
What Might

A Science of Certification

Look Like?

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Scientific Certification: 1



Overview

• Some tutorial introduction

• Implicit vs. explicit approaches to certification

• Making (software) certification “more scientific”

• Compositional certification

John Rushby, SR I Scientific Certification: 2



Certification

• Judgment that a system is adequately safe/secure/whatever

for a given application in a given environment

• Based on a documented body of evidence that provides a

convincing and valid argument that it is so

• Some fields separate these two

◦ e.g., security: certification vs. evaluation

◦ Evaluation may be neutral wrt. application and

environment (especially for subsystems)

• Others bind them together

◦ e.g., passenger airplane certification builds in assumptions

about the application and environment

? Such as, no aerobatics—though Tex Johnston did a

barrel roll (twice!) in a 707 at an airshow in 1955

John Rushby, SR I Scientific Certification: 3



View From Inside Inverted 707

During Tex Johnston’s barrel roll

John Rushby, SR I Scientific Certification: 4



Certification vs. Evaluation

• I’ll assume the gap between these is small

• And the evaluation takes the application and environment

into account

• Otherwise the problem recurses

◦ The system is the whole shebang, and evaluation is just

providing evidence about a subsystem

• And I’ll use the terms interchangeably

John Rushby, SR I Scientific Certification: 5



“System is Safe for Given Application and Environment”

• So it’s a system property

◦ e.g., the FAA certifies only airplanes and engines

(and propellers)

• Can substitute secure, or whatever, for safe

◦ Invariably these are about absence of harm

• So, generically, certification is about controlling the

downsides of system deployment

• Which means that you know what the downsides are

◦ And how they could come about

◦ And you have controlled them in some way

◦ And you have credible evidence that you’ve done so

John Rushby, SR I Scientific Certification: 6



Knowing What the Downsides Are

And How They Could Come About

• The problem of “unbounded relevance” (Anthony Hall)

• There are systematic ways for trying to bound and explore

the space of relevant possibilities

◦ Hazard analysis

◦ Fault tree analysis

◦ Failure modes and effects (and criticality) analysis:

FMEA (FMECA)

◦ HAZOP (use of guidewords)

• These are described in industry-specific documents

◦ e.g., SAE ARP 4761, ARP 4754 for aerospace

John Rushby, SR I Scientific Certification: 7



Controlling The Downsides

• Downsides are usually ranked by severity

◦ e.g. catastrophic failure conditions for aircraft are “those

which would prevent continued safe flight and landing”

• And an inverse relationship is required between severity and

frequency

◦ Catastrophic failures must be “so unlikely that they are

not anticipated to occur during the entire operational life

of all airplanes of the type”

John Rushby, SR I Scientific Certification: 8



Subsystems

• Hazards, their severities, and their required (im)probability of

occurrence flow down through a design into its subsystems

• The design process iterates to best manage these

• And allocates hazard “budgets” to subsystems

◦ e.g., no hull loss in lifetime of fleet, 107 hours for fleet

lifetime, 10 possible catastrophic failure conditions in

each of 10 subsystems, yields allocated failure probability

of 10−9 per hour for each

• Another approach could require the new system to do no

worse than the one it’s replacing

◦ e.g., in 1960, big jets averaged 2 fatal accidents per 106

hours; this improved to 0.5 by 1980 and was projected to

reach 0.3 by 1990; so set the target at 0.1 (10−7), then

subsystem calculation as above yields 10−9 per hour again

John Rushby, SR I Scientific Certification: 9



Design Iteration

• Might choose to use self-checking pairs to mask both

computer and actuator faults

• Must tolerate one actuator fault and one computer fault

simultaneously

241 3

actuator 1 actuator 2

P M

self−checking
pair

• Can take up to four frames to recover control

John Rushby, SR I Scientific Certification: 10



Consequences of Slow Recovery

• Use large, slow moving ailerons rather than small, fast ones

• As a result, wing is structurally inferior

• Holds less fuel

• And plane has inferior flying qualities

• All from a choice about how to do fault tolerance

John Rushby, SR I Scientific Certification: 11



Design Iteration: Physical Averaging At The Actuators

An alternative design uses averaging at the actuators

• e.g., multiple coils on a single solenoid

• Or multiple pistons in a single hydraulic pot

John Rushby, SR I Scientific Certification: 12



Design Margin and Redundancy

• Can often calculate the stresses on physical components

• May then sometimes be able to build in a safety margin

◦ e.g., airplane wing must take 1.5 times maximum

expected load

• In other cases, historical experience yields failure rates

• Can tolerate these through redundancy

◦ e.g., multiple hydraulic systems on an aircraft

• And can calculate probabilities

◦ Assuming no common mode failures

◦ i.e., no overlooked design flaws

John Rushby, SR I Scientific Certification: 13



Design Failure

• Possibility of residual design faults is seldom considered for

physical systems

◦ Relatively simple designs, much experience, accurate

models, massive testing of the actual product

• But it still can happen

◦ e.g., 737 rudder actuator

Especially when redundancy adds complexity

• But software is nothing but design

• And it is often complex

• So, can we tolerate software design faults,

or must we eliminate them?

John Rushby, SR I Scientific Certification: 14



Diversity As Defense For Design Faults?

• Use of redundancy to tolerate faults rests on the assumption

of independent failures

• Achievable when physical failures only are considered

• To control common mode failures, may sometimes use

diverse mechanisms

◦ e.g., ram air turbine for emergency hydraulic power

• And some advocate software redundancy with design

diversity to counter software flaws

• Many arguments against this

◦ Need diversity all the way up the design hierarchy

◦ Diverse designs often have correlated failures

◦ Better to spend three times as much on one good design

• So usually must show that software is free of design faults

John Rushby, SR I Scientific Certification: 15



Software Certification

• Software is usually certified only in a systems context

• Hazards flow down to establish properties that must be

guaranteed, and their criticalities

◦ Unrequested function

◦ And malfunction

◦ Are generally more serious than loss of function

• How to establish satisfaction of such requirements?

• Generally try to show that software is free of design faults

• Try harder for more software critical components

◦ i.e., for higher software integrity levels (SILs)

John Rushby, SR I Scientific Certification: 16



Approaches to System and Software Certification

The implicit standards-based approach

• e.g., airborne s/w (DO-178B), security (Common Criteria)

• Follow a prescribed method

• Deliver prescribed outputs

◦ e.g., documented requirements, designs, analyses, tests

and outcomes, traceability among these

• Internal (DERs) and/or external (NIAP) review

Works well in fields that are stable or change slowly

• Can institutionalize lessons learned, best practice

◦ e.g. evolution of DO-178 from A to B to C (in progress)

But less suitable when novelty in problems, solutions, methods

Implicit that the prescribed processes achieve the safety goals

John Rushby, SR I Scientific Certification: 17



Does The Implicit Approach Work?

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed

John Rushby, SR I Scientific Certification: 18



Approaches to System and Software Certification (ctd.)

The explicit goal based approach

• e.g., aircraft, air traffic management (CAP670 SW01), ships

Applicant develops an assurance case

• Whose outline form may be specified by standards or

regulation (e.g., MOD DefStan 00-56)

• The case is evaluated by independent assessors

An assurance case

• Makes an explicit set of goals or claims

• Provides supporting evidence for the claims

• And arguments that link the evidence to the claims

◦ Make clear the underlying assumptions and judgments

• Should allow different viewpoints and levels of detail

John Rushby, SR I Scientific Certification: 19



Evidence and Arguments

Evidence can be facts, assumptions, or sub-claims

(from a lower level argument)

Arguments can be

Analytic: can be repeated and checked by others, and

potentially by machine

• e.g., logical proofs, calculations, tests

• Probabilistic (quantitative statistical) reasoning

is a special case

Reviews: based on human judgment and consensus

• e.g., code walkthroughs

Qualitative/Indirect: establish only indirect links from

evidence to desired attributes

• e.g., CMI levels, staff skills and experience

John Rushby, SR I Scientific Certification: 20



Toulmin Arguments

• Not all the arguments in an assurance case are of the strictly

logical kind

◦ The local argument that links some evidence into the

claim is called a warrant

• And the overall argument uses warrants of several kinds

• So this style of argument is not of the kind considered in

classical (formalized) logic

◦ Though I suspect it can be formalized using additional

inference rules (e.g., “because experience says so”)

• Advocates of assurance cases generally look to Toulmin for

guidance on argument structure

◦ “The Uses of Argument” (1958)

◦ Stresses justification rather than inference

John Rushby, SR I Scientific Certification: 21



Argument Structure for an Assurance Case

claim

evidence

claim
sub

evidence
warrants

John Rushby, SR I Scientific Certification: 22



Making Certification “More Scientific”

• We could start by favoring explicit over implicit approaches

• At the very least, expose and examine the arguments and

assumptions implicit in the standards-based approaches

• Many of them turn out to be indirect

◦ Requirements for “safe subsets” of C, C++ and other

coding standards (JSF standard is a 1 mbyte Word file)

◦ Follow certain design practices

• No evidence many are effective, some contrary evidence

• Others impose qualitative selections on analysis and reviews

to be performed, or on the degree of their performance

◦ Formal specifications at higher EAL levels

◦ MC/DC tests for DO-178B Level A

Little evidence which are effective, nor that more is better

John Rushby, SR I Scientific Certification: 23



Critique of Standards-Based Approaches

• Too much focus on the process, not enough on the product

◦ “Because we cannot demonstrate how well we’ve done,

we’ll show how hard we’ve tried”

• Some explicit processes are required to establish traceability

◦ So we can be sure that it was this version of the code

that passed those tests, and they were derived from that

set of requirements which were partly derived from that

fault tree analysis of this subsystem architecture

John Rushby, SR I Scientific Certification: 24



Making Certification “More Scientific” (ctd.)

Replace indirect warrants and qualitative selections of reviews

and analyses by analytic warrants that support sub-claims of a

form that can feed into a largely analytic argument structure a

higher levels

• Statistically valid testing (delivers about 10−4 max)

• Static analysis for absence of runtime errors

• Automated formal code and design verification

◦ Exposes assumptions that feed upper levels of analysis

• Automated formal support for FMEA, human interaction

errors, and other aspects of hazard analysis

• Automated formal support for hierarchical arguments

(replace Toulmin?)

John Rushby, SR I Scientific Certification: 25



Automated Formal Methods

• I’ve referred to formal methods simply because that is the

applied math of computer systems

• Just as PDEs are the applied math of aerodynamics

• Automated formal methods perform logical calculations, just

as CFD performs numerical calculations

◦ Soundness is important, and so are performance and

capacity: cannot sacrifice one for another

• Approach FV as engineering calculations and focus on

delivering maximum value to the overall certification process

◦ It’s not necessary to prove everything

◦ It’s not necessary for proofs to be reduced to trivial steps

(’cos that’s not where the problems are)

◦ Though it’s ok to do these things if the economics work

John Rushby, SR I Scientific Certification: 26



Scientific Certification

• I’ve outlined a proposal for a “science of certification”

• A lot of work will be needed to fully develop this

• In particular, a full science of certification:

◦ Will need to be hierarchical

◦ And incremental

? An issue here is that certification may be

nonmonotonic: an analytic warrant that system S

satisfies property P in environment E may be

invalidated when a new element X is incrementally

added to S

◦ And compositional

• Let’s look at the last of these

John Rushby, SR I Scientific Certification: 27



Traditional Approach is Noncompositional

+

=

Requirements, analyses, flow down, go inside components

John Rushby, SR I Scientific Certification: 28



A Compositional Certification Approach

+

=

Requirements, analyses stop at component interface and do

not go inside: e.g., an RTOS

John Rushby, SR I Scientific Certification: 29



Old and New Issues

• Does this component do its own thing safely and correctly?

Standard assurance methods can take care of this

• Could this component (perhaps due to malfunction) stop

some other component doing its thing safely and correctly?

This is the new: you may not yet know what the other

components are

Three ways one component can adversely affect another

◦ Monopolize or corrupt shared resources

◦ Interact improperly (send bad data, fail to follow protocol)

◦ Generate a hazard through coupling of the plants (e.g.,

thrust reverser moves when engine thrust is above idle)

Consider each of these in turn

John Rushby, SR I Scientific Certification: 30



Context: Generic Embedded Control System

operator inputs

controlled
plant

sensors

controller

actuators

disturbances

John Rushby, SR I Scientific Certification: 31



Now Suppose We have Two Of Them

controlled
plant

actuators sensors

controller

disturbances

operator inputs

John Rushby, SR I Scientific Certification: 32



Unintended Interaction Through Shared Resources

controlled
plant

actuators sensors

controller

shared resources
interaction through

John Rushby, SR I Scientific Certification: 33



The Architecture Must Enforce Partitioning

• One component (even if faulty) cannot be allowed to affect

the operation of another through shared resources

◦ Write to its memory, devices

◦ Grab locks, CPU time

◦ Collide on access to shared bus, devices

• Components cannot guarantee this themselves—it’s a

property of the architecture in which they operate

• This is partitioning

• Whole idea of compositional certification is that you can

understand interactions of components by considering their

specified interfaces

• So partitioning is about enforcing interfaces

John Rushby, SR I Scientific Certification: 34



Partitioning

• Top-level requirement specification for partitioning:

◦ Behavior perceived by nonfaulty components must be

consistent with some behavior of faulty components

interacting with it through specified interfaces

• Federated architecture ensures this by physical means

• IMA or MAC architectures such as Primus Epic or TTA must

ensure this by logical means

• For single processors, space partitioning is standard O/S

technology: memory management, virtual machines, etc.

• Time partitioning can get tricky if using dynamic scheduling

with locks, budgets, slack time, etc.

◦ Recall failures of Mars Pathfinder (priority inversions)

John Rushby, SR I Scientific Certification: 35



Improper Interaction Through Intended Channels

controlled
plant

actuators sensors

controller

possible improper interaction

John Rushby, SR I Scientific Certification: 36



Assumptions Underlie Interactions

• Some components are intended to interact

• E.g., One may pass data to another

• Implicitly, each assumes something about the behavior of the

other

• If those assumptions are violated (or not explicitly recorded

and managed), component may fail

• Violation is most likely when other component is in failure

condition

• Can then get uncontrolled fault propagation

• Recall loss of Ariane 501

John Rushby, SR I Scientific Certification: 37



Ariane 501

• Inertial reference systems reused from Ariane 4, where they

had worked well

• Greater horizontal velocity of Ariane 5 led to arithmetic

overflow in alignment function

• Flight control system switched to the other inertial system

• But that had failed for the same reason

• No provision for second failure (assumed only random faults)

• So flight control system interpreted diagnostic output as

flight data

• Led to full nozzle deflections of solid boosters

• And destruction of vehicle and payload

John Rushby, SR I Scientific Certification: 38



Ariane 501 (continued)

• Everyone sees Ariane 501 as justifying their own favorite

issue/technique/tool

• However, it was really a failure to properly record interface

assumptions

• Assumption in IRS about max horizontal velocity during

alignment

• Assumption at system level that failure indication from IRS

could only be due to random hardware faults

◦ And double failure was therefore improbable

John Rushby, SR I Scientific Certification: 39



Assumptions and Guarantees

• Components make assumptions about other components

• And guarantee what other components can assume about

them

• This is assume/guarantee reasoning

• Looks circular but computer scientists know how to do it

soundly

• In compositional certification, we need to extend this to

failure conditions

John Rushby, SR I Scientific Certification: 40



Normal and Abnormal Assumptions and Guarantees

• In most concurrent programs one component cannot work

without the other

◦ e.g., in a communications protocol, what can the sender

do without a receiver?

• But the software of different aircraft functions should not be

so interdependent

◦ In the limit should not depend on others at all

◦ Must provide safe operation of its function in the absence

of any guarantees from others

◦ Though may need to assume some properties of the

function controlled by others (e.g., thrust reverser may

not depend on the software in the engine controller, but

may depend on engine remaining under control)

John Rushby, SR I Scientific Certification: 41



Normal and Abnormal Assumptions and Guarantees (ctd)

• Component should provide a graduated series of guarantees,

contingent on a similar series of assumptions about others

◦ These can be considered its normal behavior and one or

more abnormal behaviors

• Component may be subjected to external failures of one or

more of the components with which it interacts

◦ Recorded in its abnormal assumptions on those

components

• Component may also suffer internal failures

◦ Documented as its internal fault hypothesis

• Hypotheses must encompass all possible faults

◦ Including arbitrary or Byzantine faults

◦ Unless these can be shown infeasible

(e.g., masked by partitioning architecture)

John Rushby, SR I Scientific Certification: 42



Components Must Meet Their Guarantees

True guarantees: under all combinations of failures consistent

with its internal fault hypothesis and abnormal assumptions,

the component must be shown to satisfy one or more of its

normal or abnormal guarantees.

Safe function: under all combinations of faults consistent

with its internal fault hypothesis and abnormal assumptions,

the component must be shown to perform its function safely

• e.g., if it is an engine controller, it must control the

engine safely

• Where “safely” means behavior consistent with the safety

case assumption about the function concerned

John Rushby, SR I Scientific Certification: 43



Avoiding Domino Failures

• If component A suffers a failure that causes its behavior to

revert from guarantee G(A) to G′(A)

• May expect that B’s behavior will revert from G(B) to G′(B)

• Do not want the lowering of B’s guarantee to cause a further

regression of A from G′(A) to G′′(A) and so on

Controlled failure: there should be no domino effect.

Arrange assumptions and guarantees in a hierarchy from

0 (no failure) to j (rock bottom). If all internal faults and

all external guarantees are at level i or better, component

should deliver its guarantees at level i or better

This subsumes true guarantees

John Rushby, SR I Scientific Certification: 44



Coupling Through The Plants

controlled
plant

actuators sensors

controller

through physical coupling
potential interaction

John Rushby, SR I Scientific Certification: 45



Interaction Through Physical Coupling Of The Plants

• Must be examined by the techniques of hazard analysis

◦ FHA (Functional hazard analysis), HAZOP, etc.

◦ Cf. ARP 4754, 4761

• E.g., engine controller and thrust reverser

◦ No reverse thrust when in flight (system-component)

◦ No movement of the reverser doors when thrust above

flight idle (component-component)

• No avoiding the need for holistic analysis here

◦ Though some component-system and

component-component analyses may be routine

• Results feed back into requirements on safe function for the

controllers concerned

John Rushby, SR I Scientific Certification: 46



Summary of Compositional Certification

• Compositional certification depends on controlling and

understanding interactions among components

• Interactions must be restricted to known interfaces through

partitioning

• Interactions through those interfaces should be documented

as assumptions and guarantees

• These must be extended to failure (abnormal) conditions

• Coupling through the plants must be analyzed and added to

the requirements on safe function

• Then provide assurance for

◦ Partitioning

◦ True guarantees/controlled failure

◦ Safe function

John Rushby, SR I Scientific Certification: 47



Overall Summary

• Explicit goal-based assurance cases seem to offer the best

foundation for a science of certification

• Scientific certification will stress analytic warrants

• Which, for software, will use automated formal methods

• To learn more about assurance cases, visit www.adelard.co.uk

• Plenty of opportunities for research

• And for constructive dialog with standards and formal

methods communities

◦ e.g., SC205, VSR

John Rushby, SR I Scientific Certification: 48


