
The Versatile Synchronous Observer

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I The Versatile Synchronous Observer: 1

Model Checking

• It’s called model checking because we check

◦ Whether our system (or program or design), represented

as a state machine

◦ Is a Kripke model of

◦ Our specification, represented as a temporal logic formula

• Typically, the specification is translated into a state machine

• And composed with the system state machine

• And we try to prove that all reachable states satisfy the

specification, or we exhibit a counterexample

• Automated by explicit state (exhaustive simulation, e.g.,

SPIN), symbolic finite state methods (BDDs, or BMC and

k-induction with SAT, e.g., NuSMV), or symbolic infinite

state methods (BMC and k-induction with SMT, e.g., SAL)

• Nowadays, model checking means any fully automated FM

John Rushby, SR I The Versatile Synchronous Observer: 2

Safety and Liveness

• If the specification is a liveness/eventuality property

(typically, one involving the F or 3 modalities)

• Then it will be translated to a Büchi automaton, and the

checker will apply special acceptance rules

◦ Must reach a goal state infinitely often

• But for safety properties, it is just a regular automaton, i.e.,

state machine

• In practice, we only care about safety properties

◦ Note that bounded liveness is a safety property

John Rushby, SR I The Versatile Synchronous Observer: 3

Synchronous Observers

• For safety properties, instead of writing the specification as a

temporal logic formula and translating it to a state machine

• We could just write the specification directly as a state

machine

• Specifically, a state machine that is synchronously composed

with the system state machine

• And that observes its state variables

• And signals an alarm if the intended behavior is violated, or

ok if it is not (these are duals)

• This is called a synchronous observer

• Then we check that alarm or NOT ok are unreachable

John Rushby, SR I The Versatile Synchronous Observer: 4

Example (in SAL)
observer: MODULE =

BEGIN

INPUT

<state variables>

OUTPUT

ok: BOOLEAN

INITIALIZATION

ok = TRUE

TRANSITION

[

<property> --> ok’ = TRUE

[]

ELSE --> ok’ = FALSE

]

END;

check: FORMULA (system || observer) |- G(ok)

check alt: FORMULA (system || observer) |- G(NOT alarm)

John Rushby, SR I The Versatile Synchronous Observer: 5

Origins

• Both the concept and the term synchronous observer were

introduced in the context of the synchronous languages

developed in France

• In particular, by the Lesar model checker for the language

Lustre

• Synchronous observers used to specify

◦ Properties

◦ Assumptions

John Rushby, SR I The Versatile Synchronous Observer: 6

Benefits

• We only have to learn one language

◦ The state machine language

• Instead of two

◦ State machine plus temporal logic specification language

• And only one way of thinking

John Rushby, SR I The Versatile Synchronous Observer: 7

The Versatility of Synchronous Observers

• There are several other uses for synchronous observers

• I’ll describe four, there are probably more

1. Increased expressivity

2. Specifying/discovering constraints/assumptions

3. And axioms

4. Test generation

John Rushby, SR I The Versatile Synchronous Observer: 8

Expressivity

• This is about ease of specifying the state machine

• For specifying properties, synchronous observers and

temporal logics are more or less equivalent (see paper)

• Modern industrial languages, such as

◦ Accellera/IEEE Property Specification Language (PSL)

◦ SystemVerilog Assertions (SVA)

Extend LTL with regular expressions and thereby provide

ways to encode synchronous observers in the property

specification

John Rushby, SR I The Versatile Synchronous Observer: 9

Increased Expressivity via Synchronous Observers (1)

• Typical state machine language allows new values of variable

to be defined in terms of the old (notation here is SAL)

◦ e.g., x’ = x + y

or x’ IN {a: nat | a >= 25 AND a <= 50}

• What if we want to specify that the new value of x is simply

larger than the old?

• Some languages allow for this in nondeterministic

assignments

◦ e.g., x’ IN {a: nat | a > x}

• And some by allowing new values to appear in guards

◦ e.g., (x’ > x) --> x’ IN {a: nat | TRUE}

• But one method that always works is to specify it using a

synchronous observer. . .

John Rushby, SR I The Versatile Synchronous Observer: 10

Increased Expressivity via Synchronous Observers (2)

• First, in main system, make an unconstrained assignment to x

◦ x’ IN {a: nat | TRUE}

• Then, in a synchronous observer for constraints, we enforce

the desired relation (using aok as our flag variable)

◦ NOT (x’ > x) --> aok’ = FALSE

(if new variables not allowed in guards, then we will need to

introduce history variables and be careful about off-by-one)

• Then we model check for whatever property p we had in

mind, only in cases where aok is TRUE

◦ check: FORMULA (system || constraints) |- G(aok => p), or

◦ check: FORMULA (system || observer || constraints) |- G(aok => ok)

John Rushby, SR I The Versatile Synchronous Observer: 11

Increased Expressivity via Synchronous Observers (3)

• This method is particularly useful when need to update

multiple variables in a way that enforces a relation on them

◦ e.g., x2 + y2 ≤ 1

• Often have multiple constraints that are conjoined

• But guards are disjoined

• So we use De Morgan’s rule and disjoin the negations

• Application: relational abstraction for hybrid automata

◦ Due to Sankaranarayanan and Tiwari (there’s a SAL tool)

◦ Keeps same state space as the hybrid automata but

replaces differential equations by overapproximate

relations

◦ E.g., instead of a differential equation relating aircraft

pitch angle and rate of climb, we simply say that if pitch

angle is positive, than altitude increases

John Rushby, SR I The Versatile Synchronous Observer: 12

Fragment of Constraints from FMIS 2011 Example

INITIALIZATION

ok = TRUE;

TRANSITION

[actual_mode = op_des AND pitch > 0 --> ok’ = FALSE;

[] actual_mode = op_clb AND pitch < 0 --> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa <= 0 AND pitch > 0

--> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa >= 0 AND pitch < 0

--> ok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude --> ok’ = FALSE;

[] pitch=0 AND altitude’ /= altitude --> ok’ = FALSE;

[] ELSE -->

] END;

John Rushby, SR I The Versatile Synchronous Observer: 13

Synchronous Observers for Assumptions

• Most properties are not expected to be true unconditionally

• They are expected to be true only in environments that

satisfy certain assumptions

• Assumptions should generally be stated as constraints, not by

specifying an ideal environment

◦ Our job is to specify the environment, not implement it

• So the method just described for constraints can be applied

to assumptions

◦ NOT assumption i --> aok’ = FALSE

John Rushby, SR I The Versatile Synchronous Observer: 14

Synchronous Observers for Axioms (1)

• One of the disadvantages of model checking compared to

theorem proving in a system like PVS is that model checking

requires us to be too explicit

◦ For most model checking technologies, the system has to

be a (possibly nondeterministic) implementation

• Suppose we want to examine the bypass logic of a CPU

pipeline; typically want to prove the sequence of values out

of the pipelined implementation is same as nonpipelined one

• There’s an ALU at end of the pipeline; we don’t care what

fn’s it computes, just that at step i it does some fi(a, b)

• But to model check, must put a specific circuit there

◦ e.g., an adder: and some bugs may then go undetected

because of the special properties of that implementation

(e.g., commutativity, associativity)

John Rushby, SR I The Versatile Synchronous Observer: 15

Synchronous Observers for Axioms (2)

• SMT: solvers for Satisfiability Modulo Theories

• Roughly, these combine decision procedures for useful

theories like equality with uninterpreted functions, linear

arithmetic on integers and reals, arrays, and several others

◦ These work on conjunctions of formulas

• With SAT solvers

◦ These handle propositionally complex formulas

• The combination uses an abstraction/refinement/learning

loop, plus a lot of engineering

• SMT brings effective automation to many formal methods

• In particular, SMT solvers can be used for model checking

via BMC and k-induction

◦ Here, model checking is used to mean fully automatic

• This technology is called infinite bounded model checking or

infBMC (’cos some of the theories are over infinite models)

John Rushby, SR I The Versatile Synchronous Observer: 16

Synchronous Observers for Axioms (3)

• The reason theorem provers are more attractive than model

checkers for these kinds of situation is that they allow use of

uninterpreted functions: f(x) where we know nothing about f

• Can constrain f by adding axioms

◦ e.g., x > y => f(x) > f(y)

• SMT solvers decide this theory

• So now we can model check over specifications that use

uninterpreted functions etc.

John Rushby, SR I The Versatile Synchronous Observer: 17

Synchronous Observers for Axioms (4)

• But how do we convey the axioms about our uninterpreted

functions to the SMT solver underlying our infBMC?

• Synchronous observers!

• As before, just check for violations of the axioms

◦ NOT axiom i --> aok’ = FALSE

◦ e.g., x > y AND NOT (f(x) > f(y)) --> aok’ = FALSE

• Whew!

• That was a lot of setup to get to a simple conclusion

• Let’s extract more from the same setup

John Rushby, SR I The Versatile Synchronous Observer: 18

Discovering Assumptions with Synchronous Observers

• In civil aircraft, all accidents and incidents caused by software

are due to flaws in the system requirements specification or

to gaps between this and the software specification

◦ i.e., none are due to coding errors

• Modern system requirements specifications look a lot like

software: lots of case analysis

• But are very abstract (box and arrow diagrams)

• There’s no accepted technology for analyzing these

• But infBMC can do it

• Use uninterpreted functions for the boxes and arrows

• Incrementally add constraints/axioms to a synchronous

observer

• Until the desired properties are satisfied

John Rushby, SR I The Versatile Synchronous Observer: 19

Example: Protecting Against Random Faults

• Components that fail by stopping cleanly are fairly easy to

deal with

• The danger is components that do the wrong thing

• We have to eliminate design faults by analysis, but we still

have to worry about random faults

◦ e.g., when an α-particle flips a bit in instruction counter

• Our goal here is to design a component that fails cleanly in

the presence of random faults

John Rushby, SR I The Versatile Synchronous Observer: 20

Example: Self-Checking Pair (1)

• If they are truly random, faults in separate components

should be independent

◦ Provided they are designed as fault containment units

? Independent power supplies, locations etc.

◦ And ignoring high intensity radiated fields (HIRF)

? And other initiators of correlated faults

• So we can duplicate the component and compare the outputs

◦ Pass on the output when both agree

◦ Signal failure on disagreement

• Under what assumptions does this work?

John Rushby, SR I The Versatile Synchronous Observer: 21

Example: Self-Checking Pair (2)

control_out
data_in

data_in

control_out
m_data

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

• Controllers apply some control law to their input

• Controllers and distributor can fail

◦ For simplicity, checker is assumed not to fail

◦ Can be eliminated by having the controllers cross-compare

• Need some way to specify requirements and assumptions

• Aha! correctness requirement can be an idealized controller

John Rushby, SR I The Versatile Synchronous Observer: 22

Example: Self-Checking Pair (3)

control_out
data_in

data_in

control_out
m_data

ideal

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

The controllers can fail, the ideal cannot

If no fault indicated safe out and ideal out should be the same

Model check for G((NOT fault => safe out = ideal out))

John Rushby, SR I The Versatile Synchronous Observer: 23

Example: Self-Checking Pair (4)

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

d
is
tr
ib
u
to
r

ch
ec
k
er

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

merror

cerror

mon_out
controller
(monitor)

assumptions

violation

We need assumptions about the types of fault that can be

tolerated: encode these in assumptions synchronous observer

G(NOT violation => (NOT fault => safe out = ideal out))

John Rushby, SR I The Versatile Synchronous Observer: 24

Example: Self-Checking Pair (5)

• Find four assumptions for the self-checking pair

◦ When both members of pair are faulty, their outputs differ

◦ When the members of the pair receive different inputs,

their outputs should differ

? When neither is faulty: can be eliminated

? When one or more is faulty

◦ When both members of the pair receive the same input,

it is the correct input

• Can prove by 1-induction that these are sufficient

• One assumption can be eliminated by redesign

• Two require double faults

• Attention is directed to the most significant case

John Rushby, SR I The Versatile Synchronous Observer: 25

Compare with Simulation and Traditional Model Checking

• One of the assumptions is discovered through a

counterexample in which

◦ Distributor relays different wrong values x and y to the

two members of the pair

◦ But f(x) = f(y)

• In traditional simulation or model checking, would have to

use some specific implementation for f, such as x+1, and we

would be unlikely to chose one that could manifest this fault

• But infBMC can do it: synthesizes a model for f

John Rushby, SR I The Versatile Synchronous Observer: 26

Test Generation

• Model checkers can be used for test generation

• e.g., to generate a test that reaches a target state

characterized by property p just check for NOT p

◦ test: FORMULA system |- G(NOT p)

The counterexample generated by the model checker is a

test scenario to reach the target state

• Can modify a model checker to generate single (long)

counterexample to reach multiple targets

◦ SAL-ATG does this

• But a cool alternative is to write a synchronous observer

“tester” module that raises a flag tok when it has observed a

scenario that satisfies the test purpose

• Then model check for NOT tok

◦ test: FORMULA (system || tester) |- G(NOT tok)

John Rushby, SR I The Versatile Synchronous Observer: 27

Example: Shift Scheduler (1)

This is the Simulink/Stateflow design for the shift scheduler of

an automatic transmission used in Ford cars

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

We want a test scenario that takes it through all its states

John Rushby, SR I The Versatile Synchronous Observer: 28

Example: Shift Scheduler (2)

• One input is the gear currently selected by the gearbox

• Tests often change this discontinuously (e.g., 1, 3, 4, 2)

• Can easily establish the test purpose to change only in single

steps, and to change at every step

• Create a tester module whose body is

OUTPUT

moving, continuous: BOOLEAN

INITIALIZATION

moving = TRUE; continuous = (gear=1);

TRANSITION

moving’ = moving AND (gear /= gear’);

continuous’ = continuous

AND (gear - gear’ <= 1)AND (gear’ - gear <= 1);

• Then model check for the negation of these

◦ test: FORMULA (system || tester) |- G(NOT (moving AND continuous))

• Actually, also need to check for a DONE flag on state coverage

John Rushby, SR I The Versatile Synchronous Observer: 29

Why This Works

• The basic system specification generates more behaviors

than desired

• The synchronous observer recognizes those that are wanted

• It works (in the sense of being effective) because it is

generally easier to specify recognizers than generators

• Let the model checker synthesize the required behavior

• May be costly with an explicit state model checker

◦ Has to generate many behaviors, then throw them away

But OK for symbolic ones

John Rushby, SR I The Versatile Synchronous Observer: 30

Conclusions

• Synchronous observers are a fairly obvious idea

• But I don’t think their versatility is widely appreciated

• So I hope to have given you some ideas for novel ways to

exploit them, and invite you to think of more

• Can also be used at runtime: interesting reliability results via

probability of perfection (relates assurance to reliability)

• The power of modern tools like SMT solvers and infBMC is

such that it often makes sense to specify required behavior

by means of a recognizer, or in terms of constraints, rather

than by a constructive specification

◦ Let the automation synthesize the behavior

• The next step is to let the automation synthesize the

constructive specification or implementation from constraints

• For that, need to develop effective Exists-Forall SMT solvers

John Rushby, SR I The Versatile Synchronous Observer: 31

