M | and r = rp + r
′ − |M |. We then construct the following

derivation

x :M ;∆ ⊢⊢⊢(bp ,ep ,rp )p : τ

∆ ⊢⊢⊢(bp+1,ep+ |M |,rp−|M |)λx .p :M → τ Π ⊢⊢⊢(b
′,e ′,r ′)u :M

∆ ⊎ Π ⊢⊢⊢(bp+b
′+1,ep+e ′+ |M |,rp+r ′−|M |(λx .p)u : τ

For L = L′[y/u], the statement follows from the i.h.
• If t = H ⟨⟨x⟩⟩[x/u] −→ H ⟨⟨u⟩⟩[x/u] = t ′, then by construction Γ = ∆⊎Π and the type derivation

of t ′ has the following form:

x :M ;∆ ⊢⊢⊢(bH ,eH ,rH )H ⟨⟨u⟩⟩ : τ Π ⊢⊢⊢(bu ,eu ,ru )u :M

∆ ⊎ Π ⊢⊢⊢(b ,e ,r )H ⟨⟨u⟩⟩[x/u] : τ

where (b, e, r ) = (bH + bu , eH + eu + |M |, rH + ru − |M |).

By Lemma 8.9 ▷lhd Γ0 + x :[σ1] ⊢⊢⊢
(b′,e ′,r ′)H ⟨⟨x⟩⟩ : τ and ▷lhd ∆1 ⊢⊢⊢

(b1,e1,r1)u : σ1, wherebH = b
′+b1,

eH = e ′ + e1 and rH = r
′ + r1 − 1. Note that x < fv(u). We let I = K ⊎ {1} whereM = [σi ]i ∈K .

We have necessarily Γ0 = Γ′
0
;x :[σk ]k ∈K .

We remark that u has necesarily been typed with a (many) rule so that there are derivations

Πk ⊢⊢⊢
(bk ,ek ,rk )u : σk (k ∈ K), such that Π = ⊎k ∈KΠk , andM = +k ∈Kσk and bu = +k ∈Kbk , eu =

+k ∈Kek , ru = +k ∈Krk . By applying rule (many) againwe obtainΠ + ∆1 ⊢⊢⊢
(bu+b1,eu+e1,ru+r1)u :M + [σ1].

We can now construct the following derivation



1:84 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner

Γ′
0
;x :[σi ]i ∈I ⊢⊢⊢

(b′,e ′,r ′)H ⟨⟨x⟩⟩ : τ Π ⊎ ∆1 ⊢⊢⊢
(bu+b1,eu+e1,ru+r1)u : [σi ]i ∈I

Γ′
0
⊎ Π ⊎ ∆1 ⊢⊢⊢

(b′+bu+b1,e ′+eu+e1+ |I |,r ′+ru+r1−|I |)H ⟨⟨x⟩⟩[x/u] : τ

We conclude sinceb ′+bu+b1 = bH +bu = b, e
′+eu+e1+ |I | = eH +eu+ |I | = eH +eu+ |M |+1 =

e + 1, r ′ + ru + r1 − |I | = rH + ru − |M | = r .
• All the inductive cases are straightforward.

□

Theorem 8.11 (Tight completeness for lhd). Let t →k
lhd p, where normallhd (p). Then there

exists a tight type derivation Φ ▷lhd Γ ⊢⊢⊢(k1,k2, |p |lhd )t :A, where k = k1+k2. Moreover, if neutrallhd (p),
then A = neutral, and if abslhd (p) then A = abs.

Proof. By induction on t −→lhd
kp. If k = 0 then t = p. Proposition 8.8 gives the existence of

a tight typing Φ▷lhd ⊢
(b ,e ,r )
tight t . Proposition 8.4 then gives r = |t |lhd = |p |lhd and b = e = 0. The

property then holds for k1 = k2 = 0.

Let 0 < k = k ′ + 1 and t −→lhd u −→lhd
k ′p. By i.h. there exists a tight typing derivation

Ψ▷lhd ⊢
(k ′

1
,k ′

2
, |p |lhd )

tight u, where k ′ = k ′
1
+ k ′

2
. By quantitative subject expansion Proposition 8.10

there exists a typing derivation Φ of u with the same types in the ending judgement of Ψ—then Φ
is tight—and with indices (k ′

1
+ 1,k ′

2
, |p |lhd ) or (k

′
1
,k ′

2
+ 1, |p |lhd ).

In the first case we let k1 = k ′
1
+ 1 and k2 = k ′

2
, so that k = 1 + k ′ =i.h. 1 + k

′
1
+ k ′

2
= k1 + k2 as

required. Moreover, Φ▷lhd ⊢
(k1,k2, |p |lhd )
tight t .

In the second case we let k1 = k
′
1
and k2 = k

′
2
+ 1, so that k = 1 + k ′ =i.h. 1 + k

′
1
+ k ′

2
= k1 + k2 as

required. Moreover, Φ▷lhd ⊢
(k1,k2, |p |lhd )
tight t . □
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