
Talk at IST Austria 9 March 2016, based on Invited talk, 12th

International Conference on Distributed Computing and

Internet Technology (ICDCIT), Bhubaneswar, India, January

2016



Trustworthy Self-Integrating Systems

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I Trustworthy Self-Integrating Systems 1



Introduction: Systems of Systems

• We’re familiar with systems built from components

• But increasingly, we see systems built from other systems

◦ Systems of Systems

• The component systems have their own purpose

◦ Maybe at odds with what we want from them

• And they generally have vastly more functionality than we

require

◦ Provides opportunities for unexpected behavior

◦ Bugs, security exploits etc. (e.g., CarShark)

• Difficult when trustworthiness required

◦ May need to wrap or otherwise restrict behavior of

component systems

◦ And that means integration requires bespoke engineering

John Rushby, SR I Trustworthy Self-Integrating Systems 2



Self-Integrating Systems

• But we can imagine systems that recognize each other and

spontaneously integrate

◦ Possibly under the direction of an “integration app”

◦ Examples on next several slides

• Furthermore, separate systems often interact through shared

“plant” whether we want it or not (stigmergy)

◦ Separate medical devices attached to same patient

◦ Car and roadside automation

(autonomous driving and traffic lights)

And it would be best if they “consciously” integrated

• These systems need to “self integrate”

• And we want the resulting system to be trustworthy

• That’s a tall order

John Rushby, SR I Trustworthy Self-Integrating Systems 3



Scenarios

• I’ll describe some scenarios, mostly from medicine

• And most from Dr. Julian Goldman (Mass General)

◦ “Operating Room of the Future” and

◦ “Intensive Care Unit of the Future”

• There is Medical Device Plug and Play (MDPnP) that

enables basic interaction between medical devices

• And the larger concept of “Fog Computing” to provide

relaible, scaleable infrastructure for integration

• But I’m concerned with what the systems do together rather

than the mechanics of their interaction

John Rushby, SR I Trustworthy Self-Integrating Systems 4



Anesthesia and Laser

• Patient under general anesthesia is generally provided

enriched oxygen supply

• Some throat surgeries use a laser

• In presence of enriched oxygen, laser causes burning, even fire

• Want laser and anesthesia machine to recognize each other

• Laser requests reduced oxygen from anesthesia machine

• But. . .

◦ Need to be sure laser is talking to anesthesia machine

connected to this patient

◦ Other (or faulty) devices should not be able to do this

◦ Laser should light only if oxygen really is reduced

◦ In emergency, need to enrich oxygen should override laser

John Rushby, SR I Trustworthy Self-Integrating Systems 5



Heart-Lung Machine and X-ray

• Very ill patients may be on a heart-lung machine while

undergoing surgery

• Sometimes an X-ray is required during the procedure

• Surgeons turn off the heart-lung machine so the patient’s

chest is still while the X-ray is taken

• Must then remember to turn it back on

• Would like heart-lung and X-ray mc’s to recognize each other

• X-ray requests heart-lung machine to stop for a while

◦ Other (or faulty) devices should not be able to do this

◦ Need a guarantee that the heart-lung restarts

• Better: heart lung machine informs X-ray of nulls

John Rushby, SR I Trustworthy Self-Integrating Systems 6



Patient Controlled Analgesia and Pulse Oximeter

• Machine for Patient Controlled Analgesia (PCA) administers

pain-killing drug on demand

◦ Patient presses a button

◦ Built-in (parameterized) model sets limit to prevent

overdose

◦ Limits are conservative, so may prevent adequate relief

• A Pulse Oximeter (PO) can be used as an overdose warning

• Would like PCA and PO to recognize each other

• PCA then uses PO data rather than built-in model

• But that supposes PCA design anticipated this

• Standard PCA might be enhanced by an app that

manipulates its model thresholds based on PO data

• But. . .

John Rushby, SR I Trustworthy Self-Integrating Systems 7



Patient Controlled Analgesia and Pulse Oximeter (ctd.)

• Need to be sure PCA and PO are connected to same patient

• Need to cope with faults in either system and in

communications

◦ E.g., if the app works by blocking button presses when an

approaching overdose is indicated, then loss of

communication could remove the safety function

◦ If, on the other hand, it must approve each button press,

then loss of communication may affect pain relief but not

safety

◦ In both cases, it is necessary to be sure that faults in the

blocking or approval mechanism cannot generate spurious

button presses

• This is hazard analysis and mitigation at integration time

John Rushby, SR I Trustworthy Self-Integrating Systems 8



Blood Pressure and Bed Height

• Accurate blood pressure sensors can be inserted into

intravenous (IV) fluid supply

• Reading needs correction for the difference in height between

the sensor and the patient

• Sensor height can be standardized by the IV pole

• Some hospital beds have height sensor

◦ Fairly crude device to assist nurses

• Can imagine an ICU where these data are available on the

local network

• Then integrated by monitoring and alerting services

• But. . .

John Rushby, SR I Trustworthy Self-Integrating Systems 9



Blood Pressure and Bed Height (ctd.)

• Need to be sure bed height and blood pressure readings are

from same patient

• Needs to be an ontology that distinguishes height-corrected

and uncorrected readings

• Noise- and fault-characteristics of bed height sensor mean

that alerts should be driven from changes in uncorrected

reading

• Or, since, bed height seldom changes, could synthesize a

noise- and fault-masking wrapper for this value

• Again, hazard analysis and mitigation at integration time

John Rushby, SR I Trustworthy Self-Integrating Systems 10



What’s the Problem?

• Could build all these as bespoke systems

• More interesting is the idea that the component systems

discover each other, and self integrate into a bigger system

• Initially will need an extra component, the integration app to

specify what the purpose should be

• But later, could be more like the way human teams assemble

to solve difficult problems

◦ Negotiation on goals, exchange information on

capabilities, rules, and constraints

John Rushby, SR I Trustworthy Self-Integrating Systems 11



What’s the Problem? (ctd. 1)

• Since they were not designed for it

• It’s unlikely the systems fit together perfectly

• So will need shims, wrappers, adapters etc.

• So part of the problem is the “self ” in self integration

• How are these adaptations constructed during self

integration?

John Rushby, SR I Trustworthy Self-Integrating Systems 12



What’s the Problem? (ctd. 2)

• In many cases the resulting assembly needs to be trustworthy

◦ Preferably do what was wanted

◦ Definitely do no harm

• Even if self-integrated applications seem harmless at first,

will often get used for critical purposes as users gain

(misplaced) confidence

◦ E.g., my Chromecast setup for viewing photos

◦ Can imagine surgeons using something similar

(they used Excel!)

• So how do we ensure trustworthiness?

John Rushby, SR I Trustworthy Self-Integrating Systems 13



Aside: System Assurance

• State of the art in system assurance is the idea of a safety

case (more generally, an assurance case)

◦ An argument that specified claims are satisfied, based on

evidence (e.g., tests, analyses) about the system

• System comes with machine-processable online rendition of

its assurance case

◦ Not standard yet, but Japanese DEOS project does it

◦ Essentially a proof, built on premises justified by evidence

(see my AAA15 paper, cf. one on Ontological Argument)

• Ideally: when systems self integrate, assurance case for the

overall system is constructed automatically from the cases of

the component systems

• Hard because safety often does not compose

◦ E.g., because there are new hazards

◦ Recall laser and anesthesia
John Rushby, SR I Trustworthy Self-Integrating Systems 14



What’s the Problem? (ctd. 3)

• While building the assurance case at self-integration time

• Likely must eliminate or mitigate some hazards

• May be able to do this by wrappers, or by monitoring

• Aside: the power of monitors

◦ A monitor can be very simple

◦ Can make a claim that it is probably fault-free

? This is the claim that verification delivers

◦ Prob. of failure of system is then

? prob. of failure of operational component

times prob. monitor is fault-free

◦ Nb. cannot multiply probs. of failure

◦ See TSE 2012 paper by Littlewood and me

• How do these wrappers and monitors get built?

John Rushby, SR I Trustworthy Self-Integrating Systems 15



Models At Runtime (M@RT)

• If systems are to adapt to each other

• And wrappers and monitors are to be built at integration-time

• Then the systems need to know something about each other

• One way is to exchange models

◦ Machine-processable (i.e., formal) description of some

aspects of behavior, claims, assumptions

• This is Models at RunTime: M@RT

• When you add aspects of the assurance case, get Safety

Models at RunTime: SM@RT (Trapp and Schneider)

• Most recent in a line of system integration concepts

◦ Open Systems, Open Adaptive Systems,

System Oriented Architecture

John Rushby, SR I Trustworthy Self-Integrating Systems 16



Four Levels of SM@RT

• Due to Trapp and Schneider

• Safety Certificates @ runtime (feasible today)

◦ Each system maintains its own local safety objective

◦ But composed system may not be safe

• Safety Cases @ runtime (feasible tomorrow)

◦ Component system safety cases guide adaptation

◦ Integrated dynamically for safe & assured assembly

◦ E.g., one system may need to demonstrate it delivers

properties assumed by another

• V&V @ runtime (our goal, feasible soon)

◦ May be that one system cannot deliver assumptions

required by another

◦ So adjustments needed

◦ E.g., wrappers or monitors to exclude some class of faults

• Hazard Analysis & Risk Assessm’t at RT (infeasible today)
John Rushby, SR I Trustworthy Self-Integrating Systems 17



Example: SILF

SILF: Semantic Interoperability Logical Framework

• Developed by NATO to enable dependable

machine-to-machine information exchanges among Command

and Control Systems

• Extensive ontology to describe content of messages

exchanged

◦ So in SM@RT terms, ontological descriptions

(e.g., in OWL) are the models

• Mediation mechanism to translate messages as needed

◦ Synthesized at integration time

• Mediation can be performed by centralized hub, or by

wrappers at either the sender or receiver

John Rushby, SR I Trustworthy Self-Integrating Systems 18



ONISTT and Onward

• ONISTT is an SRI project, prototyped ideas of SILF

◦ Ad-hoc Prolog program synthesizes the mediator

? Now uses F-Logic and Flora2

◦ Synthesis procedure can also decide when

incompatibilities too great to meet purpose of integration

◦ Used successfully to integrate live and virtual simulation

systems for military training

• ONISTT achieves restricted form of safety cases @ runtime

• More general applications likely require richer models than

ontologies

◦ E.g., state machines and formal specifications

• How to perform synthesis on these?

John Rushby, SR I Trustworthy Self-Integrating Systems 19



Synthesis as Exists/Forall Problem

• At integration time, systems need to synthesize wrappers,

monitors, shims etc.

• Synthesis can be seen as a generate and verify search problem

◦ Construct a candidate program

◦ Try to formally verify that it meets specification

◦ If not, generate new candidate and iterate

• Unrestricted search will not work

• Have human provide template/sketch, synthesis fills in details

• Simple example of a template for an invariant Ax+By = C

• Formally, this can be expressed as

∃A,B,C : ∀x, y : Ax+By = C (1)

where x and y are program variables, and the parameters

A, B, C must be instantiated by the synthesis procedure

• Note two-level quantification: Exists/Forall (EF)

John Rushby, SR I Trustworthy Self-Integrating Systems 20



Synthesis as Exists/Forall Problem (ctd. 1)

• Variants on EF formulation can express

◦ Invariant generation

◦ Assumption synthesis

? Find the weakest environment in which a given

component meets its requirements

◦ Supervisory controller synthesis

? Design an algorithm to selectively disable component

actions so that it satisfies some goal in the face of

uncontrollable actions by the environment

◦ Full synthesis

? Design an algorithm to achieve some goal

• So how do we solve EF problems?

• Start by solving one-level problems: Exists or Forall

John Rushby, SR I Trustworthy Self-Integrating Systems 21



Synthesis as Exists/Forall Problem (ctd. 2)

• Satisfiability Modulo Theories (SMT)

• A breakthrough in automated theorem proving, 15 years ago

• Decides Boolean formulas over combination of theories

• . . . Boolean formulas: e.g., (x ≤ y∨y = 5)∧(x < 0∨y ≤ x)∧x 6= y

. . . continued for many terms

• . . . over combination of theories

e.g., 2× car(x)− 3× cdr(x) = f(cdr(x)) ⊃

f(cons(4× car(x)− 2× f(cdr(x)), y)) = f(cons(6× cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists

• Can extend to one level of quantification

(i.e., either Exists or Forall)

• There are many SMT solvers, honed by competition

• Routine to handle hundreds of thousands of terms in seconds

John Rushby, SR I Trustworthy Self-Integrating Systems 22



Synthesis as Exists/Forall Problem (ctd. 3)

• EF-SMT solver uses an ordinary SMT solver as a component

1. Guess (cleverly) instantiations for the Exists variables and

query the SMT solver with the resulting Forall formula

2. If this succeeds, we are done

3. If it fails, use the result (i.e., counterexample) of the

Forall query to help in finding the next instantiation of

the Exists variables

• Key in making this efficient is to use (i.e., learn from) the

result of failed verification (Forall) steps to prune the search

space for subsequent synthesis (Exists) steps

• Many SMT solvers being extended to EF solving (e.g., Yices)

John Rushby, SR I Trustworthy Self-Integrating Systems 23



Vision

• Systems come together

• Exchange models, assurance cases

• Under guidance of an integration app

◦ Which expresses the purpose of the integration

? E.g., as a template or sketch

• Connectors, wrappers, monitors, and shims are synthesized

◦ By EF-SMT solver

• And system assurance case is composed from those of

component systems

• Delivers a trustworthy integration

John Rushby, SR I Trustworthy Self-Integrating Systems 24



Conclusion

• Trustworthy self integration is within reach

◦ For simple cases. . .

• Need theorem proving at integration time

◦ To synthesize the connectors, monitors etc.

◦ And to build the composed assurance case

• So a theorem prover will be at the heart of self integration

• In future, will likely also use learning to infer properties

beyond supplied models

• Further ahead, will integrate highly autonomous systems

◦ Numerous failures in HMI (e.g., Air France and Air Asia

crashes) show this is difficult

• So must exchange more strategic information than SM@RT

• Maybe beliefs, desires, intent (BDI), even a system of ethics

• This is the future of IoT

John Rushby, SR I Trustworthy Self-Integrating Systems 25


