Safety, Dependability, Fault Tolerance
And Verification

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA
Safety, Dependability, Fault Tolerance
And Formal Verification

- In the world of safety-critical systems
 - They don’t care (much) about verified software
 - They care about certified systems
- Because it is systems that interact with the world and have the potential to do harm
 - The FAA, for example, certifies planes and engines (and propellers); not software
- Certification because that is the process that (attempts to) evaluate all the risks in deploying some system
 - The system doesn’t have to be correct, it has to be safe
Certification

- Certification is not yet a properly engineered process
 - And its science base is poorly developed

- Similarly for its dual: accident investigation

- Its most sophisticated expressions are built around the notion of a safety case
 - An argument that persuades an independent reviewer/agency that the risks are ALARP ("As Low As Reasonable Practicable")

- Basically a systematic exploration of the space of "unbounded relevance"
 - Hazards (hazard analysis, HAZOP, fault tree analysis, failure modes and effects analysis)
 - And their mitigation (cf. Gerard Holzmann’s talk)
Certification and Software

- When the processes of design and certification work their way down into subsystems with large software content, the concern and analysis is almost exclusively focused on requirements.

- Which mostly concern interactions with other entities:
 - The environment
 - Controlled plant
 - Other systems
 - Humans

- Later stages of software development account for 5% of the costs and 2% of the problems in airborne software.
V&V: Simplified Vee Diagram

- Requirements
- Design/Code
- Unit/Integration Test
- System Test

Time and Money

John Rushby, SRI

VSTTE Dependability and Verification Panel
Certification and Formal Verification

- If it’s construed narrowly (program verification), formal verification will make only a small impact on development and certification (tighten the bottom of the Vee)
- **Construed broadly, it could provide a foundation for a science of certification**
 - Model and explore the space of unbounded relevance
 - And its interaction with emerging requirements
 - Will use many techniques from formal methods
 - Hybrid systems models, probabilistic models, modeling the human, notions of evidence and of causation
 - But probably not program verification
- Requires dialog with unfamiliar communities: systems engineers, certifiers, their committees (cf. SC200, SC205)
- **The ideal is compositional certification**
Tightened Vee Diagram

John Rushby, SRI

VSTTE Dependability and Verification Panel–7