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Caveats

� I’m a formal methods researcher

� Not a practitioner
� Not a safety guy

By the way, in the USA, formal methods does not mean Z

� My connections to practice and to safety are through people who sponsor or use our

technology, mostly in aerospace

� NASA
� US aerospace companies
� Commercial tool vendors

And through them I know some of what goes on in other industries, and in Europe
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Trend: Maintain Safety, Reduce Cost

� Those industries (notably aerospace) with an established record in safety critical

software and systems development

� Are satisfied with safety achieved

� And their record justifies this

� But dissatisfied with the cost

� Both absolute dollars

� And time to market

� And difficulty customizing/adapting products

� So there is pressure to integrate/automate some of the safety-relevant processes
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Trend: Maintain Safety, Integrate Functions

� Previously, safety-critical systems were federated

� Each had its own fault-tolerant computing system
� Few interactions between them

� Now becoming integrated

� Resources shared among systems
� Stronger interactions among them

More functionality at less cost

� Integrated Modular Avionics (IMA)
� Modular Aerospace Controls (MAC)
� Integrated steering, brakes, suspension (cars)

� New hazards from fault propagation, and unintended emergent behavior
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Responses to These Trends

� Model-based development

� Automated support for some safety processes

� Based on formal analysis

� Standardized platforms

� Modular certification

John Rushby, SR I US Trends: 5



Model-Based Development

� Organize development of the system around an “executable” model of the system

and its environment

� E.g., in Matlab/Simulink, SCADE/Esterel Studio, Statecharts, UML. . .

� Required for all Airbus contractors

� Comparable Boeing process being defined

� Development in Matlab/Simulink is standard in non safety-critical applications

� Early execution (simulation, animation) helps eliminate many requirements faults

� And integrated models help eliminate interface faults
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Simplified Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

Hope is that model-based methods can tighten the vee
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Tightening the Vee

� If model-based methods could reduce requirements faults, we would reduce the

amount of rework, and steepen both sides

� If model-based methods could automate some testing procedures, would steepen

right side (especially bottom right)

� If model-based methods could automate coding, would steepen bottom left

� If model-based methods could eliminate some testing procedures, would further

steepen bottom right
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Tightened Vee Diagram

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I US Trends: 9



Assurance in Model-Based Development

� Currently, gains in model-based development come from early simulation and

integration of plant and (sub)system models

� And generally more integrated specifications and development

� And from automatic code generation in SCADE and Matlab

� The SCADE compiler (to C) is certified by JAA and unit tests are eliminated

� FAA accepts this in JAA-certified aircraft, but I doubt they would buy it in their own

certifications

� But much of this focuses on the control laws

� The real opportunity is in the discrete logic

� Mode switching, redundancy management, displays etc.
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Aside: Characteristics of Safety-Critical Systems

� Safety-critical systems are usually real-time embedded control systems

� Specified by control engineers
� Implemented by software engineers

� Only 20% (often much less) of the code implements the (continuous) control laws

� The other 80% is discrete logic

� All the complexity is in the discrete part

� Redundancy management
� Mode switching
� Human factors (automation surprises, mode confusion)

And it’s where all the failures are
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Assurance for Discrete Logic

� That is, requirements, specifications, code having lots of discrete conditions

� Whose possible combinations of different behaviors grows exponentially

� So complete testing is infeasible

� And absence of continuity means that extrapolation from incomplete testing is

unsound

� However, symbolic analysis can (in principle) consider all cases

� E.g., examine the consequences of � � � rather than enumerating (1, 2), (1,3),

(1, 4), . . . (2, 3),. . .

� This is what formal methods are about
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Formal Methods: Analogy with Engineering Mathematics

� Engineers in traditional disciplines build mathematical models of their designs

� And use calculation to establish that the design, in the context of a modeled

environment, satisfies its requirements

� Only useful when mechanized (e.g., CFD)

� Used in the design loop (exploration, debugging)

� Model, calculate, interpret, repeat

� Also used in certification

� Verify by calculation that the modeled system satisfies certain requirements

� Need separate assurance that model faithfully represents design, design is

implemented correctly, environment is modeled faithfully, calculations are performed

without error
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Formal Methods: Analogy with Engineering Math (ctd.)

� Formal methods: same idea, applied to computational systems

� The applied math of Computer Science is formal logic

� So the models are formal descriptions in some logical system

� E.g., a program reinterpreted as a mathematical formula rather than instructions

to a machine

� And calculation is mechanized by automated deduction: theorem proving, model

checking, static analysis, etc.

� Formal calculations (can) cover all modeled behaviors

� If the model is accurate, this provides verification

� If the model is approximate, can still be good for debugging

(aka. refutation), test-case generation
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Formal Methods: In Pictures

Testing/Simulation Formal Analysis

Complete coverage

Formal ModelReal System

Partial coverage
(of the modeled system)

Accurate model:

Approximate model:

verification

debugging
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Formal Calculations: The Basic Challeng e

� Build mathematical model of system and deduce properties by calculation

� The applied math of computer science is formal logic

� So calculation is done by automated deduction

� Where all problems are NP-hard, most are superexponential ( ��� � ), nonelementary

( � �
	�
 
 
� �

), or undecidable

� Why? Have to search a massive space of discrete possibilities

� Which exactly mirrors why it’s so hard to provide assurance for computational

systems

� But at least we’ve reduced the problem to a previously unsolved problem
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Application to Safety Critical Systems

� Using formal calculations, some activities that are traditionally performed by reviews

� Processes that depend on human judgment and consensus

can be replaced or supplemented by analyses

� Processes that can be repeated and checked by others, and potentially so by

machine

Language from DO-178B/ED-12B

� That is, formal methods help us move from process-based to product-based

assurance
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Formal Anal ysis in Model-Based Development

� The big opportunities are to automate verification of design against requirements

� And to automate generation of unit tests (and maybe integration and some system

tests)

� Airborne software must achieve MC/DC code coverage through functionally

derived tests

� Both have potentially large gain in productivity without big certification impact

� And both are quite easy to do for plain state machine specifications

� However, . . .
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Industrial Statec har t Langua ges

� Most model-based development environments use some form of Statecharts

notation to specify discrete behavior

� The formal semantics of basic Statecharts are quite complicated and less than ideal

for formal analysis

� The variants used in Matlab (Stateflow) and UML add further bizarre complexities

� Though Esterel has an attractively simple form (SyncCharts)

� Options worthy of consideration

� Use Esterel
� Replace Stateflow by something simpler (e.g., RSML ��� )
� Severely subset Stateflow
� Handle the full complexity
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Design Verification in Model-Based Development

� Collins and U of MN used NuSMV to verify 170 requirements (e.g., “at most one

lateral mode shall be active at any time”) against an RSML ��� specification for an

autopilot

� Analysis takes 4 minutes for all 170 requirements

� Highly automated theorem proving looks feasible for more difficult properties

� Big benefits are earlier and more reliable bug discovery

� And rapid, complete, and reliable reverification as the requirements and design

evolve

� Supplements, rather than replaces review of the final, stable, requirements and

design
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Test Generation in Model-Based Development

� There are many commercial tools based on formal methods

� E.g., T-VEC, RSI, TGV, STG, . . .

� Most based on model checking technology:

� Formalize the purpose of the test in CTL or LTL
�

Structural coverage criteria can be expressed as CTL or LTL formulas (apply to

specification, not code for MC/DC)
� Negate it and run the model checker
� Counterexample found by model checker is a trace that satisfies the purpose

� Fully automated

� Modulo the abstraction to finite state
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Key Technology: Bounded Model Checking

� Given a system specified by initiality predicate � and transition relation � , there is a

counterexample of length � to invariant � if there is a sequence of states������������� �"! such that

��# � �%$'& � # � � �(��) $'& � # ��)�� � � $*& +�+�+,& � # � ! � )��(� !-$'& . � # � !-$
� Given a Boolean encoding of � and � , this is a propositional satisfiability (SAT)

problem

� SAT solvers have become amazingly fast recently

� Try � / 0 � � ������� and submit each instance to a SAT solver

� Needs less tinkering than BDD-based symbolic model checker, can handle bigger

systems and find deeper bugs

� Now widely used in hardware verification, test case generation

� But is limited to refutation. . . or is it?
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Perimeter Calculation

� We should require that � � �������1� � ! are distinct

� Otherwise there’s a shorter counterexample

� And we should not allow any but � � to satisfy �
� Otherwise there’s a shorter counterexample

� If there’s no path of length � satisfying these two constraints, and no

counterexample has been found of length less than � , then we have verified �
� And paths in control software tend to be quite short
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Bounded Model Checking for Infinite State Systems

� We can discharge the BMC and perimeter formulas efficiently for Boolean encodings

of finite state systems because SAT solvers do efficient search

� If we could discharge these formulas over richer theories, we could do BMC for state

machines over these theories

� More concise
� More accurate

� So how about if we combine a SAT solver with a decision procedure—e.g., ICS—for

the combined theories?

� ICS is a set of decision procedures for the combination of integer and real

arithmetic, equality with uninterpreted functions symbols, etc. available from SRI
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SAT-Based Constraint Satisfaction

� Idea is to extend the efficient search of a modern SAT solver to propositionally

complex formulas with interpreted terms at the leaves

� E.g., � � � & # 23#4� $ / � 5 � 6879#4� $ � : $ 5 ����� for hundreds of thousands of

terms

� Replace the terms by propositional variables

� Get a solution from the SAT solver (if none, we are done)

� Restore the interpretation of variables and send the conjunction to the decision

procedure

� If satisfiable, we are done

� If not, ask SAT solver for a new assignment
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SAT-Based Constraint Satisfaction (ctd)

� But first, do a little bit of work to find some unsatisfiable fragments and send these

back to the SAT solver as additional constraints (lemmas)

� Iterate

� Works amazingly well

� Example, given integer � : #4� � ; & �<� = > $ 5 � / ?
� Becomes #A@ & B�$ 5 C
� SAT solver suggests @ / � � B / � � C / D
� Ask decision procedure about � � ; & �<� = >
� Add lemma . #E@ & BF$ to SAT problem
� SAT solver then suggests C / �
� Interpret as � / ? and we are done
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ICSAT (ICS Decision Procedure + SAT)

� We combined ICS with Chaff: worked well, but. . .

� Chaff wants input in CNF

(which is expensive to compute)
� Sometimes does more than we need (in asynchronous composition, we only

want assignments to variables of one process, but Don’t Cares can interfere with

search)
� As a black box, hard to do efficient incremental restarts
�

Note: decision procedure needs to be incremental, too
� Licensing terms

� We replaced Chaff by a nonclausal solver designed for restarts and Don’t Cares and

gained another two orders of magnitude
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Infinite BMC etc.

� So now we can do BMC over systems defined using terms from the theories decided

by ICS

� Not only more general, but sometimes faster too

� E.g., encoding bitvectors in SAT vs. using the ICS decision procedure for

bitvectors

� Additionally, can augment any class of problems traditionally handled by SAT solvers

(e.g., AI planning, diagnosis) to descriptions including decided theories

� E.g., proofs of inductive invariance (the bugbear of automated deduction because

of the need to strengthen invariants to make them inductive)
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Automated Induction via BMC

� Ordinary inductive invariance (for � ):

Basis: ��# �%� $HG � # �%� $
Step: � #IC ) $'& � #4C )%� C � $JG � #4C � $� Extend to induction of depth �
Basis:

��# � �%$'& � # � � � ��) $'& � # ��)��(� � $*& +�+�+,& � # � ! � )�� � !F$'& . � # � �%$ ����� . � # � !-$
Step: � #IC ) $'& � #4C ) � C � $'& � #IC � $'& +�+�+,& � #4C ! � )K$*& � #IC ! � ) � C ! $JG � #IC ! $
These are close relatives of the BMC formulas

� Need to avoid loops and degenerate cases in the antecedent paths in the same way

as BMC

� Induction for � / � � ; � ? ����� sometimes succeeds where � / 0 does not
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Summar y: Model-Based Development and Assurance

� There is a plausible path to increased productivity for safety-critical software,

centered on model-based development

� And automated formal methods can tackle the tasks of

� Refutation/debugging in the design loop
� Unit and some systems verification
� Unit and some system test case generation

system
requirements test

design/code unit/integration
test

time and money
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Verification by Traditional Theorem Proving: The Wall

theorem
proving

Effort

verification
for system
Assurance
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Traditional Model Checking: An Island

theorem
proving

checking
model

Effort

refutation

verification
Assurance
for system
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An Integrated Picture

ICS

PVS

SAL

Effort

refutation

invisible fm

verification

automated

abstraction

Assurance
for system
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Trend (redux): Maintain Safety, Integrate Functions

� Previously, safety-critical systems were federated

� Each had its own fault-tolerant computing system
� Few interactions between them

� Now becoming integrated

� Resources shared among systems
� Stronger interactions among them

More functionality at less cost

� Integrated Modular Avionics (IMA)
� Modular Aerospace Controls (MAC)
� Integrated steering, brakes, suspension (cars)

� New hazards from fault propagation, and unintended emergent behavior
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Partitioning

� Restores to integrated systems the strong barriers to fault propagation of federated

architectures

� Failure of one component must not affect ability of others to function and

communicate

� Allows low and high-criticality functions to coexist

� Allows high-criticality functions to be deconstructed

� Into components of differing levels
� Which allows provision of additional capabilities
� Such as health maintenance

� Strong composability is a dual to partitioning
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Fault-Tolerant Architectures

� Provide basic services to a collection of host computers

� Timing, communication, partitioning

These services must not fail, despite failure of components

� Support fault-tolerant applications in the hosts

� Consistent message delivery, failure notification
� E.g., through state machine replication

These simplify construction of correct fault-tolerant applications

And must not fail
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Fault-Tolerant Architectures (ctd)

� Federated systems generally employ “homespun” fault tolerance mechanisms

� Uninfluenced by academic knowledge
� Primary source of failure in some examples

� Integration raises the stakes and architectures generally build on a lineage of

research architectures that developed principled solutions to the challenges of

concurrent, real-time, distributed, fault-tolerant systems design

� SIFT (SRI), FTP, FTPP (Draper), MAFT (Allied Signal), MARS (TU Vienna)
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The Rôle of Buses

� There must be some communication system for exchanging sensor samples, state

data, control signals, actuator outputs

� Many possible topologies, but only a serial bus is economically viable

� The bus is then a critical shared resource

� Communication must be assured with guaranteed bandwidth, low jitter, low

end-to-end latency
� In the presence of faults

� Bus embodies the fault-tolerant architecture
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Safety-Critical Buses

� Avionics: SAFEbus (Honeywell 777 AIMS), SPIDER (NASA)

� Automotive: TTA (TU Vienna, TTTech), FlexRay (Daimler/Chrysler et al)

� I’ve written a NASA Tech Report and a paper presented at EMSOFT ’01 that

compare them

� Use Google to find my home page, follow link to my papers

John Rushby, SR I US Trends: 39



The Move To Standar dized Components

� There is pressure to use COTS components

� Despite their unsuitability for safety-critical applications

� But what if safety-critical components achieved sufficient volume to become COTS?

� The automobile industry is where this could happen

� And an accepted bus architecture is the enabling component

John Rushby, SR I US Trends: 40



The Time Trig gered Architecture (TTA)

� TTA is unique in being developed for mass-market for automobile applications (Audi,

PSA etc.) but also used for aircraft applications (Honeywell)

� “Aircraft safety at automobile cost”

� Example TTA applications

� Engine controller for an Italian fighter (Honeywell Tucson)
� Engine controller for F16 (Honeywell Tucson)
� Environmental control for A380 (Hamilton Sundstrand)
� GenAv cockpits (Honeywell Olathe)
� By wire applications in next generation cars (Audi, PSA. . . ), Snowcats, . . .
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Basic Characteristics of TTA

� Exists in both bus and star topologies (logically still a bus)

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Bus

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

Bus/hub are replicated

� All functionality implemented in the distributed interfaces (called TTP/C controllers)

� And in the hub of the star topology (a modified controller)
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Basic Characteristics of TTA (ctd.)

� Creates a synchronous, TDMA ring on a broadcast bus

� Global clock (achieved by synchronizing local clocks)

� Global schedule known at all nodes
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Basic Algorithms of TTA

� Clock synchronization

� Bus guardian window timing

� Group membership

� Clique avoidance

� Nonblocking write

� Startup/restart
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TTA Activity

� In addition to those of its developers (TTTech)

� There are several activities, EU and US, government, commercial, and academic

contributing to development of the safety case for TTA

� Some of these focus on formal verification of the TTA algorithms

� Projects

� SRI, with Honeywell Tucson and NASA
� NextTTA: TU Vienna, VERIMAG, Ulm, . . .

� Academic Groups

� Liafa, Paris 7
� PAX, Kiel
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Formal Verification for TTA

Safety motiv ation:

� Need all the assurance possible
� Help move certification from process- to product-basis
� Help develop approach to modular certification

Developer (TTTech) motiv ation:

� Product discriminator
� Formal proof gets into all the corners, may find bugs
� Formal proof exposes assumptions (fault hypotheses)
� Model checking and mechanized proof allow refined design exploration

Pruning of assumptions, strengthening of claims

Formal methods motiv ation:

� TTA algorithms are challenging, push the technology of automated verification
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The TTA Algorithms Are a Fascinating Challeng e

� TTA comprises several algorithms

� That are individually challenging for formal verification

� Even in their “academic” form

� Hard to do at all
� Really hard to automate

Further complicated by practical details

� The algorithms interact in interesting ways

� Some of the most important properties are emergent

� Consistent message delivery is achieved indirectly, not by an agreement

algorithm
� Partitioning is not ensured by any individual algorithm

� And the top-level properties are tricky to characterize

� See my FTRTFT’02 paper for summary of current state
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Summar y: Standar dized Platf orms� TTA and comparable bus architectures provide standardized platforms for the

safety-critical applications

� They provide fault tolerance based on rational principles (displacing homespun

solutions)
� And encourage similarly rational approaches to design of fault tolerant

applications

� They provide partitioning, thereby supporting both integration and deconstruction of

safety-critical applications

� Formal verification of its algorithms is a challenging problem

� But only needs to be done once

� Formalizing computational model and properties presented to client applications is

even more challenging, but crucial

� Can then bring formalization and verification to those clients

� And contemplate modular certification
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Modular Certification

� Safety-critical buses like TTA allow several safety-critical functions to coexist

� Modular certification is the ideal that each function could be largely “precertified” on

its own

� Final certification is an integration of the separately precertified components

� Currently the smallest unit of certification is a complete airplane or engine

� But RTCA SC200 and its European equivalent are holding joint meetings to develop

a basis for separate certification
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Modular Certification: The Ideal

� Certification argument for system Y with component/subsystem X makes use of

separately certified claims about X’s properties at its interfaces

� As opposed to opening up the design of X

� Pictorially:

X Y X Y+ vs.

� Think of X as some onboard function of airplane Y
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Modular Certification: The Benefits

� Assuming we have certified X and Y “in isolation”

� The incremental cost of the modular certification X+Y should be less than that of the

joint certification XY

� Especially if X is reused across many applications

� Attractive to suppliers of X

� Or if there are many X’s and the owner of Y only has to develop the integration

argument

� Attractive to developer of Y

� Requires that reasoning about properties at the interface is simpler than reasoning

about the design
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Modular Certification: The Difficulty

� Much of the effort in certification is not in showing that things work right when all is

going well

� But in showing that the system remains safe in the face of hazards

� In the case of X+Y, we have to consider all the hazards that X can pose to Y and

vice-versa

� Hazards include malfunction as well as loss of function

� Difficult to anticipate all the hazards X might pose to Y without knowing quite a lot

about Y, and vice-versa

� Think of Concorde’s tires

� Hazards may bypass the traditional notion of “interface”

John Rushby, SR I US Trends: 52



Compositional Verification

By Assume-Guarantee Reasoning

� The idea of verifying properties of one component L ) on the basis of assumptions

about another L � (and, in general, L M , L N . . . ), and vice-versa is called

assume-guarantee reasoning and is fairly well developed in computer science

� But there are two challenges:

� The approach looks circular, so how do we get a sound method? (not further

developed here)
� Assume-guarantee reasoning is used for verification, but we are interested in

certification
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Certifying Combinations of Software

� Certification differs from verification in that we have to take failures and hazards into

account

� Maybe we can split the problem into normal/abnormal cases� Can we certify the normal operation of L ) and L � by assume/guarantee

methods?
�

E.g., the thrust reverser does its thing assuming the engine controller supplies

some sensor readings�
Yes, this is similar to other assume/guarantee applications

� Can we do something similar for the hazards?
�

That is, provide guarantees on the behavior of L ) when L � does not fulfill its

assumptions?�
This is the hard one!
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Assume/Guarantee Reasoning Over Hazards

How can L � ’s failure to fulfill its guarantees disturb L ) ?

Behavioral failure: L ) depends on data or control values from L � in such a way

that its computation becomes hazardous when L � fails to satisfy its guarantees

� E.g., L ) relies on sensor data from L � with no independent backup

Interface failure: L � affects L ) through channels other than their defined interface

� E.g., L � corrupts or monopolizes resources used by L ) (memory,

communications bandwidth)

Function failure: L ) cannot guarantee the safety of its function if L � allows the

system it controls to malfunction

These are the only hazards L � can pose to L )
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Contr olling The Hazards

� We must control these three classes of hazards

� Some require that L ) and L � have certain properties

� And some require architectural properties of the environment in which L ) and L �
operate

John Rushby, SR I US Trends: 56



The Envir onment Must Enforce Partitioning

� Interface failure cannot be allowed; L ) , L � ,. . . must operate within an environment

that enforces partitioning

� Such as the traditional federated architecture
� Or an IMA or MAC architecture such as SAFEbus or TTA

� Must ensure that no failure of L � can affect the basic operation or timing of L ) , nor

its communications with nonfaulty L M , L N ,. . .

� Top-level requirement specification for partitioning:

� Behavior perceived by nonfaulty components must be consistent with some

behavior of faulty components interacting with it through specified interfaces

� A partitioning architecture must be certified to satisfy this requirement
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Normal and Abnormal Assumptions and Guarantees

� In most concurrent programs one component cannot work without the other

� E.g., in a communications protocol, what can the sender do without a receiver?

� But the software of different aircraft functions must not be so interdependent

� In fact, L ) must not depend on L �� In worst case, L ) must provide safe operation of its function in the absence of

any guarantees from L �� Though may need to assume some properties of the function controlled by L �
(e.g., thrust reverser may not depend on engine controller, but may depend on

engine remaining under control)
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Normal and Abnormal Assumptions and Guarantees (ctd)

� In general, L ) should provide a graduated series of guarantees, contingent on a

similar series of assumptions about L �� These can be considered the normal behavior of L ) and one or more abnormal

behaviors

� A component may be subjected to external failures of one or more of the

components with which it interacts

� Recorded in its abnormal assumptions of those components

� A component may also suffer internal failures

� Documented as its internal fault hypothesis
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Components Must Avoid Behavioral and Function Failure

True guarantees : under all combinations of failures consistent with its internal fault

hypothesis and abnormal assumptions, the component must be shown to satisfy one

or more of its normal or abnormal guarantees.

Safe function : under all combinations of faults consistent with its internal fault

hypothesis and abnormal components, the component must be shown to perform its

function safely (e.g., if it is an engine controller, it must control the engine safely)
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Avoiding Domino Failures

� If L ) suffers a failure that causes its behavior to revert from guarantee O #4L )K$ to

O PQ#IL ) $
� May expect that L � ’s behavior will revert from O #IL � $ to O P #IL � $
� Do not want the lowering of L � ’s guarantee to cause a further regression of L )

from O P #IL ) $ to O PRP #IL ) $ and so on

Contr olled failure : there should be no domino effect.

Arrange assumptions and guarantees in a hierarchy from 0 (no failure) to S (rock

bottom). If all internal faults and all external guarantees are at level T or better,

component should deliver its guarantees at level T or better

This subsumes true guarantees
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Summar y

� Model-based development creates an environment in which automated formal

methods can significantly reduce costs and enhance safety with little certification

impact

� Standardized safety-critical bus architectures provide a rational foundation for

application development, fault tolerance, and integration

� And are the targets of very searching formal analysis

� There is a plausible approach to modular certification that depends on three

properties

� Partitioning
� Safe function
� Controlled failure (which subsumes true guarantees)

� Together, these promise enhanced safety, at reduced cost
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