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Abstract

When model checking concurrent software applications, symmetry reduction
techniques narrow dramatically the size of the state space search by identify-
ing computations that, because of symmetries in the system, are redundant.
While state-exploration algorithms exploiting symmetry reduction are well
developed, little has been done in discovering the nature of the symmetries
of a system. What is even less researched is discovering symmetries that
are particular to a temporal property. This paper proposes a general frame-
work for discovering symmetries in systems that exhibit absolute or relative
symmetries depending on the property of interest. Our work extends pre-
vious symmetry reduction techniques by making advances in automating
generalized model automorphism discovery.
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1 Introduction

For over half a century, formal verification has been used to help show that
computer systems will behave as they are intended to. The most popular
verification technique being used today is model checking, where, given a
mathematical model M of the computing system and a logical formula ϕ
that expresses a desired property of the system, the truth value of ϕ in
M is determined by exhaustive exploration of the state space of M . The
state spaces of complex systems are many orders of magnitude larger than
automated model checking tools can handle. Therefore, the mathematical
models of computing systems used in model checking must be much simpler
than the systems that are modeled. Yet, the models must contain all the
detail that is essential to the analysis being performed, because omission of
relevant detail can invalidate the results of the analysis. The only obvious
way of ensuring that analysis of these simple models will produce accurate
results is to generate them by abstraction, the process of eliminating detail
that has been shown to be irrelevant from more detailed models that are
more obviously accurate and faithful.

Symmetry reduction is an abstraction technique that reduces the size
of the state space search by identifying computations that, because of the
symmetry in the model, are redundant. Models of distributed systems com-
prising many identical components exhibit considerable symmetry. Since
multiple components play the same functional role, and therefore interact
with their environment in the same way, the identity of a component during
analysis is often irrelevant.

At least two natural notions of symmetry — what might be called ab-
solute and relative symmetry — can be explicated in terms of frame auto-
morphisms, which are, roughly speaking, one-to-one homomorphisms that
map the frame 〈S, R〉 of a model M that represents a set S of states and a
transition relation R, onto itself. This allows the construction of a quotient
MG formed by the construction of equivalence classes among states that are
not distinguished by elements of the group G of permutations. The size of
the model MG can potentially be exponentially smaller than the size of M .
The more symmetries are captured in G, the smaller MG is. Since MG is
bisimilar to M , then for a property ϕ, checking whether MG satisfies ϕ is
equivalent to checking whether M satisfies ϕ.

The symmetries that can be exploited during model checking are essen-
tially the intersection of the symmetries exhibited by the system and the
symmetries exhibited by the property. These sources of symmetries charac-
terize much of the large body of literature that studies symmetry reduction
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in model checking [3, 8, 16, 5, 4, 10, 9, 17, 8]. The original work of Emerson
and Sistla [9] focuses on systems with global symmetries where all compo-
nents are permutable and where the permutations of process identity preserve
the valuation of atomic predicates in the property of interest. In [5], a syn-
tactic restriction is imposed on the description language of the system, so
that the permutations of components in the system are trivially determined,
but also requires a restriction on the syntax of the properties as well. Recent
work [10, 17, 8] tackles systems with little or no symmetry at all. In this
case, the construction of MG is done by first computing an approximation
of MG that assumes global symmetry, and then to refine it until only the
relevant symmetries that guarantee bisimulation for a given property are
considered. In [17], model automorphisms are extended to more than just
permutations of process identity, but also to local variable-value pairs. This
more general notion is better captured by the notion of generalized frame
automorphism.

While state-exploration algorithms exploiting symmetry reduction by
exploring MG instead of M are well developed, little has been done in dis-
covering the symmetries of a system, and automating the construction of
MG using those symmetries. What is even less researched is discovering
symmetries that are particular to a temporal property. If we can automate
and speed up the process of discovering the symmetries that are possible
for every single property, we would achieve better state-space reduction and
provide a much more flexible framework for the analysis of a large class of
distributed systems. What is of interest to us is not to exploit only sym-
metries that induce a bisimulation of the state graph so that all properties
are preserved, but to provide an automated way of discovering some or all
of the symmetries that can be exploited for every single property of inter-
est achieving therefore better reduction than classical symmetry reduction
methods and achieving various degrees of state-space reduction.

This paper proposes a general framework for discovering symmetries in
systems that exhibit global or local symmetries depending on the prop-
erty of interest. Our work extends previous symmetry reduction techniques
by making significant advances in automating generalized model automor-
phism discovery. Generalized model automorphism allows us to discover
symmetries between states satisfying arbitrary predicates while preserving
the property of interest. Therefore, we do not only discover symmetries in
systems composed of several identical processes, but we can discover sym-
metries in the state space of a single process. Even when processes are not
symmetric and their identities can not be permuted, part of their local state
space can be permuted. The contribution of this paper can be summarized
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as follows:

• An anytime symbolic algorithm for discovering symmetries in systems
that exhibit global, local symmetries, or no apparent symmetries at
all.

• Generalization of symmetry reduction to model automorphisms that
preserve a particular temporal property.

• Our schema for discovering symmetries is both incremental and con-
servative. At any time, the set of already computed symmetries is
guaranteed to define a generalized model automorphism that guaran-
tees the preservation of the property. This guarantees that no spurious
counter-example will be generated.

• The techniques developed have been applied to a real life system that
represents the largest implementation of a distributed multiagent sys-
tem up to this date, and help improve its architecture. As a result of
our analysis, flaws in the architecture of the system could be identified,
and a set of test cases has been generated from the model checking of
an abstraction of the systems that exploits symmetries. Furthermore,
changes in the architecture have been suggested so that relative sym-
metries can be extended into absolute symmetries, making the analysis
simpler and the construction of an argument of the correctness of the
architecture easier.

In the larger context of automated abstraction, our approach represents
a fundamentally different alternative to current automated abstraction ap-
proaches based on abstract interpretation techniques [7], where an initial
coarse abstract domain is successively refined until the property is proved
correct or a counter example is exhibited. This is the case for predicate
abstraction [12] where an initial partition of the state space using an initial
set of predicates is refined by adding more predicates when necessary [15]
and therefore obtaining a more precise description of the state space. Our
approach can be viewed as a bottom-up abstraction methodology that con-
sists of first considering the systems itself and collapsing equivalent states
without loss of information. The advantage is that there is no need for
refinement since there is no over-approximation of the transition relation
that might lead to spurious counter examples. Our philosophy consists of
achieving enough state space reduction in order to be able to model check
the system rather than drastically reducing the state space by means of
over-abstraction and then refinement.
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In the rest of the paper, we first introduce our motivating application
in Section 2. In section 3, we define the notion of symmetry and model
automorphism. In section 4, we describe a generalization of model automor-
phism. In section 5 we describe our technique for discovering generalized
model automorphisms for a given property. In section 2, we describe our
algorithm for discovering symmetries, and in Section 6, we discuss imple-
mentation and results of the analysis.

2 Motivating Application

Our motivating example is UltraLog, a complex distributed multiagent sys-
tem that represents the largest implementation of agent system known today.
UltraLog represents a challenge to known formal verification techniques in
general and model checking techniques in particular. UltraLog [2] is a re-
search project focused on creating survivable large-scale distributed agent
systems capable of operating effectively in very chaotic environments. The
project is pursuing the development of technologies to enhance the security,
robustness, and scalability of large-scale, distributed agent-based systems
operating in chaotic environments and extreme circumstances. UltraLog is
built using the Cougaar technology [1]. Cougaar is a Java-based architec-
ture for the construction of large-scale distributed agent-based applications.
The UltraLog program focuses on research, development, evaluation, and
demonstration of a prototype, distributed society of more than 1000 medium
complexity agents. Figure 1 illustrates the architecture of the UltraLog sys-
tem. Agents in UltraLog are organized in enclaves that are under different
administrative supervision. Enclaves are related by wide area network con-
nections, and every enclave includes a set of administrative agents that are
used to enforce security and robustness policies. The mission of the Ultra-
Log system requires that most agents are available when they are solicited.
To ensure such a fundamental property, UltraLog relies on the following
robustness mechanisms:

• Intelligent mobility: agents are moved to machines where the neces-
sary resources required to perform their tasks are guaranteed to be
available.

• Failure recovery: failure of individual agents or machines is dealt with
by restarting agents on different machines using the following mecha-
nisms:

– automatic restart when agents fail
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– migration of an agent when the machine on which it runs fails

– restoration of the state of the agents after failure using local and
replicated storage

Figure 1: The UltraLog System architecture. Large ovals represent enclaves
of agents, mid-sized ovals represent network nodes, and small ovals represent
agents.

Every set of agents in an enclave is monitored by a set of management
agents, also called managers. The role of a manager is to monitor a set of
agents by checking that every single one of them emits regular heartbeats.
When an agent’s heartbeat is not received, the manager issues a ping to
query the agent. When the agent does not respond to the ping, the agent
is considered in a dead state and is restarted by the manager. In some
instances, the security monitoring mechanisms flag the death of some agent
as suspicious, and as a result might consider the whole node as potentially
compromised. Therefore, the agent is restarted on a different node along
with all the agents that were on the same node. A snapshot of the state
of active agents is stored in a replicated storage structure regularly. Each
agent, manager, and node requires an authentication certificate that enables
it to interact with its environment. Authentication certificates are delivered
by a set of certificate authorities (CAs) organized in a hierarchical manner.
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CAs are themselves implemented as agents with the appropriate plug-ins
to play their role as CAs, and they therefore require other CAs. There is
one root certificate authority. When a node, a manager, an agent, or a
CA is restarted, it combines a built-in certificate with the certificate of the
manager that initiated the restart into a single request for a new certificate
from its CA.

Our model of UltraLog is an abstraction of the current implementation
in which timing and network information is abstracted away. The model
is parametrized by the number of agents, robustness managers, security
managers, certificate authorities, nodes, replicated storage locations, and
enclaves. For simplicity, an agent, a manager, or a certificate authority can
be in either its init, alive, or dead state , and a node can be either up
or down. The global state is the composition of the states of all agents,
managers, certificate authorities, their respective locations, and the state of
every node.

Many aspects of the UltraLog architecture break the symmetry that one
might exploit among agents, managers, CAs, or nodes. Agents, for instance,
need to be distinguished depending on their managers, their CAs, and their
locations, and similarly for managers, and CAs. Furthermore, depending on
the property, more symmetries can be exploited. Consider, for instance, the
property stating that every agent playing the role of a certificate authority
that dies is eventually restarted and becomes available:

ϕ = ∀(i : CA) : 2(3(alive(i)))

Each CA i is initially an agent in its init state. If i’s CA defined by the
predicate certificate(i) is running, that is, it is in its alive state, then it
requests a certificate from it. Once the certificate is delivered, the agent i
moves to its alive state and starts playing its role as a CA. i can move to
state dead in two cases: if the node on which it runs goes from its state up to
down, or if i’s manager is no longer receiving i’s heartbeat. In either case, i
is declared dead and its certificate revoked. i is then moved to another node
if its original node is compromised, or restarted on the same node otherwise.
Nodes on which agents run can go down in a nondeterministic way, and are
restarted in a nondeterministic way as well.

Let us assume for a moment that there are three CAs such that CA 1 is
the root certificate, and plays the role of certificate authority for CA 2 and
CA 3. It is clear from the description of the transition relation of each CA,
that the three CAs are not symmetric, and that the permutation of CA 1, CA
2, and CA 3 does not induce an automorphism of the model. So, instead of
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assuming that all CAs are symmetric or permutable until proven otherwise
following the approach of [17], we start by considering all CAs as being
nonpermutable, and discovering incrementally what possible permutations
they might allow. Furthermore, it is possible that even if no permutation
among the CAs is possible, there exists some predicate p(i) such that any
state where p(i) holds is symmetric to a state where p(j) holds where i and
j are different CAs. In fact, we can find arbitrary pairs of predicates p and
q that may or may not refer to component identity, or to local variables
of components so that the permutation of a state satisfying p by a state
satisfying q defines a model automorphism. Using our approach, we are able
to discover that CA 2 and CA 3 are permutable. Our approach determines
that since CA 2 and CA 3 have the same dependencies up to permutation,
they are themselves permutable. The justification is in the fact that both
CA 2 and CA 3 depend on CA 1, and on their local nodes on which they run.
Since the state of individual nodes depend only on the environment, node
identities are permutable as well. Therefore, by permuting CA 2 and CA 3
as well as their node identities, we obtain a model automorphism. Another
important condition that allows the permutation of CA 2 and CA 3 is that
permuting 2 and 3 in ϕ leaves the property unchanged.

As a general principle for building an abstraction MG of a model M , it
is easier and more practical to start by considering M , that is, distinguish
all the states of M , and then discovering states that can be collapsed, since
it is not necessary to distinguish them during model checking, rather than
computing a coarse abstraction and gradually refining it. It is indeed not
guaranteed that the refinement is ever going to reach a converging point
for an infinite state system, and might be unmanageable for systems with
thousands of components, whereas with our incremental approach, any com-
puted permutations can be used. Next, we will show how these symmetries
are discovered automatically from the systems description.

3 Defining Symmetry

Before describing our procedure for discovering symmetries, we recall some
preliminary definitions and define symmetry reduction. The state space of
a concurrent system is represented by a transition system. Let us say that
a transition system M is a quadruple

〈S, R,L, P 〉

where
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• S is a non-empty set, called the set of states of M

• R is the transition relation of M

• P is a set of atomic predicates

• L : S → 2P is a labeling function

We denote by L(s) the values of the predicates of P in s. We also denote
by L(s)|Q the values in the state s of the predicates of a subset Q of P with
the convention that L(s)|∅ = ∅. A permutation on a state S is a bijection of
S into itself. We designate by P The group of permutations of S.

Definition 1 (symmetry Group) Given a transition system M = 〈S, R,L, P 〉,
a subgroup G of P is called a symmetry group of M if for all permutations
σ of G:

(s1, s2) ∈ R iff (σ(s1), σ(s2)) ∈ R

That is, G preserves the transition relation R. Not all permutations are
property preserving. Only permutations that preserve certain atomic pred-
icates — that is, permutations that form an invariance group — are useful.

Definition 2 (Invariance Group) Given a transition system M = 〈S, R,L, P 〉,
and let Q be a subset of the set of predicates P . A symmetry group G of M
is called an invariance group of M for Q if for all permutations σ of G and
for every atomic proposition β in Q, L(s)|{β} = L(σ(s))|{β}. In other word:

L(s)|Q = L(σ(s))|Q

That is, G preserves the transition relation R and the atomic predicates of
Q. The symmetry group G defines an equivalence relation on S where the
equivalence class of a state s is designated by its representative [s] defined
by [s] = {s′ ∈ S|∃σ ∈ G, σ(s) = s′}. This equivalence defined a quotient of
the transition system M .

Definition 3 (Quotient Transition System) Given a transition system
M = 〈S, R,L, P 〉, and an invariance group G of M for P , a quotient transi-
tion system for M modulo G is the transition system MG = 〈SG, RG, LG, P 〉
where

1. SG = {[s]|s ∈ S}

2. RG = {([s1], [s2])|(s1, s2) ∈ R}
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3. LG : SG → 2P is such that ∀s ∈ S : LG([s]) = L(s)

Theorem 1 Given a transition system M = 〈S, R,L, P 〉 and G an invari-
ance group of M for P , then for any temporal property ϕ where only atomic
predicates of P appear in ϕ:

M |= ϕ ⇔ MG |= ϕ

The transition systems M and MG are bisimilar. Therefor, G strongly
preserves every temporal property ϕ with atomic predicates in P .

4 Generalized Invariance Groups

Invariance groups capture the symmetries in a transition system and allow
the preservation of all properties that use only atomic predicates in P . This
restriction can be removed by allowing that symmetric states s and σ(s) do
not necessarily agree on the predicates of P .

Definition 4 (Generalized Invariance Group) Given a transition sys-
tem M = 〈S, R,L, P 〉, a symmetry group G of M , and a mapping γ : P → P ,
the pair 〈G, γ〉, denoted by Gγ, is called a generalized invariance group of
M for all permutations σ of G:

∀s ∈ S, L(s) = γ(L(σ(s)))

The generalized invariance group defines a generalized automorphism of
M where equivalent states are not required to agree on the set of atomic
predicates. This generalization that admits arbitrary swapping of atomic
predicate will achieve more symmetry reduction for some properties. The
most trivial ones are the properties ϕ such that ϕ and γ(ϕ) are equivalent,
where γ(ϕ) is defined as the property ϕ where every atomic property β
appearing in ϕ is substituted by γ(β).

Considering generalized invariance groups is a powerful approach to state
space reduction. Permutations between states are not restricted to permu-
tation of process indices anymore. Even if two processes i and j are not
symmetric, some of their respective behaviors might be. Therefore it is pos-
sible that two predicates p(i) and p(j) can be symmetric but not i and j.
Another consequence of considering generalized invariance groups is that
symmetry reduction can not be restricted to concurrent systems defined by
the composition of identical processes, but can be defined in general for
arbitrary systems.
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Theorem 2 Given a transition system M = 〈S, R,L, P 〉, a generalized in-
variance group Gγ of M for P , and any temporal property ϕ where only
atomic predicates of P appear in ϕ. If ϕ is invariant under γ, that is,
ϕ = γ(ϕ) then:

M |= ϕ ⇔ MGγ |= γ(ϕ)

From now on, we consider ϕ to be an LTL temporal formula. The main
importance of Gγ and similar sorts of structure-preserving mappings is that
a computation

τ = 〈s0, s1, s2, . . .〉

and its image under σ

σ(τ) = 〈σ(s0), σ(s1), σ(s2), . . .〉

cannot be distinguished by a certain class of logical formulas. Hence, there
is no need for considering both τ and σ(τ) when searching for a refutation of
ϕ. In other words, after a (generalized) model automorphism has been dis-
covered, each state s can be identified with its image σ(s) under σ to reduce
the size of the state space prior to model checking. One obvious potential
source of model automorphisms in agent-based systems is swaps of agents —
or groups of agents, as in the UltraLog application agent/robustness man-
ager/certificate authority example sketched earlier — that play the same role
in a system and that do not interact with one another. The main source
of generalized model automorphisms is swaps of states of individual agents
with the same agent states as predecessors and successors. (Not every such
swap is of interest as there is, of course, no guarantee that the LTL formula
which expresses the property to be checked will be invariant under the per-
mutation of atomic formulas that corresponds to the swap.) Although the
basic idea of using symmetries to simplify model checking is well known,
we have extended previous symmetry-reduction techniques such as the ones
in described Sistla and Godefroid’s paper [17] in ways that make them
more generally applicable to the sort of systems that we are interested in.
In particular, we have made significant advances in automating generalized
automorphism discovery. During the presentation, we will omit some of the
obvious proofs.

5 Discovering Symmetries

We propose an algorithm that takes as input system description and a tem-
poral property ϕ and produces a generalized invariance group Gγ . Since Gγ
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is computed so that it preserves only the property ϕ, dramatic state space
reduction can be achieved. For a given property ϕ, our approach consists
of finding a pair predicates (pi, qi) that defines a generalized automorphism
such that σi is defined as the mapping between states satisfying pi and states
satisfying qi. Once such pair is found, it is possible to find new pair (pj , qj)
of predicates such that its corresponding σj defines also a generalized au-
tomorphism. The composition of σi and σj is therefore also a generalized
automorphism. We first focus on permutations of states that form a gener-
alized automorphism and then find the predicates that characterize the sets
that can be safely permuted for the purpose of reducing the explored state
space during model checking.

5.1 Property-Based Permutations

Definition 4 is our starting point in finding symmetries. Let us first define
permutations of states that preserves a given property ϕ.

Definition 5 (ϕ-Permutation) Let ϕ be an LTL formula. A mapping
σ : S → S is a ϕ-permutation if for every infinite sequence τ

τ |= ϕ iff σ(τ) |= ϕ

By definition, ϕ-permutations preserve the property ϕ. We propose an al-
gorithm for computing such permutation by showing that they satisfy, by
construction, condition 2 of Definition 4. That is, they preserve the prop-
erty ϕ. We will then show that for every infinite sequence of states τ of a
system M , the permutation σ(τ) is also an infinite sequence of M . That is,
condition 1 of Definition 4 is satisfied.

Given a model M and a temporal logic property ϕ, the problem of dis-
covering symmetry is the problem of finding a set of ϕ-permutations. We
propose an algorithm for finding permutations by computing and then suc-
cessively refining an initial permutation. Our incremental approach allows
us to provide users with a tradeoff between the amount of reduction they
want to achieve and the amount of symbolic computation that is required
to generate the permutations.

5.2 Exploiting Dependencies

One obvious way of discovering ϕ-permutations is to exploit dependencies.
Intuitively, for every sequence of states, any state that does not influence the
property ϕ can be substituted by another state that also does not influence
the validity of ϕ.
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Definition 6 (dependency graph) Let p be a predicate. The dependency
graph dep graph(p) for p is an abstract transition graph where every state
is a predicates and there exist an edge from predicate p to a predicate q if
the validity of p depends on q. In other words, for every state s satisfying
p, there is a state s′ satisfying q such that (s′, s) ∈ R.

The dependency graph for ϕ is constructed by tracking the dependencies
of every atomic predicate in ϕ. It can be computed in many different ways
such as by a simple backward computation by collecting all atomic predi-
cates appearing in the transitive closure of the precondition of every atomic
predicate in ϕ. The dependency graph is potentially infinite, however, for
the purpose of discovering symmetries, it is not necessary to compute the
whole graph as we will see later. But for now, let us assume that the graph
is a finite graph, and let dep(ϕ) be the set of all predicates appearing in the
graph.

Proposition 1 Let s and t be two states such that L(s)|dep(ϕ) = L(t)|dep(ϕ).
The permutation σ that maps s to t and vice versa, and maps every other
state to itself, is a ϕ-permutation.

Computing a first set of dependencies can be used to slice a model, and
therefore reduce the state space. This can be expressed as a permutation σ0

defined as follows:

∀s ∈ S σ0(s) =
{

t if L(s)|dep(ϕ) = L(t)|dep(ϕ)

s otherwise

That is, σ0 does not distinguish states that agree on the valuation of predi-
cates in dep(ϕ). We consider σ0 to be the first permutation to be extracted
from the property ϕ.

5.3 Computing Dependencies

As stated previously, the dependency graph for ϕ is constructed by tracking
the dependencies of every atomic predicate in ϕ. It can be computed in many
different ways such as by a simple backward computation by collecting all
atomic predicates appearing in the transitive closure of the precondition of
every atomic predicate in ϕ. The construction is done using the program
description given as a set of guarded commands.

Definition 7 (Program) A program P is a tuple P = < V, T = {τ1, · · · , τn}, Init >,
where
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• V is a set of program variables.

• T is a set of transitions or guarded commands.

• Init is a predicate characterizing the set of initial states.

Each transition τ is a guarded command

guard −→ v1 ::= e1, · · · , vn ::= en

where {v1, · · · , vk} ⊆ V. The boolean expression guard is the guard of the
transition τ . Each variable vi is assigned with an expression ei of a com-
patible type. A state of a program P is a valuation of the system variables
of V. We also recall the definitions of predicate transformers over transition
systems. The predicate transformer pre expressing the precondition by a
transition τ of a predicate p over the state variables of V are defined as
follows:

pre[τ ](p) = ∃V ′.actionτ (V,V ′) ∧ p(V ′)

where actionτ (V,V ′) is defined as the relation between the current state and
next state, that is, the expression

guard ∧
k∧

i=1

v′
i = ei

The semantics of a program P is given by its computational model M rep-
resented by a transition system defined in Section 3.

Computing the dependency graph for any predicate p uses the pre op-
erator as follows: The root of the graph is the predicate p it self. For each
predicate q in the conjuncts of pre[P](p), an arc between q and p is added.

5.4 Refining Symmetries

Exploiting dependencies allows the permutation between sequences of states
that do not affect the property ϕ. While this can sometime lead to a sig-
nificant reduction in the state space to explore, it basically exploits a very
simple case of symmetry. We propose to further exploit dependencies by
refining the already computed symmetries and discovering more symmetric
states. Given a ϕ-permutation σ0 such as the one computed previously,
we know that σ0 does not distinguish states that agree on the valuation
of predicates in dep(ϕ). Our approach for refining σ consists in finding a
pair of predicates p and q in dep(ϕ), such that the permutation between
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states that agree on all the valuations of predicates in dep(ϕ) but p and q
is a ϕ-permutation. That is, the permutation of states s1 and s2 satisfying
respectively p and q is a ϕ-permutation.

Definition 8 Let p and q be two predicates in dep(ϕ). p and q are per-
mutable if ∀p′ ∈ dep(p),∀q′ ∈ dep(q) one of the following is true:

• p′ and q′ are equivalent.

• p′ and q′ are permutable.

In other words, states in p and q can be permuted if and only if their
dependencies are the same up to symmetry. That is, they depend on the
same states, or they depend on states that are themselves permutable. Here
we realize that when computing the dependency graphs for p and q, it is
enough to compute just enough dependencies to either show that those de-
pendencies are equal or permutable. This is useful when the system under
consideration is infinite and the dependency graph can be potentially infi-
nite. While this definition allows us to define what states are permutable,
the following proposition provides a way of finding p and q that are relevant
to a particular property.

Proposition 2 Let s and t be two states such that s and t satisfy respectively
the atomic predicates p and q of dep(ϕ). Let σ be the permutation such that
σ(s) = t, and σ(s′) = s′ for every state s′ satisfying neither p nor q. The
permutation σ is a ϕ-permutation if and only if both of the following are
true:

• p and q are permutable

• ∀(s ∈ p) : ∀(t ∈ q) : ϕ[s/t] = ϕ

Proof: The proof is by induction on the structure of the dependency graphs
of p and q.
2

This proposition allows us to recursively construct a set of ϕ-permutations
starting from an initial ϕ-permutation defined by exploiting dependencies.
This allows us to discover the symmetries in a system in an incremental way.
The refinement of the initial permutation σ0 by identifying two predicates p
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Hassen Säıdi — Discovering Symmetries

and q that are permutable from the set of predicates dep(ϕ) can be expressed
by the following permutation:

σ(p,q) =


σ(s,t) if p = q

σ(s,t) ◦ σp′,q′) if ∀p′ ∈ dep(p),∀q′ ∈ dep(q), p and q are permutable
identity otherwise

where σ(s,t) is defined as follows: ∀s ∈ p σ(s,t)(s) = t ∈ q

5.5 An Algorithm for Computing Symmetries

The initial permutation and its successive refinements can be combined to
form a single permutation that can be applied to the entire state space. The
following proposition shows that the composition of all permutations com-
puted by our algorithm is a permutation that allows symmetry reduction.

Proposition 3 Let σi be a ϕ-permutation and let σj be a ϕ-permutation.
The composition σi ◦ σj is also a ϕ-permutation.

Our algorithm for computing permutations is described in Figure 2. We

Begin
X = X0 ∪ pred(ϕ);
σ = σ0;
while X 6= ∅ Do
chose q ∈ X and p ∈ X such that p ∩ q = ∅;
compute dep graph(p);
compute dep graph(q);
if permutable?(p, q) ∧ ∀(s ∈ p) : ∀(t ∈ q) : ϕ[s/t] = ϕ

then
σ = σ ◦ σ(p,q);
X = X \ {p} ∪ {q} ∪ dep(p) ∪ dep(q);

endif
Od
End

Figure 2: Algorithm for computing symmetries

consider an initial arbitrary set X of candidate predicates that includes
the predicates in the property ϕ. We pick two predicates p and q and
compute their dependency graphs. If p and q are permutable, then p and
q and tare removed from X . We also remove the predicates appearing in
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the dependency graphs from X since if two permutable predicates p′ and q′

appear in X and also appear in the dependency graphs of p and q, then the
permutation σ(p,q) subsumes the permutation σ(p′,q′).

Theorem 3 Let σ a permutation computed by the algorithm of Figure 2 for
a property ϕ. The permutation σ is a ϕ-permutation, and for every infinite
sequence τ of the corresponding transition system M , σ(τ) is also a sequence
of M .

Proof: First, we can establish that for a given p and q, σ(p,q) is a ϕ-
permutation. We can also establish that the composition of two ϕ-permutations
is a ϕ-permutation. Finally, the definition of dependency graphs allows us
to show that σ(p,q) preserves the transition relation R.
2

6 implementation

UltraLog is modeled using the SAL specification and verification environ-
ment1. SAL stands for Symbolic Analysis Laboratory. It is a framework for
combining different tools for abstraction, program analysis, theorem proving,
and model checking toward the calculation of properties (symbolic analysis)
of transition systems. A key part of the SAL framework is an intermediate
language for describing transition systems. This language serves as the tar-
get for translators that extract the transition system description for popular
programming languages such as Java, and Statecharts. The intermediate
language also serves as a common source for driving different analysis tools
through translators from the intermediate language to the input format for
the tools, and from the output of these tools back to the SAL intermediate
language. Our dependency analysis uses the SAL slicer developed in [11].
The input of the slicing algorithm consists of the slicing criterion and a SAL
description of the system in the form of the parallel composition of modules.
The slicing criterion is in our case a set of local and global variables appear-
ing in the set of atomic predicates in the formula. The output of the slicing
algorithm is another SAL description of the same system wherein irrelevant
code from each module has been sliced out. When considering two predi-
cates p and q, the slices with respect of the variables appearing p and the
variables appearing in q are compared for equivalence or for permutability.

1http://sal.csl.sri.com
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As a result of using the slicing program as a dependency analysis tool, we
can guaranty that the permutations generated by our algorithm correspond
to runs in the system.

The following is the description of the results of the algorithm for two dif-
ferent properties. The first property expresses that every agent playing the
role of a certificate authority that dies is eventually restarted and becomes
available:

φ = ∀(i : CA id) : 2(3alive(i))

The dependency computation allows us to generate the following predicates
that appear in the SAL description of UltraLog:

• location(i) = n

• location(ca∗(i)) = n

• ca∗(i) = c

These predicates refer to the free variables n and c representing respectively
nodes and certificate authorities. These predicates indicate that in order
to verify the property above, it is not necessary to consider the behavior of
any agent nor any manager, but only the certificate authorities and their
associated certificate authorities, and the nodes they run on. This allows us
on one the one hand to consider all possible permutations among agents as
well as among all managers, and on the other hand to exploit a symmetry
among certificate authorities. Since ca(i) designate the certificate authority
of agent i, we realize that if i and j are two CAs agents, then i and j are
permutable if they have the same CA. A similar property can be verified for
application agents.

∀(i : Agent id) : 2(3alive(i))

The analysis of the dependencies of the predicate alive(i) leads to the
following predicates, and their corresponding permutations.

• location(i) = n

• ∃j : Agent. location(i) = location(j) ∧manager(j) = manager(i)

• location(ca∗(i)) = n

• location(manager(i)) = n

• location(ca∗(manager(i))) = n
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• enclave(n) = enclave(location(i))

• ca∗(i) = c

• ca∗(manager(i)) = c

That is, agents i and j are permutable if and only if, their corresponding
CAs and managers are permutable, and if their locations are permutable.
More details about the example can be found at

http://www.csl.sri.com/users/saidi/symmetry/.

7 Discussion

We have presented and incremental approach for finding symmetries by au-
tomatic analysis of the description of a distributed system given in a guarded
command language such as SAL. The approach is applicable to a large num-
ber of systems and is not restricted to systems composed of identical pro-
cesses. The approach is based on finding predicates that are permutable.
Our approach solves the problem of finding the symmetries in order to ap-
ply symmetry reduction techniques, where the symmetries are given by the
user or are trivial due to restrictions on the syntax of the description of the
system and the properties. Our approach can be seen as a composition of
symmetry reduction and predicate abstraction [12]. It is possible to prove
that the generated predicates can be used to build a predicate abstraction
of the original system that preserves the property of interest. The choice
of candidate predicates can either be guided by the user or by heuristics
such as the ones defined in [14] for instance. The reduced model for various
properties have used for the purpose of test case generation based on the
techniques described in [13]. The test cases have been useful in identifying
flaws in the UltraLog implementation and architecture.
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