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A calculus rediscovered many times
(Sequent) Calculus for Intuitionistic Propositional Logic
I Vorob’ev in the 50s
I Hudelmaier (88)
I Dyckhoff (90)
I Paulson (91)
I Lincoln-Scedrov-Shankar (91) (with a linear logic approach)

Called
I LJT by Hudelmaier and then Dyckhoff (T for “Terminating”,

nothing to do with LJT from the linear logic tradition),
I G4ip by Troelstra-Schwichtenberg.
I “Contraction-free sequent calculus”
I “(Hudelmaier’s) Depth-bounded sequent calculus”

Each time, the calculus comes up with slight variations
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Intuitionistic Sequent Calculus
Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

(A∧B),A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

(A∨B),A, Γ `̀̀ C (A∨B),B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

(C ′⇒C), Γ `̀̀ C ′ (C ′⇒C),C , Γ `̀̀D

(C ′⇒C), Γ `̀̀D

a, Γ `̀̀ a

Variant: atom a can be generalised as formula A (still sound)
“Contraction”: left-introduced formula is contracted with the
occurrence already appearing in the premisses (different from linear
logic, where some “context-sharing rules” hide contractions)
Remark: correspondences with Natural Deduction tend to favour
the presence of a main formula’s duplicate in the premisses.
Are the duplicates/contractions necessary for completeness?
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G4ip
Γ `̀̀ A Γ `̀̀ B

Γ `̀̀ A∧B

Γ `̀̀ A

Γ `̀̀ A∨B

Γ `̀̀ B

Γ `̀̀ A∨B

Γ,A `̀̀ B

Γ `̀̀ A⇒B

⊥, Γ `̀̀ C

A,B, Γ `̀̀ C

(A∧B), Γ `̀̀ C

A, Γ `̀̀ C B, Γ `̀̀ C

(A∨B), Γ `̀̀ C

?

(C ′⇒C), Γ `̀̀D

a, Γ `̀̀ a

I Obviously sound
I Complete? rule permutation argument (Dyckhoff’92,’17),

cut-elimination (Dyckhoff-Negri’00, Dyckhoff-SGL-Kesner’06)
I Connection with focused seq. calculus LJQ (Dyckhoff-SGL’06)
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Good properties

I In each rule, each premiss is “smaller” than the conclusion
(for the multiset order on the formulae present in the sequent)
⇒ The height (aka depth) of proof-trees (for sequent Γ `̀̀ A)
is bounded: it is a “depth-bounded sequent calculus”.
⇒ “Root-first proof-search” (Roy’s preferred terminology)
terminates and constitutes decision procedure for provability
of IPL (only finitely many trees of height ≤ bound)

I Each rule is invertible (if the conclusion is provable then so
are the premisses), except (the ∨-right rules and)

A, (B⇒C), Γ `̀̀ B C , Γ `̀̀D

((A⇒B)⇒C), Γ `̀̀D
which is semi-invertible: if the conclusion is provable, then so
is the right premiss (the left premiss can be considered the
side-condition of an invertible 1-premiss rule)
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A generalised version of the semi-invertible rule

a1, . . . , an,

A, (B⇒C), Γ `̀̀ B

((A⇒B)⇒C),(a1∧ · · · ∧an⇒

C

)

, Γ `̀̀D

((A⇒B)⇒C), Γ `̀̀D

Still sound. Derivable with a cut:

a1, . . . , an,A, (B⇒C), Γ `̀̀ B C , a1, . . . , an, Γ `̀̀ C

a1, . . . , an, ((A⇒B)⇒C), Γ `̀̀ C

((A⇒B)⇒C), Γ `̀̀ a1∧ · · · ∧an⇒C

((A⇒B)⇒C),

(a1∧ · · · ∧an⇒C), Γ `̀̀D

((A⇒B)⇒C), Γ `̀̀D
Remarks:
I If n 6= 0, rule is not necessarily semi-invertible. Fixed.
I More problematic: with or without the fix, weight of premisses

not necessarily smaller than weight of conclusion.
Depth-boundedness is probably lost.

I Is it not a bad idea to use the cut-rule in proof-search?
How do we come up with a1, . . . , an?

In conclusion: this generalisation sounds like a terrible idea.
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I Let’s impose (1) that (a1∧ · · · ∧an⇒C) 6∈ Γ, otherwise the

right premiss is identical/equivalent to the conclusion.

I Using cuts in root-first proof-search is cumbersome
unless we have a magic trick to produce the cut-formula
(here: the a1, . . . , an)

I Let’s impose (2) that a1, . . . , an are atoms present in the
conclusion.

(1) and (2) recover termination (& preserve completeness).
Still, a lot of choices for {a1, . . . , an}
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Restricting {a1, . . . , an}
a1, . . . , an,A, (B⇒C), Γ `̀̀ B ((A⇒B)⇒C), (a1∧ · · · ∧an⇒C), Γ `̀̀D

((A⇒B)⇒C), Γ `̀̀D
Remark: the more ai ’s there are, the weaker the new hypothesis in
the right premiss

⇒ Take {a1, . . . , an} as small as possible (if need
be: post-process the proof to remove the ai ’s that were not used)
I if C is one of the ai : uninteresting
I if A is one of the ai : uninteresting (that ai can be removed)
I if B is one of the ai : left premiss trivial to prove, & no other

aj needed. Interesting inasmuch it implements the rule
((A⇒B)⇒C), (B⇒C), Γ `̀̀D

(B⇒C) 6∈ Γ
((A⇒B)⇒C), Γ `̀̀D

(which we could have separately)

Then what?
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Clearly, this rule is the most complex of the calculus, it branches
and is only semi-invertible.

⇒ We probably want to apply it as a last resort, leaving formulae
in Γ of the form ((A⇒B)⇒C) ignored for as long as we can.

Apply the other rules eagerly, trying to prove a sequent Γ `̀̀ d while
ignoring the formulae in Γ of the form ((A⇒B)⇒C).

Who would do a better job at doing that?
. . . a SAT-solver!
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SAT-solvers are perfectly fine intuitionistic provers!
If they conclude that a bunch of clauses C1, . . . ,Cn is unsat,
they have established intuitionistic provability of C1, . . . ,Cn `̀̀ ⊥.

. . . well, if each clause {a1, . . . , an, b1, . . . , bm} is read as
(a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)

instead of ¬a1∨ · · · ∨¬an∨b1∨ · · · ∨bm.
Indeed, SAT-solver would (implicitly or explicitly) produce a
resolution proof of C1, . . . ,Cn `̀̀ ⊥
Resolution rule

C∨x C ′∨¬x

C∨C ′
should be read as

A⇒(B∨x) (A′∧x)⇒B′

(A∧A′)⇒(B∨B′)
which is perfectly sound in intuitionistic logic.
Even better: if they conclude that C1, . . . ,Cn,¬d is unsat, they
have established intuitionistic provability of C1, . . . ,Cn `̀̀ d .
Conclusion: they are very good intuitionistic provers
. . . but are limited to proving sequents of that form.
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Preprocessing

It’s the preprocess that implements “every formula F can be
transformed into an equisatisfiable* CNF C1∧ · · · ∧Cn”
that uses classical reasoning. *: F `̀̀ ⊥ iff C1∧ · · · ∧Cn `̀̀ ⊥

In the intuitionistic case, every formula F can be transformed into
an (intuitionistically) equiprovable sequent Γimp, Γflat `̀̀ d with
I d an atom
I Γflat made of flat clauses: (a1∧ · · · ∧an)⇒(b1∨ · · · ∨bm)
I Γimp made of implication clauses: ((a⇒b)⇒c)

Idea for proof-search:
I flat clauses are treated eagerly,

to see if, by chance, Γflat `̀̀ d is provable,
using e.g., a SAT-solver.

I implication clauses treated lazily,
using the (generalised) G4ip rule.
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Preprocessing: how?
Like Tseitin transformation to turn any formula into an equisat. CNF
Introduce atoms to “name” subformulae of the sequent to prove

I For A∧B, introduce c with: c⇒A, c⇒B, (A∧B)⇒c,
recursively introduce names for A and for B to get flat clauses

c⇒a, c⇒b, (a∧b)⇒c
I For A∨B, introduce c with: c⇒(A∨B),A⇒c,B⇒c,

recursively introduce names for A and for B to get flat clauses
c⇒(a∨b), a⇒c, b⇒c

I For A⇒B, introduce c with: (c∧A)⇒B, (A⇒B)⇒c,
recursively introduce names for A and for B to get flat clause
(c∧a)⇒b . . . and implication clause (a⇒b)⇒c

Note 1: transformation only preserves satisfiability/provability
Note 2: Introducing names can be done more sparingly using some
of the other G4ip rules for normalisation
(basically, the invertible non-branching ones)
Note 3: some of these rules were already presented by Vorob’ev in
the form of pre-processing
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From G4ip to SMT solving
With pre-processing the rule becomes

Γimp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b ((a⇒b)⇒c), Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

((a⇒b)⇒c), Γimp, Γflat `̀̀ d

with a, c 6∈ {a1, . . . , an} and (a1∧ · · · ∧an⇒c) 6∈ Γflat

Remarks:
I added formulae are all flat clauses

(SAT-solver is good at treating increments)
I Γimp never increases throughout proof-search,

it actually decreases by 1 in the left branch
I proofs have a spine shape,

and you cannot persistently climb up the left branches more
times than the number of implication clauses

I thinking in terms of root-first proof-search, implemented
recursively, the right premiss really corresponds to a tail call
(i.e., a while loop)
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From G4ip to SMT solving
The spine shape describes a traditional SMT algorithm: DPLL(T ).

Theory T is that of “intuitionistic entailment”

SAT-solver

T

(knows Γimp)

Theory lemma defeatingM

a1∧ · · · ∧an⇒c

ModelM

SAT-solver

T

. . .

Unsat(. . . a `̀̀ b)

. . . a
?
`̀̀ b

. . . except the “theory reasoning” that understands Γimp
recursively relies on general provability.
And finally! we have the magic trick to pick {a1, . . . , an}: those
atoms interpreted as true inM that were useful to prove . . . a `̀̀ b
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From G4ip to SMT solving
So in order to prove Γimp, Γflat `̀̀ d ,

1. Run a SAT-solver on Γflat,¬d to see if Γflat `̀̀ d is provable.
If it is, we are done. If not, the SAT-solver returns a (classical)
modelM such thatM(Γflat) = 1 andM(d) = 0. Then:

2. Pick in Γimp an implication clause (a⇒b)⇒c such that
M(c) = 0,M(a) = 0. Recursively try to prove

Γ′
imp,M+, a, (b⇒c), Γflat `̀̀ b where Γ′

imp is Γimp\((a⇒b)⇒c)
If failure, find another implication clause to take into account.
If success, extract the a1, . . . , an inM+ used in the proof.
Return “flat theory clause” a1∧ · · · ∧an⇒c to SAT-solver so
as to “defeat” its classical modelM, effectively applying rule
Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
Then go back to the SAT-solver (1.)

Note: by construction, the learnt clause could not already be in
Γflat otherwise the SAT solver would not have proposed modelM
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From G4ip to SMT solving

If you run out of implication clauses: your sequent is unprovable.

This method provides what is probably the fastest prover for IPL
(at least in 2015)
Questions
1. Is the recursive nature of the general algorithm necessary?

Could we not have one big SMT-solving run?
2. Could we open up the black box of the SAT-solver and

integrate inside it theory reasoning, in our case “intuitionistic
entailment”, so as to have an intuitionistic version of DPLL?

Why 1. ?
A SAT-solver has an internal learning mechanism.
It would be good if whatever is learnt by the SAT-solver of the
recursive call could be shared with the SAT-solver of the caller.
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Recursivity

Thinking in terms of root-first proof-search, implemented
recursively, the right premiss really corresponds to a tail call
(a while loop / the while loop of the SAT-solver):

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
So the question of recursivity is really about the left premiss.

So what really changes between the SAT-solver of the caller and
that of the callee? Mostly:
I the addition of a
I the addition of ¬b
I most most most importantly: the removal of ¬d

Recursive SAT-solver is not allowed to exploit ¬d to get UNSAT

17/21



Recursivity

Thinking in terms of root-first proof-search, implemented
recursively, the right premiss really corresponds to a tail call
(a while loop / the while loop of the SAT-solver):

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
So the question of recursivity is really about the left premiss.
So what really changes between the SAT-solver of the caller and
that of the callee?

Mostly:
I the addition of a
I the addition of ¬b
I most most most importantly: the removal of ¬d

Recursive SAT-solver is not allowed to exploit ¬d to get UNSAT

17/21



Recursivity

Thinking in terms of root-first proof-search, implemented
recursively, the right premiss really corresponds to a tail call
(a while loop / the while loop of the SAT-solver):

Γ′
imp, a1, . . . , an, a, (b⇒c), Γflat `̀̀ b Γimp, (a1∧ · · · ∧an⇒c), Γflat `̀̀ d

Γimp, Γflat `̀̀ d
So the question of recursivity is really about the left premiss.
So what really changes between the SAT-solver of the caller and
that of the callee? Mostly:
I the addition of a
I the addition of ¬b
I most most most importantly: the removal of ¬d

Recursive SAT-solver is not allowed to exploit ¬d to get UNSAT

17/21



Recursivity

Actually:
I Claessen and Dosén actually reuse the same SAT-solver for

the recursive call, popping ¬d , pushing a,¬b, so that what is
learnt from each run (by the standard learning mechanisms of
SAT-solving) is shared between the different runs.

I For this, you have to make sure the theory lemma
a1∧ · · · ∧an⇒c is derivable from the input problem alone
(irrespective of the pushed and popped literals).

In any case, popping ¬d is not part of the main algorithm of the
SAT-solver (DPLL/CDCL)
An “intuitionistic DPLL” would have to integrate some mechanism
equivalent to making ¬d unusable in (the part of the computation
corresponding to) the recursive call.
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Model-constructing SMT

For 2. (opening up the SAT-solver’s black box, integrate our
“theory” into it in order to get an intuitionistic DPLL algorithm):

We use an approach to SMT-solving recently developed,
model-constructing satisfiability (MCSAT), in which theory
reasoning is inside the DPLL loop.

Just like DPLL tries to assign Boolean values to Boolean variables
in order to build a (counter-)model of the sequent to be proved,
MCSAT also tries to assign theory values to theory variables, e.g.,
x 7→3

4 for a rational variable x (if the theory were for instance
arithmetic)
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For our purpose, we need to find the “right” notion of value for
our intuitionistic formulae, so that
I Proving . . . `̀̀ d forces an assignment “similar to” d 7→0
I Later proving . . . , a `̀̀ b forces a 7→1 and b 7→0

but should hide/disregard the older assignment d 7→0

One way to do that is to tag the Boolean values with a label that
keeps track of how we went up into left branches, e.g., assign
d 7→0w and then assign a 7→1w(a⇒b) and b 7→0w(a⇒b) where the
label w for d ’s assignment is changed into a label w(a⇒b) to mark
the new jump into the left premiss of the G4 rule for (a⇒b)⇒c.
The labels are sequences of implication formulae that keep track of
those jumps.
Then one realises that the labels are the worlds from a Kripke
model being built: Going into the left premiss creates a label
extension w(a⇒b) that says “pick a world above w where a is true
but b is false, then try to find a contradiction from there”.
Ongoing work.
We also try to bypass the preprocessing and directly work on the
input formulae.
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Questions?
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